Home » Archimedes archive » Acorn User » AU 1998-08.adf » Regulars » StarInfo/Brobecker/SprngSrfc
StarInfo/Brobecker/SprngSrfc
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » Archimedes archive » Acorn User » AU 1998-08.adf » Regulars |
Filename: | StarInfo/Brobecker/SprngSrfc |
Read OK: | ✔ |
File size: | 0833 bytes |
Load address: | 0000 |
Exec address: | 0000 |
File contents
10REM>>> Spring system, with surface conservation 20REM Alain BROBECKER (baah/Arm's Tech) on 07-Feb-1998 30MODE9:OFF:ORIGIN640,512 40m%=24:n%=m%-1 :REMnb of points 50r=128 :REMradius of object 60k=0.8 :REMsprings' stiffness 70sk=30 :REMsurface' stiffness 80a=.93 :REMabsorption 90g=-0.8 :REMgravity 100ga=0 :REMgravity angle 110w%=256 :REMwall position 120DIMx(n%),y(n%),vx(n%),vy(n%),ax(n%),ay(n%) 130vx()=0:vy()=0 140REMcreate object, compute springs' neutral length and object neutral surface 150FORc%=0TOn%:x(c%)=r*COS(2*PI*c%/m%):y(c%)=r*SIN(2*PI*c%/m%):NEXT 160nl=SQR((x(1)-x(0))^2+(y(1)-y(0))^2) :REMsprings' neutral length 170ns=FNsurface 180 190b%=1 :REMscreenbank 200REPEAT 210 WAIT:SYS"OS_Byte",&71,b%:b%=b%EOR3:SYS"OS_Byte",&70,b%:CLS 220 GCOL4:RECTANGLE-w%-1,-w%-1,w%+3<<1,w%+3<<1 230 GCOL1:MOVEx(0),y(0):FORc%=1TOn%:DRAWx(c%),y(c%):NEXT:DRAWx(0),y(0) 240 GCOL7:FORc%=0TOn%:POINTx(c%),y(c%):NEXTc% 250REMmodify gravity an put it into acceleration 260 l=g*COSga:ax()=l:l=g*SINga:ay()=l:ga+=0.05 270 IFRND(128)<3THENga+=PI 280REMcompute surface and add forces according to s-ns 290 s=FNsurface 300 fs=sk*(s-ns)/ns 310 FORc%=0TOn% 320 d%=c%-1:IFd%<0THENd%=n% 330 e%=(c%+1)MODm% 340 dx=y(d%)-y(e%) :REMvector normal to d%e% 350 dy=x(e%)-x(d%) 360 l=SQR(dx^2+dy^2) 370 IFl<>0THEN 380 ax(c%)+=fs*dx/l 390 ay(c%)+=fs*dy/l 400 ENDIF 410 NEXTc% 420REMcompute force for each spring 430 FORc%=0TOn% 440 d%=(c%+1)MODm% 450 dx=x(c%)-x(d%) 460 dy=y(c%)-y(d%) 470 l=SQR(dx^2+dy^2) 480 IFl<>0THEN 490 ax=(nl-l)*k*dx/l 500 ay=(nl-l)*k*dy/l 510 ax(c%)+=ax:ax(d%)-=ax 520 ay(c%)+=ay:ay(d%)-=ay 530 ENDIF 540 NEXT 550REMcompute movements for each point 560 FORc%=0TOn% 570 vx(c%)=vx(c%)*a+ax(c%) 580 vy(c%)=(vy(c%)-ay(c%))*a+2*ay(c%) :REMno absorption of gravity 590 x(c%)+=vx(c%) 600 y(c%)+=vy(c%) 610 IFx(c%)<-w%THENx(c%)=-w%:vx(c%)=-vx(c%) 620 IFx(c%)>w%THENx(c%)=w%:vx(c%)=-vx(c%) 630 IFy(c%)<-w%THENy(c%)=-w%:vy(c%)=-vy(c%) 640 IFy(c%)>w%THENy(c%)=w%:vy(c%)=-vy(c%) 650 NEXT 660UNTILFALSE 670 680REMThis function returns the surface under the polygonal curve. 690DEFFNsurface 700LOCALs,c%,d% 710 s=0.5*(y(n%)+y(0))*(x(n%)-x(0)) 720 FORd%=1TOn% 730 c%=d%-1 740 s+=0.5*(y(c%)+y(d%))*(x(c%)-x(d%)) 750 NEXT 760=s
