Home » CEEFAX disks » telesoftware5.adl » 20-02-88/T\OSB14
20-02-88/T\OSB14
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » CEEFAX disks » telesoftware5.adl |
Filename: | 20-02-88/T\OSB14 |
Read OK: | ✔ |
File size: | 1A61 bytes |
Load address: | 0000 |
Exec address: | FFFFFFFF |
File contents
OSBITS - An Exploration of the BBC Micro at Machine Level By Programmer .......................................................... Part 14: Binary to ASCII Conversion This module brings us around to division and I'll introduce it by way of a routine to take a 4 byte number in memory and print out it's value as a decimal number in ASCII. Unlike input we have no error conditions to worry about since there are only four bytes (the routine can be expanded as required) and the number can be either negative or positive. If it is negative we will first note its sign and then convert to positive for processing. The processing goes like this: Take the number and divide it by the base, in this case 10 Take the remainder (which represents the number of units) and it will be a binary value between 0 and 9. Add &30 to it, which converts it to the ASCII code for its number 0-9 and put it into a buffer. Divide the answer to the last division by 10, which leaves us the number of 10s in the remainder .... and so on around the loop. We do this until the answer on division by 10 is zero. But how do we divide in machine code? For this exercise I'll go for the simplest algorithm, which is essentially long division. So let's divide 10101101 by 101 (173 by 5). This should give us the result 34 remainder 3. We use conventional long division but remembering that we only need to remember the 'one times table'! This gives us the following: 100010 --------- 101 | 10101101 101 --- 00110 101 --- 011 We could continue this division beyond the 'binary' point which will give you an indication of how we will produce real (as opposed to integer) numbers later on. Effectively we are shifting (or rotating in 6502 terms) along the dividend until we have shifted out a number greater than the divisor. We then subtract the divisor from that part of the dividend. We put a zero into the result for each time we shift unless we can subtract in which case we put in a one. Starting again with the remainder from that last subtraction we add bits onto it by shifting further along the dividend until we have again produced a number greater than the divisor .... and so on. Because we are dividing by a number less than 256 we can use the accumulator for some of this work. So here is an algorithm based on that long division. Set accumulator and result to zero Loop starts here Rotate result left Rotate dividend left into accumulator If accumulator is < divisor repeat loop If accumulator is >= divisor then: Add one to result Subtract divisor from accumulator Repeat loop until finished You know when you are finished because you are counting