Home » Archimedes archive » Acorn User » AU 1997-01 B.adf » Regulars » StarInfo/Allen/!Ignotum/Formulae/Formulae/Geom

StarInfo/Allen/!Ignotum/Formulae/Formulae/Geom

This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.

Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.

Tape/disk: Home » Archimedes archive » Acorn User » AU 1997-01 B.adf » Regulars
Filename: StarInfo/Allen/!Ignotum/Formulae/Formulae/Geom
Read OK:
File size: 07F2 bytes
Load address: 0000
Exec address: 0000
File contents
# Maths > Geometry

# New entries should take the form of:
#     Formula
#     Note 1
#     Note 2
#     Note 3
#     Note 4
#     Note 5
#     Formula
#     Note 1
#     And so on...
# To fit snugly into the window, each line should be no longer
# than 42 characters.
# There is a limit of 25 formulas per topic.

# Any notes should be made here, at the beginning and should
# be preceeded by a hash (#).

y=mx+c
General equation for a straight line.
m=gradient of line
c=intercept on y axis


y-y1=m(x-x1)
Used to get a straight line equation when
you are given the gradient (m) and a set
of co-ordinates (x1,y1).


(y-y1)/(y2-y1)=(x-x1)/(x2-x1)
Used to get a straight line equation when
you are given two sets of co-ordinates,
(x1,y1) and (x1,y2).


m1 � m2=-1
For straight lines perpendicular to each
other:
The two gradients (m1 and m2) multiplied
together equals -1.

tanA=|(m1-m2)/(1+m1m2)|
Where A is the acute angle between two
straight lines with gradients m1 and m2.



line length=(x�+y�+z�)^�
The length of a line equals the square
root of its x, y (and possibly z)
components squared and added together.
(From pythagoras's theorem).

x=a+rcost and y=b+rsint
Parametric equations for plotting a
circle.
Centre of circle is at (a,b)
r=radius
t=any number
(x-a)�+(y-b)�=r�
Cartesian equation for plotting a circle.
Centre of circle is at (a,b)
r=radius


A=PIr�
Where:
A=area of a circle
PI=3.141592645
r=radius of circle

c=2PIr
Where:
c=circumference of a circle
PI=3.141592645
r=radius

s=rA
Where:
s=section of a circle's circumference
r=radius
A is an angle in radians
Note: PI radians=180�
A=�r�B
Where:
A=area of a circle segment
r=radius
B is an angle in radians
Note: PI radians=180�
A=�absinC
Where:
A=area of a triangle
a and b are side lengths
C=angle between a and b
Note: It works on any triangle
A=(s(s-a)(s-b)(s-c))^�
Known as Hero's formula, where:
A=area of a triangle
a, b and c are side lengths
s=�(a+b+c)
Note: It works on any triangle


































