1�>>> Spring system, with surface conservation 9� Alain BROBECKER (baah/Arm's Tech) on 07-Feb-1998 �9:�:ȑ640,512 ( m%=24:n%=m%-1 :�nb of points 2"r=128 :�radius of object <$k=0.8 :�springs' stiffness F$sk=30 :�surface' stiffness Pa=.93 :�absorption Zg=-0.8 :�gravity dga=0 :�gravity angle nw%=256 :�wall position x,�x(n%),y(n%),vx(n%),vy(n%),ax(n%),ay(n%) �vx()=0:vy()=0 �N�create object, compute springs' neutral length and object neutral surface �8�c%=0�n%:x(c%)=r*�(2*�*c%/m%):y(c%)=r*�(2*�*c%/m%):� �?nl=�((x(1)-x(0))^2+(y(1)-y(0))^2) :�springs' neutral length �ns=�surface � �b%=1 :�screenbank �� �7 Ȗ:ș"OS_Byte",&71,b%:b%=b%�3:ș"OS_Byte",&70,b%:� �% �4:ȓ-w%-1,-w%-1,w%+3<<1,w%+3<<1 �5 �1:�x(0),y(0):�c%=1�n%:�x(c%),y(c%):�:�x(0),y(0) �" �7:�c%=0�n%:Ȓx(c%),y(c%):�c% �/�modify gravity an put it into acceleration + l=g*�ga:ax()=l:l=g*�ga:ay()=l:ga+=0.05 �(128)<3�ga+=� 5�compute surface and add forces according to s-ns " s=�surface , fs=sk*(s-ns)/ns 6 �c%=0�n% @ d%=c%-1:�d%<0�d%=n% J e%=(c%+1)�m% T3 dx=y(d%)-y(e%) :�vector normal to d%e% ^ dy=x(e%)-x(d%) h l=�(dx^2+dy^2) r �l<>0� | ax(c%)+=fs*dx/l � ay(c%)+=fs*dy/l � � � �c% �"�compute force for each spring � �c%=0�n% � d%=(c%+1)�m% � dx=x(c%)-x(d%) � dy=y(c%)-y(d%) � l=�(dx^2+dy^2) � �l<>0� � ax=(nl-l)*k*dx/l � ay=(nl-l)*k*dy/l � ax(c%)+=ax:ax(d%)-=ax ay(c%)+=ay:ay(d%)-=ay � � &%�compute movements for each point 0 �c%=0�n% : vx(c%)=vx(c%)*a+ax(c%) DB vy(c%)=(vy(c%)-ay(c%))*a+2*ay(c%) :�no absorption of gravity N x(c%)+=vx(c%) X y(c%)+=vy(c%) b) �x(c%)<-w%�x(c%)=-w%:vx(c%)=-vx(c%) l' �x(c%)>w%�x(c%)=w%:vx(c%)=-vx(c%) v) �y(c%)<-w%�y(c%)=-w%:vy(c%)=-vy(c%) �' �y(c%)>w%�y(c%)=w%:vy(c%)=-vy(c%) � � ��� � �A�This function returns the surface under the polygonal curve. � ݤsurface ��s,c%,d% �$ s=0.5*(y(n%)+y(0))*(x(n%)-x(0)) � �d%=1�n% � c%=d%-1 �( s+=0.5*(y(c%)+y(d%))*(x(c%)-x(d%)) � � �=s �
00000000 0d 00 0a 31 f4 3e 3e 3e 20 53 70 72 69 6e 67 20 |...1.>>> Spring | 00000010 73 79 73 74 65 6d 2c 20 77 69 74 68 20 73 75 72 |system, with sur| 00000020 66 61 63 65 20 63 6f 6e 73 65 72 76 61 74 69 6f |face conservatio| 00000030 6e 0d 00 14 39 f4 20 20 20 20 41 6c 61 69 6e 20 |n...9. Alain | 00000040 42 52 4f 42 45 43 4b 45 52 20 28 62 61 61 68 2f |BROBECKER (baah/| 00000050 41 72 6d 27 73 20 54 65 63 68 29 20 6f 6e 20 30 |Arm's Tech) on 0| 00000060 37 2d 46 65 62 2d 31 39 39 38 0d 00 1e 12 eb 39 |7-Feb-1998.....9| 00000070 3a 87 3a c8 91 36 34 30 2c 35 31 32 0d 00 28 20 |:.:..640,512..( | 00000080 6d 25 3d 32 34 3a 6e 25 3d 6d 25 2d 31 20 3a f4 |m%=24:n%=m%-1 :.| 00000090 6e 62 20 6f 66 20 70 6f 69 6e 74 73 0d 00 32 22 |nb of points..2"| 000000a0 72 3d 31 32 38 20 20 20 20 20 20 20 3a f4 72 61 |r=128 :.ra| 000000b0 64 69 75 73 20 6f 66 20 6f 62 6a 65 63 74 0d 00 |dius of object..| 000000c0 3c 24 6b 3d 30 2e 38 20 20 20 20 20 20 20 3a f4 |<$k=0.8 :.| 000000d0 73 70 72 69 6e 67 73 27 20 73 74 69 66 66 6e 65 |springs' stiffne| 000000e0 73 73 0d 00 46 24 73 6b 3d 33 30 20 20 20 20 20 |ss..F$sk=30 | 000000f0 20 20 3a f4 73 75 72 66 61 63 65 27 20 73 74 69 | :.surface' sti| 00000100 66 66 6e 65 73 73 0d 00 50 1c 61 3d 2e 39 33 20 |ffness..P.a=.93 | 00000110 20 20 20 20 20 20 3a f4 61 62 73 6f 72 70 74 69 | :.absorpti| 00000120 6f 6e 0d 00 5a 19 67 3d 2d 30 2e 38 20 20 20 20 |on..Z.g=-0.8 | 00000130 20 20 3a f4 67 72 61 76 69 74 79 0d 00 64 1f 67 | :.gravity..d.g| 00000140 61 3d 30 20 20 20 20 20 20 20 20 3a f4 67 72 61 |a=0 :.gra| 00000150 76 69 74 79 20 61 6e 67 6c 65 0d 00 6e 1f 77 25 |vity angle..n.w%| 00000160 3d 32 35 36 20 20 20 20 20 20 3a f4 77 61 6c 6c |=256 :.wall| 00000170 20 70 6f 73 69 74 69 6f 6e 0d 00 78 2c de 78 28 | position..x,.x(| 00000180 6e 25 29 2c 79 28 6e 25 29 2c 76 78 28 6e 25 29 |n%),y(n%),vx(n%)| 00000190 2c 76 79 28 6e 25 29 2c 61 78 28 6e 25 29 2c 61 |,vy(n%),ax(n%),a| 000001a0 79 28 6e 25 29 0d 00 82 11 76 78 28 29 3d 30 3a |y(n%)....vx()=0:| 000001b0 76 79 28 29 3d 30 0d 00 8c 4e f4 63 72 65 61 74 |vy()=0...N.creat| 000001c0 65 20 6f 62 6a 65 63 74 2c 20 63 6f 6d 70 75 74 |e object, comput| 000001d0 65 20 73 70 72 69 6e 67 73 27 20 6e 65 75 74 72 |e springs' neutr| 000001e0 61 6c 20 6c 65 6e 67 74 68 20 61 6e 64 20 6f 62 |al length and ob| 000001f0 6a 65 63 74 20 6e 65 75 74 72 61 6c 20 73 75 72 |ject neutral sur| 00000200 66 61 63 65 0d 00 96 38 e3 63 25 3d 30 b8 6e 25 |face...8.c%=0.n%| 00000210 3a 78 28 63 25 29 3d 72 2a 9b 28 32 2a af 2a 63 |:x(c%)=r*.(2*.*c| 00000220 25 2f 6d 25 29 3a 79 28 63 25 29 3d 72 2a b5 28 |%/m%):y(c%)=r*.(| 00000230 32 2a af 2a 63 25 2f 6d 25 29 3a ed 0d 00 a0 3f |2*.*c%/m%):....?