the number of bits in the dividend. When you finish the result contains the DIV part and the accumulator contains the remainder or MOD part. This division fits into the whole output routine as follows: Check the sign of the number to be output If -ve set the sign flag and subtract number from zero Output loop starts here If dividend is now zero then print out number from buffer and finish Divide number by 10 (again) and put remainder into buffer as ASCII Repeat the output loop This essentially is how the output routine works. The assembly program is annotated and should explain itself. The number is entered using BASIC indirection operators again but you could add on the input routine from module 12. The subroutine at 'div_by_base' divides the number remaining in 'dividend' by 10 and puts it back in 'dividend' with the remainder in the accumulator ready for &30 to be added and the ASCII value stored in the buffer. As we proceed the Y register points to the right place in the buffer. Note that we work backwards from the end to the beginning of the number. The buffer is finally printed out at 'print_characters' which moves forwards along the buffer from the point where the Y register finished moving backwards while loading digits into the buffer. This is unlikely to be the front of the buffer unless the number is very large. Note also that there could be a minus sign at the first occupied position in the buffer. I put a zero byte (a null) at the end of the buffer space early in the program so you can use a BEQ to find the end of your number and stop printing. There is a simple method employed to see if a multi-byte number is zero. If you logically OR all the bytes together you will get a zero result only if each byte individually was zero (since A OR B is only zero if both A and B are zero). This is used at the start of 'output_character_loop' to see if there is anything left in the source number in 'dividend'. This checking avoids any leading zeros appearing in the number. There's another similar trick, which I have not used here, but it can be used to see if the product or quotient of two numbers is negative or positive. If you EOR the most significant bytes together then the top bit of the result is clear if they have the same sign (i.e. the product or quotient is positive) and set if the opposite is true. This means a BPL or BMI (which effectively looks at the top bit) can be used to control the action of the program at this point. There is a simple change you can make to the division routine. As it is at the moment the result and the dividend are separate words but you will notice that as the dividend is rotated left into the accumulator, bit by bit, empty bits are added at the right. At the same time the result is being rotated left and meaningful bits are added at the right. The change to make is to combine the two. This way you will not have to clear the result space at the