00000000  23 20 4d 61 74 68 73 20  3e 20 47 65 6f 6d 65 74  |# Maths > Geomet|
00000010  72 79 0a 0a 23 20 4e 65  77 20 65 6e 74 72 69 65  |ry..# New entrie|
00000020  73 20 73 68 6f 75 6c 64  20 74 61 6b 65 20 74 68  |s should take th|
00000030  65 20 66 6f 72 6d 20 6f  66 3a 0a 23 20 20 20 20  |e form of:.#    |
00000040  20 46 6f 72 6d 75 6c 61  0a 23 20 20 20 20 20 4e  | Formula.#     N|
00000050  6f 74 65 20 31 0a 23 20  20 20 20 20 4e 6f 74 65  |ote 1.#     Note|
00000060  20 32 0a 23 20 20 20 20  20 4e 6f 74 65 20 33 0a  | 2.#     Note 3.|
00000070  23 20 20 20 20 20 4e 6f  74 65 20 34 0a 23 20 20  |#     Note 4.#  |
00000080  20 20 20 4e 6f 74 65 20  35 0a 23 20 20 20 20 20  |   Note 5.#     |
00000090  46 6f 72 6d 75 6c 61 0a  23 20 20 20 20 20 4e 6f  |Formula.#     No|
000000a0  74 65 20 31 0a 23 20 20  20 20 20 41 6e 64 20 73  |te 1.#     And s|
000000b0  6f 20 6f 6e 2e 2e 2e 0a  23 20 54 6f 20 66 69 74  |o on....# To fit|
000000c0  20 73 6e 75 67 6c 79 20  69 6e 74 6f 20 74 68 65  | snugly into the|
000000d0  20 77 69 6e 64 6f 77 2c  20 65 61 63 68 20 6c 69  | window, each li|
000000e0  6e 65 20 73 68 6f 75 6c  64 20 62 65 20 6e 6f 20  |ne should be no |
000000f0  6c 6f 6e 67 65 72 0a 23  20 74 68 61 6e 20 34 32  |longer.# than 42|
00000100  20 63 68 61 72 61 63 74  65 72 73 2e 0a 23 20 54  | characters..# T|
00000110  68 65 72 65 20 69 73 20  61 20 6c 69 6d 69 74 20  |here is a limit |
00000120  6f 66 20 32 35 20 66 6f  72 6d 75 6c 61 73 20 70  |of 25 formulas p|
00000130  65 72 20 74 6f 70 69 63  2e 0a 0a 23 20 41 6e 79  |er topic...# Any|
00000140  20 6e 6f 74 65 73 20 73  68 6f 75 6c 64 20 62 65  | notes should be|
00000150  20 6d 61 64 65 20 68 65  72 65 2c 20 61 74 20 74  | made here, at t|
00000160  68 65 20 62 65 67 69 6e  6e 69 6e 67 20 61 6e 64  |he beginning and|
00000170  20 73 68 6f 75 6c 64 0a  23 20 62 65 20 70 72 65  | should.# be pre|
00000180  63 65 65 64 65 64 20 62  79 20 61 20 68 61 73 68  |ceeded by a hash|
00000190  20 28 23 29 2e 0a 0a 79  3d 6d 78 2b 63 0a 47 65  | (#)...y=mx+c.Ge|
000001a0  6e 65 72 61 6c 20 65 71  75 61 74 69 6f 6e 20 66  |neral equation f|
000001b0  6f 72 20 61 20 73 74 72  61 69 67 68 74 20 6c 69  |or a straight li|
000001c0  6e 65 2e 0a 6d 3d 67 72  61 64 69 65 6e 74 20 6f  |ne..m=gradient o|
000001d0  66 20 6c 69 6e 65 0a 63  3d 69 6e 74 65 72 63 65  |f line.c=interce|
000001e0  70 74 20 6f 6e 20 79 20  61 78 69 73 0a 0a 0a 79  |pt on y axis...y|
000001f0  2d 79 31 3d 6d 28 78 2d  78 31 29 0a 55 73 65 64  |-y1=m(x-x1).Used|
00000200  20 74 6f 20 67 65 74 20  61 20 73 74 72 61 69 67  | to get a straig|
00000210  68 74 20 6c 69 6e 65 20  65 71 75 61 74 69 6f 6e  |ht line equation|
00000220  20 77 68 65 6e 0a 79 6f  75 20 61 72 65 20 67 69  | when.you are gi|
00000230  76 65 6e 20 74 68 65 20  67 72 61 64 69 65 6e 74  |ven the gradient|
00000240  20 28 6d 29 20 61 6e 64  20 61 20 73 65 74 0a 6f  | (m) and a set.o|
00000250  66 20 63 6f 2d 6f 72 64  69 6e 61 74 65 73 20 28  |f co-ordinates (|
00000260  78 31 2c 79 31 29 2e 0a  0a 0a 28 79 2d 79 31 29  |x1,y1)....(y-y1)|
00000270  2f 28 79 32 2d 79 31 29  3d 28 78 2d 78 31 29 2f  |/(y2-y1)=(x-x1)/|
00000280  28 78 32 2d 78 31 29 0a  55 73 65 64 20 74 6f 20  |(x2-x1).Used to |
00000290  67 65 74 20 61 20 73 74  72 61 69 67 68 74 20 6c  |get a straight l|