| 00000240 6e 6c 3d b6 28 28 78 28 31 29 2d 78 28 30 29 29 |nl=.((x(1)-x(0))| 00000250 5e 32 2b 28 79 28 31 29 2d 79 28 30 29 29 5e 32 |^2+(y(1)-y(0))^2| 00000260 29 20 3a f4 73 70 72 69 6e 67 73 27 20 6e 65 75 |) :.springs' neu| 00000270 74 72 61 6c 20 6c 65 6e 67 74 68 0d 00 aa 0f 6e |tral length....n| 00000280 73 3d a4 73 75 72 66 61 63 65 0d 00 b4 04 0d 00 |s=.surface......| 00000290 be 1c 62 25 3d 31 20 20 20 20 20 20 20 20 3a f4 |..b%=1 :.| 000002a0 73 63 72 65 65 6e 62 61 6e 6b 0d 00 c8 05 f5 0d |screenbank......| 000002b0 00 d2 37 20 c8 96 3a c8 99 22 4f 53 5f 42 79 74 |..7 ..:.."OS_Byt| 000002c0 65 22 2c 26 37 31 2c 62 25 3a 62 25 3d 62 25 82 |e",&71,b%:b%=b%.| 000002d0 33 3a c8 99 22 4f 53 5f 42 79 74 65 22 2c 26 37 |3:.."OS_Byte",&7| 000002e0 30 2c 62 25 3a db 0d 00 dc 25 20 e6 34 3a c8 93 |0,b%:....% .4:..| 000002f0 2d 77 25 2d 31 2c 2d 77 25 2d 31 2c 77 25 2b 33 |-w%-1,-w%-1,w%+3| 00000300 3c 3c 31 2c 77 25 2b 33 3c 3c 31 0d 00 e6 35 20 |<<1,w%+3<<1...5 | 00000310 e6 31 3a ec 78 28 30 29 2c 79 28 30 29 3a e3 63 |.1:.x(0),y(0):.c| 00000320 25 3d 31 b8 6e 25 3a df 78 28 63 25 29 2c 79 28 |%=1.n%:.x(c%),y(| 00000330 63 25 29 3a ed 3a df 78 28 30 29 2c 79 28 30 29 |c%):.:.x(0),y(0)| 00000340 0d 00 f0 22 20 e6 37 3a e3 63 25 3d 30 b8 6e 25 |..." .7:.c%=0.n%| 00000350 3a c8 92 78 28 63 25 29 2c 79 28 63 25 29 3a ed |:..x(c%),y(c%):.| 00000360 63 25 0d 00 fa 2f f4 6d 6f 64 69 66 79 20 67 72 |c%.../.modify gr| 00000370 61 76 69 74 79 20 61 6e 20 70 75 74 20 69 74 20 |avity an put it | 00000380 69 6e 74 6f 20 61 63 63 65 6c 65 72 61 74 69 6f |into acceleratio| 00000390 6e 0d 01 04 2b 20 6c 3d 67 2a 9b 67 61 3a 61 78 |n...+ l=g*.ga:ax| 000003a0 28 29 3d 6c 3a 6c 3d 67 2a b5 67 61 3a 61 79 28 |()=l:l=g*.ga:ay(| 000003b0 29 3d 6c 3a 67 61 2b 3d 30 2e 30 35 0d 01 0e 14 |)=l:ga+=0.05....| 000003c0 20 e7 b3 28 31 32 38 29 3c 33 8c 67 61 2b 3d af | ..(128)<3.ga+=.| 000003d0 0d 01 18 35 f4 63 6f 6d 70 75 74 65 20 73 75 72 |...5.compute sur| 000003e0 66 61 63 65 20 61 6e 64 20 61 64 64 20 66 6f 72 |face and add for| 000003f0 63 65 73 20 61 63 63 6f 72 64 69 6e 67 20 74 6f |ces according to| 00000400 20 73 2d 6e 73 0d 01 22 0f 20 73 3d a4 73 75 72 | s-ns..". s=.sur| 00000410 66 61 63 65 0d 01 2c 14 20 66 73 3d 73 6b 2a 28 |face..,. fs=sk*(| 00000420 73 2d 6e 73 29 2f 6e 73 0d 01 36 0d 20 e3 63 25 |s-ns)/ns..6. .c%| 00000430 3d 30 b8 6e 25 0d 01 40 19 20 20 64 25 3d 63 25 |=0.n%..