beginning, only one word will be rotated instead of two, and you will not have to transfer the contents of the workspaces at the end of the division routine. This leads to an algorithm like this: Set accumulator to zero Loop starts here Rotate dividend/result left into accumulator If accumulator is < divisor repeat loop If accumulator is >= divisor then: Add one to dividend/result Subtract divisor from accumulator Repeat loop until finished It is simple to make this change but it speeds things up and also removes the need for one of the workspace words ('result'). 'dividend' now will start holding the dividend but will gradually, bit by bit, become the result. This is the method I will use in a general routine next time, but you could try modifying this module for yourself.
00000000 4f 53 42 49 54 53 20 2d 20 41 6e 20 45 78 70 6c |OSBITS - An Expl| 00000010 6f 72 61 74 69 6f 6e 20 6f 66 20 74 68 65 20 42 |oration of the B| 00000020 42 43 20 4d 69 63 72 6f 20 61 74 20 4d 61 63 68 |BC Micro at Mach| 00000030 69 6e 65 20 4c 65 76 65 6c 0d 0d 42 79 20 50 72 |ine Level..By Pr| 00000040 6f 67 72 61 6d 6d 65 72 0d 0d 2e 2e 2e 2e 2e 2e |ogrammer........| 00000050 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e |................| * 00000080 2e 2e 2e 2e 0d 0d 0d 50 61 72 74 20 31 34 3a 20 |.......Part 14: | 00000090 42 69 6e 61 72 79 20 74 6f 20 41 53 43 49 49 20 |Binary to ASCII | 000000a0 43 6f 6e 76 65 72 73 69 6f 6e 0d 0d 54 68 69 73 |Conversion..This| 000000b0 20 6d 6f 64 75 6c 65 20 62 72 69 6e 67 73 20 75 | module brings u| 000000c0 73 20 61 72 6f 75 6e 64 20 74 6f 20 64 69 76 69 |s around to divi| 000000d0 73 69 6f 6e 20 61 6e 64 20 49 27 6c 6c 20 69 6e |sion and I'll in| 000000e0 74 72 6f 64 75 63 65 0d 69 74 20 62 79 20 77 61 |troduce.it by wa| 000000f0 79 20 6f 66 20 61 20 72 6f 75 74 69 6e 65 20 74 |y of a routine t| 00000100 6f 20 74 61 6b 65 20 61 20 34 20 62 79 74 65 20 |o take a 4 byte | 00000110 6e 75 6d 62 65 72 20 69 6e 20 6d 65 6d 6f 72 79 |number in memory| 00000120 20 61 6e 64 0d 70 72 69 6e 74 20 6f 75 74 20 69 | and.print out i| 00000130 74 27 73 20 76 61 6c 75 65 20 61 73 20 61 20 64 |t's value as a d| 00000140 65 63 69 6d 61 6c 20 6e 75 6d 62 65 72 20 69 6e |ecimal number in| 00000150 20 41 53 43 49 49 2e 0d 0d 55 6e 6c 69 6b 65 20 | ASCII...Unlike | 00000160 69 6e 70 75 74 20 77 65 20 68 61 76 65 20 6e 6f |input we have no| 00000170 20 65 72 72 6f 72 20 63 6f 6e 64 69 74 69 6f 6e | error condition| 00000180 73 20 74 6f 20 77 6f 72 72 79 20 61 62 6f 75 74 |s to worry about| 00000190 0d 73 69 6e 63 65 20 74 68 65 72 65 20 61 72 65 |.since there are| 000001a0 20 6f 6e 6c 79 20 66 6f 75 72 20 62 79 74 65 73 | only four bytes| 000001b0 20 28 74 68 65 20 72 6f 75 74 69 6e 65 20 63 61 | (the routine ca| 000001c0 6e 20 62 65 20 65 78 70 61 6e 64 65 64 0d 61 73 |n be expanded.as| 000001d0 20 72 65 71 75 69 72 65 64 29 20 61 6e 64 20 74 | required) and t| 000001e0 68 