000002a0  69 6e 65 20 65 71 75 61  74 69 6f 6e 20 77 68 65  |ine equation whe|
000002b0  6e 0a 79 6f 75 20 61 72  65 20 67 69 76 65 6e 20  |n.you are given |
000002c0  74 77 6f 20 73 65 74 73  20 6f 66 20 63 6f 2d 6f  |two sets of co-o|
000002d0  72 64 69 6e 61 74 65 73  2c 0a 28 78 31 2c 79 31  |rdinates,.(x1,y1|
000002e0  29 20 61 6e 64 20 28 78  31 2c 79 32 29 2e 0a 0a  |) and (x1,y2)...|
000002f0  0a 6d 31 20 d7 20 6d 32  3d 2d 31 0a 46 6f 72 20  |.m1 . m2=-1.For |
00000300  73 74 72 61 69 67 68 74  20 6c 69 6e 65 73 20 70  |straight lines p|
00000310  65 72 70 65 6e 64 69 63  75 6c 61 72 20 74 6f 20  |erpendicular to |
00000320  65 61 63 68 0a 6f 74 68  65 72 3a 0a 54 68 65 20  |each.other:.The |
00000330  74 77 6f 20 67 72 61 64  69 65 6e 74 73 20 28 6d  |two gradients (m|
00000340  31 20 61 6e 64 20 6d 32  29 20 6d 75 6c 74 69 70  |1 and m2) multip|
00000350  6c 69 65 64 0a 74 6f 67  65 74 68 65 72 20 65 71  |lied.together eq|
00000360  75 61 6c 73 20 2d 31 2e  0a 0a 74 61 6e 41 3d 7c  |uals -1...tanA=||
00000370  28 6d 31 2d 6d 32 29 2f  28 31 2b 6d 31 6d 32 29  |(m1-m2)/(1+m1m2)|
00000380  7c 0a 57 68 65 72 65 20  41 20 69 73 20 74 68 65  ||.Where A is the|
00000390  20 61 63 75 74 65 20 61  6e 67 6c 65 20 62 65 74  | acute angle bet|
000003a0  77 65 65 6e 20 74 77 6f  0a 73 74 72 61 69 67 68  |ween two.straigh|
000003b0  74 20 6c 69 6e 65 73 20  77 69 74 68 20 67 72 61  |t lines with gra|
000003c0  64 69 65 6e 74 73 20 6d  31 20 61 6e 64 20 6d 32  |dients m1 and m2|
000003d0  2e 0a 0a 0a 0a 6c 69 6e  65 20 6c 65 6e 67 74 68  |.....line length|
000003e0  3d 28 78 b2 2b 79 b2 2b  7a b2 29 5e bd 0a 54 68  |=(x.+y.+z.)^..Th|
000003f0  65 20 6c 65 6e 67 74 68  20 6f 66 20 61 20 6c 69  |e length of a li|
00000400  6e 65 20 65 71 75 61 6c  73 20 74 68 65 20 73 71  |ne equals the sq|
00000410  75 61 72 65 0a 72 6f 6f  74 20 6f 66 20 69 74 73  |uare.root of its|
00000420  20 78 2c 20 79 20 28 61  6e 64 20 70 6f 73 73 69  | x, y (and possi|
00000430  62 6c 79 20 7a 29 0a 63  6f 6d 70 6f 6e 65 6e 74  |bly z).component|
00000440  73 20 73 71 75 61 72 65  64 20 61 6e 64 20 61 64  |s squared and ad|
00000450  64 65 64 20 74 6f 67 65  74 68 65 72 2e 0a 28 46  |ded together..(F|
00000460  72 6f 6d 20 70 79 74 68  61 67 6f 72 61 73 27 73  |rom pythagoras's|
00000470  20 74 68 65 6f 72 65 6d  29 2e 0a 0a 78 3d 61 2b  | theorem)...x=a+|
00000480  72 63 6f 73 74 20 61 6e  64 20 79 3d 62 2b 72 73  |rcost and y=b+rs|
00000490  69 6e 74 0a 50 61 72 61  6d 65 74 72 69 63 20 65  |int.Parametric e|
000004a0  71 75 61 74 69 6f 6e 73  20 66 6f 72 20 70 6c 6f  |quations for plo|
000004b0  74 74 69 6e 67 20 61 0a  63 69 72 63 6c 65 2e 0a  |tting a.circle..|
000004c0  43 65 6e 74 72 65 20 6f  66 20 63 69 72 63 6c 65  |Centre of circle|
000004d0  20 69 73 20 61 74 20 28  61 2c 62 29 0a 72 3d 72  | is at (a,b).r=r|
000004e0  61 64 69 75 73 0a 74 3d  61 6e 79 20 6e 75 6d 62  |adius.t=any numb|
000004f0  65 72 0a 28 78 2d 61 29  b2 2b 28 79 2d 62 29 b2  |er.(x-a).+(y-b).|
00000500  3d 72 b2 0a 43 61 72 74  65 73 69 61 6e 20 65 71  |=r..Cartesian eq|
00000510  75 61 74 69 6f 6e 20 66  6f 72 20 70 6c 6f 74 74  |uation for plott|
00000520  69 6e 67 20 61 20 63 69  72 63 6c 65 2e 0a 43 65  |ing a circle..Ce|