@. d%=c%| 00000440 2d 31 3a e7 64 25 3c 30 8c 64 25 3d 6e 25 0d 01 |-1:.d%<0.d%=n%..| 00000450 4a 12 20 20 65 25 3d 28 63 25 2b 31 29 83 6d 25 |J. e%=(c%+1).m%| 00000460 0d 01 54 33 20 20 64 78 3d 79 28 64 25 29 2d 79 |..T3 dx=y(d%)-y| 00000470 28 65 25 29 20 20 20 20 20 20 20 20 3a f4 76 65 |(e%) :.ve| 00000480 63 74 6f 72 20 6e 6f 72 6d 61 6c 20 74 6f 20 64 |ctor normal to d| 00000490 25 65 25 0d 01 5e 14 20 20 64 79 3d 78 28 65 25 |%e%..^. dy=x(e%| 000004a0 29 2d 78 28 64 25 29 0d 01 68 14 20 20 6c 3d b6 |)-x(d%)..h. l=.| 000004b0 28 64 78 5e 32 2b 64 79 5e 32 29 0d 01 72 0c 20 |(dx^2+dy^2)..r. | 000004c0 20 e7 6c 3c 3e 30 8c 0d 01 7c 16 20 20 20 61 78 | .l<>0...|. ax| 000004d0 28 63 25 29 2b 3d 66 73 2a 64 78 2f 6c 0d 01 86 |(c%)+=fs*dx/l...| 000004e0 16 20 20 20 61 79 28 63 25 29 2b 3d 66 73 2a 64 |. ay(c%)+=fs*d| 000004f0 79 2f 6c 0d 01 90 07 20 20 cd 0d 01 9a 09 20 ed |y/l.... ..... .| 00000500 63 25 20 0d 01 a4 22 f4 63 6f 6d 70 75 74 65 20 |c% ...".compute | 00000510 66 6f 72 63 65 20 66 6f 72 20 65 61 63 68 20 73 |force for each s| 00000520 70 72 69 6e 67 0d 01 ae 0d 20 e3 63 25 3d 30 b8 |pring.... .c%=0.| 00000530 6e 25 0d 01 b8 12 20 20 64 25 3d 28 63 25 2b 31 |n%.... d%=(c%+1| 00000540 29 83 6d 25 0d 01 c2 14 20 20 64 78 3d 78 28 63 |).m%.... dx=x(c| 00000550 25 29 2d 78 28 64 25 29 0d 01 cc 14 20 20 64 79 |%)-x(d%).... dy| 00000560 3d 79 28 63 25 29 2d 79 28 64 25 29 0d 01 d6 14 |=y(c%)-y(d%)....| 00000570 20 20 6c 3d b6 28 64 78 5e 32 2b 64 79 5e 32 29 | l=.(dx^2+dy^2)| 00000580 0d 01 e0 0c 20 20 e7 6c 3c 3e 30 8c 0d 01 ea 17 |.... .l<>0.....| 00000590 20 20 20 61 78 3d 28 6e 6c 2d 6c 29 2a 6b 2a 64 | ax=(nl-l)*k*d| 000005a0 78 2f 6c 0d 01 f4 17 20 20 20 61 79 3d 28 6e 6c |x/l.... ay=(nl| 000005b0 2d 6c 29 2a 6b 2a 64 79 2f 6c 0d 01 fe 1c 20 20 |-l)*k*dy/l.... | 000005c0 20 61 78 28 63 25 29 2b 3d 61 78 3a 61 78 28 64 | ax(c%)+=ax:ax(d| 000005d0 25 29 2d 3d 61 78 0d 02 08 1c 20 20 20 61 79 28 |%)-=ax.... ay(| 000005e0 63 25 29 2b 3d 61 79 3a 61 79 28 64 25 29 2d 3d |c%)+=ay:ay(d%)-=| 000005f0 61 79 0d 02 12 07 20 20 cd 0d 02 1c 06 20 ed 0d |ay.... ..... ..| 00000600 02 26 25 f4 63 6f 6d 70 75 74 65 20 6d 6f 76 65 |.