65 20 6e 75 6d 62 65 72 20 63 61 6e 20 62 65 |he number can be| 000001f0 20 65 69 74 68 65 72 20 6e 65 67 61 74 69 76 65 | either negative| 00000200 20 6f 72 0d 70 6f 73 69 74 69 76 65 2e 0d 0d 49 | or.positive...I| 00000210 66 20 69 74 20 69 73 20 6e 65 67 61 74 69 76 65 |f it is negative| 00000220 20 77 65 20 77 69 6c 6c 20 66 69 72 73 74 20 6e | we will first n| 00000230 6f 74 65 20 69 74 73 20 73 69 67 6e 20 61 6e 64 |ote its sign and| 00000240 20 74 68 65 6e 0d 63 6f 6e 76 65 72 74 20 74 6f | then.convert to| 00000250 20 70 6f 73 69 74 69 76 65 20 66 6f 72 20 70 72 | positive for pr| 00000260 6f 63 65 73 73 69 6e 67 2e 0d 0d 54 68 65 20 70 |ocessing...The p| 00000270 72 6f 63 65 73 73 69 6e 67 20 67 6f 65 73 20 6c |rocessing goes l| 00000280 69 6b 65 20 74 68 69 73 3a 0d 0d 54 61 6b 65 20 |ike this:..Take | 00000290 74 68 65 20 6e 75 6d 62 65 72 20 61 6e 64 20 64 |the number and d| 000002a0 69 76 69 64 65 20 69 74 20 62 79 20 74 68 65 20 |ivide it by the | 000002b0 62 61 73 65 2c 20 69 6e 20 74 68 69 73 20 63 61 |base, in this ca| 000002c0 73 65 20 31 30 0d 0d 54 61 6b 65 20 74 68 65 20 |se 10..Take the | 000002d0 72 65 6d 61 69 6e 64 65 72 20 28 77 68 69 63 68 |remainder (which| 000002e0 20 72 65 70 72 65 73 65 6e 74 73 20 74 68 65 20 | represents the | 000002f0 6e 75 6d 62 65 72 20 6f 66 20 75 6e 69 74 73 29 |number of units)| 00000300 0d 61 6e 64 20 69 74 20 77 69 6c 6c 20 62 65 20 |.and it will be | 00000310 61 20 62 69 6e 61 72 79 20 76 61 6c 75 65 20 62 |a binary value b| 00000320 65 74 77 65 65 6e 20 30 20 61 6e 64 20 39 2e 20 |etween 0 and 9. | 00000330 20 41 64 64 20 26 33 30 20 74 6f 0d 69 74 2c 20 | Add &30 to.it, | 00000340 77 68 69 63 68 20 63 6f 6e 76 65 72 74 73 20 69 |which converts i| 00000350 74 20 74 6f 20 74 68 65 20 41 53 43 49 49 20 63 |t to the ASCII c| 00000360 6f 64 65 20 66 6f 72 20 69 74 73 20 6e 75 6d 62 |ode for its numb| 00000370 65 72 20 30 2d 39 0d 61 6e 64 20 70 75 74 20 69 |er 0-9.and put i| 00000380 74 20 69 6e 74 6f 20 61 20 62 75 66 66 65 72 2e |t into a buffer.| 00000390 0d 0d 44 69 76 69 64 65 20 74 68 65 20 61 6e 73 |..Divide the ans| 000003a0 77 65 72 20 74 6f 20 74 68 65 20 6c 61 73 74 20 |wer to the last | 000003b0 64 69 76 69 73 69 6f 6e 20 62 79 20 31 30 2c 20 |division by 10, | 000003c0 77 68 69 63 68 20 6c 65 61 76 65 73 0d 75 73 20 |which leaves.us | 000003d0 74 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 31 30 |the number of 10| 000003e0 73 20 69 6e 20 74 68 65 20 72 65 6d 61 69 6e 64 |s in the remaind| 000003f0 65 72 20 2e 2e 2e 2e 20 61 6e 64 20 73 6f 20 6f |er .... and so o| 00000400 6e 20 61 72 6f 75 6e 64 0d 74 68 65 20 6c 6f 6f |n around.the loo| 00000410 70 2e 0d 0d 57 65 20 64 6f 20 74 68 69 73 20 75 |p...We do this u| 00000420 6e 74 69 6c 20 74 68 65 20 61 6e 73 77 65 72 20 |ntil the answer | 00000430 6f 6e 20 64 69 76 69 73 69 6f 6e 20 62 79 20 31 |on division by 1| 00000440 30 20 69 73 20 7a 65 72 6f 2e 0d 