00000530  6e 74 72 65 20 6f 66 20  63 69 72 63 6c 65 20 69  |ntre of circle i|
00000540  73 20 61 74 20 28 61 2c  62 29 0a 72 3d 72 61 64  |s at (a,b).r=rad|
00000550  69 75 73 0a 0a 0a 41 3d  50 49 72 b2 0a 57 68 65  |ius...A=PIr..Whe|
00000560  72 65 3a 0a 41 3d 61 72  65 61 20 6f 66 20 61 20  |re:.A=area of a |
00000570  63 69 72 63 6c 65 0a 50  49 3d 33 2e 31 34 31 35  |circle.PI=3.1415|
00000580  39 32 36 34 35 0a 72 3d  72 61 64 69 75 73 20 6f  |92645.r=radius o|
00000590  66 20 63 69 72 63 6c 65  0a 0a 63 3d 32 50 49 72  |f circle..c=2PIr|
000005a0  0a 57 68 65 72 65 3a 0a  63 3d 63 69 72 63 75 6d  |.Where:.c=circum|
000005b0  66 65 72 65 6e 63 65 20  6f 66 20 61 20 63 69 72  |ference of a cir|
000005c0  63 6c 65 0a 50 49 3d 33  2e 31 34 31 35 39 32 36  |cle.PI=3.1415926|
000005d0  34 35 0a 72 3d 72 61 64  69 75 73 0a 0a 73 3d 72  |45.r=radius..s=r|
000005e0  41 0a 57 68 65 72 65 3a  0a 73 3d 73 65 63 74 69  |A.Where:.s=secti|
000005f0  6f 6e 20 6f 66 20 61 20  63 69 72 63 6c 65 27 73  |on of a circle's|
00000600  20 63 69 72 63 75 6d 66  65 72 65 6e 63 65 0a 72  | circumference.r|
00000610  3d 72 61 64 69 75 73 0a  41 20 69 73 20 61 6e 20  |=radius.A is an |
00000620  61 6e 67 6c 65 20 69 6e  20 72 61 64 69 61 6e 73  |angle in radians|
00000630  0a 4e 6f 74 65 3a 20 50  49 20 72 61 64 69 61 6e  |.Note: PI radian|
00000640  73 3d 31 38 30 b0 0a 41  3d bd 72 b2 42 0a 57 68  |s=180..A=.r.B.Wh|
00000650  65 72 65 3a 0a 41 3d 61  72 65 61 20 6f 66 20 61  |ere:.A=area of a|
00000660  20 63 69 72 63 6c 65 20  73 65 67 6d 65 6e 74 0a  | circle segment.|
00000670  72 3d 72 61 64 69 75 73  0a 42 20 69 73 20 61 6e  |r=radius.B is an|
00000680  20 61 6e 67 6c 65 20 69  6e 20 72 61 64 69 61 6e  | angle in radian|
00000690  73 0a 4e 6f 74 65 3a 20  50 49 20 72 61 64 69 61  |s.Note: PI radia|
000006a0  6e 73 3d 31 38 30 b0 0a  41 3d bd 61 62 73 69 6e  |ns=180..A=.absin|
000006b0  43 0a 57 68 65 72 65 3a  0a 41 3d 61 72 65 61 20  |C.Where:.A=area |
000006c0  6f 66 20 61 20 74 72 69  61 6e 67 6c 65 0a 61 20  |of a triangle.a |
000006d0  61 6e 64 20 62 20 61 72  65 20 73 69 64 65 20 6c  |and b are side l|
000006e0  65 6e 67 74 68 73 0a 43  3d 61 6e 67 6c 65 20 62  |engths.C=angle b|
000006f0  65 74 77 65 65 6e 20 61  20 61 6e 64 20 62 0a 4e  |etween a and b.N|
00000700  6f 74 65 3a 20 49 74 20  77 6f 72 6b 73 20 6f 6e  |ote: It works on|
00000710  20 61 6e 79 20 74 72 69  61 6e 67 6c 65 0a 41 3d  | any triangle.A=|
00000720  28 73 28 73 2d 61 29 28  73 2d 62 29 28 73 2d 63  |(s(s-a)(s-b)(s-c|
00000730  29 29 5e bd 0a 4b 6e 6f  77 6e 20 61 73 20 48 65  |))^..Known as He|
00000740  72 6f 27 73 20 66 6f 72  6d 75 6c 61 2c 20 77 68  |ro's formula, wh|
00000750  65 72 65 3a 0a 41 3d 61  72 65 61 20 6f 66 20 61  |ere:.A=area of a|
00000760  20 74 72 69 61 6e 67 6c  65 0a 61 2c 20 62 20 61  | triangle.a, b a|
00000770  6e 64 20 63 20 61 72 65  20 73 69 64 65 20 6c 65  |nd c are side le|
00000780  6e 67 74 68 73 0a 73 3d  bd 28 61 2b 62 2b 63 29  |ngths.s=.(a+b+c)|
00000790  0a 4e 6f 74 65 3a 20 49  74 20 77 6f 72 6b 73 20  |.Note: It works |
000007a0  6f 6e 20 61 6e 79 20 74  72 69 61 6e 67 6c 65 0a  |on any triangle.|
000007b0  0a 0a 0a 0a 0a 0a 0a 0a  0a 0a 0a 0a 0a 0a 0a 0a  |................|
*
000007f0  0a 0a                                             |..|
000007f2