&%.compute move| 00000610 6d 65 6e 74 73 20 66 6f 72 20 65 61 63 68 20 70 |ments for each p| 00000620 6f 69 6e 74 0d 02 30 0d 20 e3 63 25 3d 30 b8 6e |oint..0. .c%=0.n| 00000630 25 0d 02 3a 1c 20 20 76 78 28 63 25 29 3d 76 78 |%..:. vx(c%)=vx| 00000640 28 63 25 29 2a 61 2b 61 78 28 63 25 29 0d 02 44 |(c%)*a+ax(c%)..D| 00000650 42 20 20 76 79 28 63 25 29 3d 28 76 79 28 63 25 |B vy(c%)=(vy(c%| 00000660 29 2d 61 79 28 63 25 29 29 2a 61 2b 32 2a 61 79 |)-ay(c%))*a+2*ay| 00000670 28 63 25 29 20 3a f4 6e 6f 20 61 62 73 6f 72 70 |(c%) :.no absorp| 00000680 74 69 6f 6e 20 6f 66 20 67 72 61 76 69 74 79 0d |tion of gravity.| 00000690 02 4e 13 20 20 78 28 63 25 29 2b 3d 76 78 28 63 |.N. x(c%)+=vx(c| 000006a0 25 29 0d 02 58 13 20 20 79 28 63 25 29 2b 3d 76 |%)..X. y(c%)+=v| 000006b0 79 28 63 25 29 0d 02 62 29 20 20 e7 78 28 63 25 |y(c%)..b) .x(c%| 000006c0 29 3c 2d 77 25 8c 78 28 63 25 29 3d 2d 77 25 3a |)<-w%.x(c%)=-w%:| 000006d0 76 78 28 63 25 29 3d 2d 76 78 28 63 25 29 0d 02 |vx(c%)=-vx(c%)..| 000006e0 6c 27 20 20 e7 78 28 63 25 29 3e 77 25 8c 78 28 |l' .x(c%)>w%.x(| 000006f0 63 25 29 3d 77 25 3a 76 78 28 63 25 29 3d 2d 76 |c%)=w%:vx(c%)=-v| 00000700 78 28 63 25 29 0d 02 76 29 20 20 e7 79 28 63 25 |x(c%)..v) .y(c%| 00000710 29 3c 2d 77 25 8c 79 28 63 25 29 3d 2d 77 25 3a |)<-w%.y(c%)=-w%:| 00000720 76 79 28 63 25 29 3d 2d 76 79 28 63 25 29 0d 02 |vy(c%)=-vy(c%)..| 00000730 80 27 20 20 e7 79 28 63 25 29 3e 77 25 8c 79 28 |.' .y(c%)>w%.y(| 00000740 63 25 29 3d 77 25 3a 76 79 28 63 25 29 3d 2d 76 |c%)=w%:vy(c%)=-v| 00000750 79 28 63 25 29 0d 02 8a 06 20 ed 0d 02 94 06 fd |y(c%).... ......| 00000760 a3 0d 02 9e 04 0d 02 a8 41 f4 54 68 69 73 20 66 |........A.This f| 00000770 75 6e 63 74 69 6f 6e 20 72 65 74 75 72 6e 73 20 |unction returns | 00000780 74 68 65 20 73 75 72 66 61 63 65 20 75 6e 64 65 |the surface unde| 00000790 72 20 74 68 65 20 70 6f 6c 79 67 6f 6e 61 6c 20 |r the polygonal | 000007a0 63 75 72 76 65 2e 0d 02 b2 0d dd a4 73 75 72 66 |curve.......surf| 000007b0 61 63 65 0d 02 bc 0c ea 73 2c 63 25 2c 64 25 0d |ace.....s,c%,d%.| 000007c0 02 c6 24 20 73 3d 30 2e 35 2a 28 79 28 6e 25 29 |..$ s=0.5*(y(n%)| 000007d0 2b 79 28 30 29 29 2a 28 78 28 6e 25 29 2d 78 28 |+y(0))*(x(n%)-x(| 000007e0 30 29 29 0d 02 d0 0d 20 e3 64 25 3d 31 b8 6e 25 |0)).... .d%=1.n%| 000007f0 0d 02 da 0d 20 20 63 25 3d 64 25 2d 31 0d 02 e4 |.... c%=d%-1...| 00000800 28 20 20 73 2b 3d 30 2e 35 2a 28 79 28 63 25 29 |( s+=0.5*(y(c%)| 00000810 2b 79 28 64 25 29 29 2a 28 78 28 63 25 29 2d 78 |+y(d%))*(x(c%)-x| 00000820 28 64 25 29 29 0d 02 ee 06 20 ed 0d 02 f8 06 3d |(d%)).... .....=| 00000830 73 0d ff |s..| 00000833