0d 42 75 74 20 |0 is zero...But | 00000450 68 6f 77 20 64 6f 20 77 65 20 64 69 76 69 64 65 |how do we divide| 00000460 20 69 6e 20 6d 61 63 68 69 6e 65 20 63 6f 64 65 | in machine code| 00000470 3f 0d 0d 46 6f 72 20 74 68 69 73 20 65 78 65 72 |?..For this exer| 00000480 63 69 73 65 20 49 27 6c 6c 20 67 6f 20 66 6f 72 |cise I'll go for| 00000490 20 74 68 65 20 73 69 6d 70 6c 65 73 74 20 61 6c | the simplest al| 000004a0 67 6f 72 69 74 68 6d 2c 20 77 68 69 63 68 0d 69 |gorithm, which.i| 000004b0 73 20 65 73 73 65 6e 74 69 61 6c 6c 79 20 6c 6f |s essentially lo| 000004c0 6e 67 20 64 69 76 69 73 69 6f 6e 2e 20 20 53 6f |ng division. So| 000004d0 20 6c 65 74 27 73 20 64 69 76 69 64 65 20 31 30 | let's divide 10| 000004e0 31 30 31 31 30 31 20 62 79 0d 31 30 31 20 28 31 |101101 by.101 (1| 000004f0 37 33 20 62 79 20 35 29 2e 20 20 54 68 69 73 20 |73 by 5). This | 00000500 73 68 6f 75 6c 64 20 67 69 76 65 20 75 73 20 74 |should give us t| 00000510 68 65 20 72 65 73 75 6c 74 20 33 34 20 72 65 6d |he result 34 rem| 00000520 61 69 6e 64 65 72 0d 33 2e 20 57 65 20 75 73 65 |ainder.3. We use| 00000530 20 63 6f 6e 76 65 6e 74 69 6f 6e 61 6c 20 6c 6f | conventional lo| 00000540 6e 67 20 64 69 76 69 73 69 6f 6e 20 62 75 74 20 |ng division but | 00000550 72 65 6d 65 6d 62 65 72 69 6e 67 20 74 68 61 74 |remembering that| 00000560 20 77 65 0d 6f 6e 6c 79 20 6e 65 65 64 20 74 6f | we.only need to| 00000570 20 72 65 6d 65 6d 62 65 72 20 74 68 65 20 27 6f | remember the 'o| 00000580 6e 65 20 74 69 6d 65 73 20 74 61 62 6c 65 27 21 |ne times table'!| 00000590 20 20 54 68 69 73 20 67 69 76 65 73 20 75 73 0d | This gives us.| 000005a0 74 68 65 20 66 6f 6c 6c 6f 77 69 6e 67 3a 0d 0d |the following:..| 000005b0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 000005c0 20 20 20 20 20 20 20 31 30 30 30 31 30 0d 20 20 | 100010. | 000005d0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 000005e0 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 0d 20 20 20 20 | ---------. | 000005f0 20 20 20 20 20 20 20 20 20 20 20 31 30 31 20 7c | 101 || 00000600 20 31 30 31 30 31 31 30 31 0d 20 20 20 20 20 20 | 10101101. | 00000610 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 31 | 1| 00000620 30 31 0d 20 20 20 20 20 20 20 20 20 20 20 20 20 |01. | 00000630 20 20 20 20 20 20 20 20 2d 2d 2d 0d 20 20 20 20 | ---. | 00000640 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00000650 20 20 20 30 30 31 31 30 20 0d 20 20 20 20 20 20 | 00110 . | 00000660 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00000670 20 20 20 31 30 31 20 0d 20 20 20 20 20 20 20 20 | 101 . | 00000680 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00000690 20 2d 2d 2d 20 0d 20 20 20 20 20 20 20 20 20 20 | --- . | 000006a0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 000006b0 30 31 31 0d 0d 57 65 20 63 6f 75 6c 64 20 63 6f |011..We could co| 000006c0 6e 74 69 6e 75 65 20 74 68 69 73 20 64 69 76 69 |ntinue this divi| 000006d0 73 69 6f 6e 20 62 65 79 6f 6e 64 20 74 68 65 20 |sion beyond the | 000006e0 27 62 69 6e 61 72 79 27 20 70 6f 69 6e 74 0d 77 |'binary' point.w| 000006f0 68 69 63 68 20 77 69 6c 6c 20 67 69 76 65 20 79 |hich will give y| 00000700 6f 75 20 61 6e 20 69 6e 64 69 63 61 74 69 6f 6e |ou an indication| 00000710 20 6f 66 20 68 6f 77 20 77 65 20 77 69 6c 6c 20 | of how we will | 00000720 70 72 6f 64 75 63 65 0d 72 65 61 6c 20 28 61 73 |produce.real (as| 00000730 20 6f 70 70 6f 73 65 64 20 74 6f 20 69 6e 74 65 | opposed to inte| 00000740 67 65 72 29 20 6e 75 6d 62 65 72 73 20 6c 61 74 |ger) numbers lat| 00000750 65 72 20 6f 6e 2e 0d 0d 45 66 66 65 63 74 69 76 |er on...Effectiv| 00000760 65 6c 79 20 77 65 20 61 72 65 20 73 68 69 66 74 |ely we are shift| 00000770 69 6e 67 20 28 6f 72 20 72 6f 74 61 74 69 6e 67 |ing (or rotating| 00000780 20 69 6e 20 36 35 30 32 20 74 65 72 6d 73 29 0d | in 6502 terms).| 00000790 61 6c 6f 6e 67 20 74 68 65 20 64 69 76 69 64 65 |along the divide| 000007a0 6e 64 20 75 6e 74 69 6c 20 77 65 20 68 61 76 65 |nd until we have| 000007b0 20 73 68 69 66 74 65 64 20 6f 75 74 20 61 20 6e | shifted out a n| 000007c0 75 6d 62 65 72 0d 67 72 65 61 74 65 72 20 74 68 |umber.greater th| 000007d0 61 6e 20 74 68 65 20 64 69 76 69 73 6f 72 2e 20 |an the divisor. | 000007e0 20 57 65 20 74 68 65 6e 20 73 75 62 74 72 61 63 | We then subtrac| 000007f0 74 20 74 68 65 20 64 69 76 69 73 6f 72 20 66 72 |t the divisor fr| 00000800 6f 6d 0d 74 68 61 74 20 70 61 72 74 20 6f 66 20 |om.that part of | 00000810 74 68 65 20 64 69 76 69 64 65 6e 64 2e 20 20 57 |the dividend. W| 00000820 65 20 70 75 74 20 61 20 7a 65 72 6f 20 69 6e 74 |e put a zero int| 00000830 6f 20 74 68 65 20 72 65 73 75 6c 74 0d 66 6f 72 |o the result.for| 00000840 20 65 61 63 68 20 74 69 6d 65 20 77 65 20 73 68 | each time we sh| 00000850 69 66 74 20 75 6e 6c 65 73 73 20 77 65 20 63 61 |ift unless we ca| 00000860 6e 20 73 75 62 74 72 61 63 74 20 69 6e 20 77 68 |n subtract in wh| 00000870 69 63 68 20 63 61 73 65 0d 77 65 20 70 75 74 20 |ich case.we put | 00000880 69 6e 20 61 20 6f 6e 65 2e 0d 0d 53 74 61 72 74 |in a one...Start| 00000890 69 6e 67 20 61 67 61 69 6e 20 77 69 74 68 20 74 |ing again with t| 000008a0 68 65 20 72 65 6d 61 69 6e 64 65 72 20 66 72 6f |he remainder fro| 000008b0 6d 20 74 68 61 74 20 6c 61 73 74 20 73 75 62 74 |m that last subt| 000008c0 72 61 63 74 69 6f 6e 0d 77 65 20 61 64 64 20 62 |raction.we add b| 000008d0 69 74 73 20 6f 6e 74 6f 20 69 74 20 62 79 20 73 |its onto it by s| 000008e0 68 69 66 74 69 6e 67 20 66 75 72 74 68 65 72 20 |hifting further | 000008f0 61 6c 6f 6e 67 20 74 68 65 20 64 69 76 69 64 65 |along the divide| 00000900 6e 64 0d 75 6e 74 69 6c 20 77 65 20 68 61 76 65 |nd.until we have| 00000910 20 61 67 61 69 6e 20 70 72 6f 64 75 63 65 64 20 | again produced | 00000920 61 20 6e 75 6d 62 65 72 20 67 72 65 61 74 65 72 |a number greater| 00000930 20 74 68 61 6e 20 74 68 65 0d 64 69 76 69 73 6f | than the.diviso| 00000940 72 20 2e 2e 2e 2e 20 61 6e 64 20 73 6f 20 6f 6e |r .... and so on| 00000950 2e 20 20 42 65 63 61 75 73 65 20 77 65 20 61 72 |. Because we ar| 00000960 65 20 64 69 76 69 64 69 6e 67 20 62 79 20 61 20 |e dividing by a | 00000970 6e 75 6d 62 65 72 0d 6c 65 73 73 20 74 68 61 6e |number.less than| 00000980 20 32 35 36 20 77 65 20 63 61 6e 20 75 73 65 20 | 256 we can use | 00000990 74 68 65 20 61 63 63 75 6d 75 6c 61 74 6f 72 20 |the accumulator | 000009a0 66 6f 72 20 73 6f 6d 65 20 6f 66 20 74 68 69 73 |for some of this| 000009b0 0d 77 6f 72 6b 2e 0d 0d 53 6f 20 68 65 72 65 20 |.work...So here | 000009c0 69 73 20 61 6e 20 61 6c 67 6f 72 69 74 68 6d 20 |is an algorithm | 000009d0 62 61 73 65 64 20 6f 6e 20 74 68 61 74 20 6c 6f |based on that lo| 000009e0 6e 67 20 64 69 76 69 73 69 6f 6e 2e 0d 0d 20 20 |ng division... | 000009f0 20 20 53 65 74 20 61 63 63 75 6d 75 6c 61 74 6f | Set accumulato| 00000a00 72 20 61 6e 64 20 72 65 73 75 6c 74 20 74 6f 20 |r and result to | 00000a10 7a 65 72 6f 0d 20 20 20 20 4c 6f 6f 70 20 73 74 |zero. Loop st| 00000a20 61 72 74 73 20 68 65 72 65 0d 20 20 20 20 20 20 |arts here. | 00000a30 52 6f 74 61 74 65 20 72 65 73 75 6c 74 20 6c 65 |Rotate result le| 00000a40 66 74 0d 20 20 20 20 20 20 52 6f 74 61 74 65 20 |ft. Rotate | 00000a50 64 69 76 69 64 65 6e 64 20 6c 65 66 74 20 69 6e |dividend left in| 00000a60 74 6f 20 61 63 63 75 6d 75 6c 61 74 6f 72 0d 20 |to accumulator. | 00000a70 20 20 20 20 20 49 66 20 61 63 63 75 6d 75 6c 61 | If accumula| 00000a80 74 6f 72 20 69 73 20 3c 20 64 69 76 69 73 6f 72 |tor is < divisor| 00000a90 20 72 65 70 65 61 74 20 6c 6f 6f 70 0d 20 20 20 | repeat loop. | 00000aa0 20 20 20 49 66 20 61 63 63 75 6d 75 6c 61 74 6f | If accumulato| 00000ab0 72 20 69 73 20 3e 3d 20 64 69 76 69 73 6f 72 20 |r is >= divisor | 00000ac0 74 68 65 6e 3a 0d 20 20 20 20 20 20 20 20 20 20 |then:. | 00000ad0 41 64 64 20 6f 6e 65 20 74 6f 20 72 65 73 75 6c |Add one to resul| 00000ae0 74 0d 20 20 20 20 20 20 20 20 20 20 53 75 62 74 |t. Subt| 00000af0 72 61 63 74 20 64 69 76 69 73 6f 72 20 66 72 6f |ract divisor fro| 00000b00 6d 20 61 63 63 75 6d 75 6c 61 74 6f 72 0d 20 20 |m accumulator. | 00000b10 20 20 52 65 70 65 61 74 20 6c 6f 6f 70 20 75 6e | Repeat loop un| 00000b20 74 69 6c 20 66 69 6e 69 73 68 65 64 0d 0d 59 6f |til finished..Yo| 00000b30 75 20 6b 6e 6f 77 20 77 68 65 6e 20 79 6f 75 20 |u know when you | 00000b40 61 72 65 20 66 69 6e 69 73 68 65 64 20 62 65 63 |are finished bec| 00000b50 61 75 73 65 20 79 6f 75 20 61 72 65 20 63 6f 75 |ause you are cou| 00000b60 6e 74 69 6e 67 20 74 68 65 0d 6e 75 6d 62 65 72 |nting the.number| 00000b70 20 6f 66 20 62 69 74 73 20 69 6e 20 74 68 65 20 | of bits in the | 00000b80 64 69 76 69 64 65 6e 64 2e 20 20 57 68 65 6e 20 |dividend. When | 00000b90 79 6f 75 20 66 69 6e 69 73 68 20 74 68 65 20 72 |you finish the r| 00000ba0 65 73 75 6c 74 0d 63 6f 6e 74 61 69 6e 73 20 74 |esult.contains t| 00000bb0 68 65 20 44 49 56 20 70 61 72 74 20 61 6e 64 20 |he DIV part and | 00000bc0 74 68 65 20 61 63 63 75 6d 75 6c 61 74 6f 72 20 |the accumulator | 00000bd0 63 6f 6e 74 61 69 6e 73 20 74 68 65 0d 72 65 6d |contains the.rem| 00000be0 61 69 6e 64 65 72 20 6f 72 20 4d 4f 44 20 70 61 |ainder or MOD pa| 00000bf0 72 74 2e 0d 0d 54 68 69 73 20 64 69 76 69 73 69 |rt...This divisi| 00000c00 6f 6e 20 66 69 74 73 20 69 6e 74 6f 20 74 68 65 |on fits into the| 00000c10 20 77 68 6f 6c 65 20 6f 75 74 70 75 74 20 72 6f | whole output ro| 00000c20 75 74 69 6e 65 20 61 73 20 66 6f 6c 6c 6f 77 73 |utine as follows| 00000c30 3a 0d 0d 20 20 20 20 43 68 65 63 6b 20 74 68 65 |:.. Check the| 00000c40 20 73 69 67 6e 20 6f 66 20 74 68 65 20 6e 75 6d | sign of the num| 00000c50 62 65 72 20 74 6f 20 62 65 20 6f 75 74 70 75 74 |ber to be output| 00000c60 0d 20 20 20 20 49 66 20 2d 76 65 20 73 65 74 20 |. If -ve set | 00000c70 74 68 65 20 73 69 67 6e 20 66 6c 61 67 20 61 6e |the sign flag an| 00000c80 64 20 73 75 62 74 72 61 63 74 20 6e 75 6d 62 65 |d subtract numbe| 00000c90 72 20 66 72 6f 6d 20 7a 65 72 6f 0d 20 20 20 20 |r from zero. | 00000ca0 4f 75 74 70 75 74 20 6c 6f 6f 70 20 73 74 61 72 |Output loop star| 00000cb0 74 73 20 68 65 72 65 0d 20 20 20 20 20 20 49 66 |ts here. If| 00000cc0 20 64 69 76 69 64 65 6e 64 20 69 73 20 6e 6f 77 | dividend is now| 00000cd0 20 7a 65 72 6f 20 74 68 65 6e 20 70 72 69 6e 74 | zero then print| 00000ce0 20 6f 75 74 20 6e 75 6d 62 65 72 20 66 72 6f 6d | out number from| 00000cf0 0d 20 20 20 20 20 20 20 20 62 75 66 66 65 72 20 |. buffer | 00000d00 61 6e 64 20 66 69 6e 69 73 68 0d 20 20 20 20 20 |and finish. | 00000d10 20 44 69 76 69 64 65 20 6e 75 6d 62 65 72 20 62 | Divide number b| 00000d20 79 20 31 30 20 28 61 67 61 69 6e 29 20 61 6e 64 |y 10 (again) and| 00000d30 20 70 75 74 20 72 65 6d 61 69 6e 64 65 72 20 69 | put remainder i| 00000d40 6e 74 6f 0d 20 20 20 20 20 20 20 20 62 75 66 66 |nto. buff| 00000d50 65 72 20 61 73 20 41 53 43 49 49 0d 20 20 20 20 |er as ASCII. | 00000d60 52 65 70 65 61 74 20 74 68 65 20 6f 75 74 70 75 |Repeat the outpu| 00000d70 74 20 6c 6f 6f 70 20 20 20 20 0d 0d 54 68 69 73 |t loop ..This| 00000d80 20 65 73 73 65 6e 74 69 61 6c 6c 79 20 69 73 20 | essentially is | 00000d90 68 6f 77 20 74 68 65 20 6f 75 74 70 75 74 20 72 |how the output r| 00000da0 6f 75 74 69 6e 65 20 77 6f 72 6b 73 2e 20 20 54 |outine works. T| 00000db0 68 65 0d 61 73 73 65 6d 62 6c 79 20 70 72 6f 67 |he.assembly prog| 00000dc0 72 61 6d 20 69 73 20 61 6e 6e 6f 74 61 74 65 64 |ram is annotated| 00000dd0 20 61 6e 64 20 73 68 6f 75 6c 64 20 65 78 70 6c | and should expl| 00000de0 61 69 6e 20 69 74 73 65 6c 66 2e 0d 54 68 65 20 |ain itself..The | 00000df0 6e 75 6d 62 65 72 20 69 73 20 65 6e 74 65 72 65 |number is entere| 00000e00 64 20 75 73 69 6e 67 20 42 41 53 49 43 20 69 6e |d using BASIC in| 00000e10 64 69 72 65 63 74 69 6f 6e 20 6f 70 65 72 61 74 |direction operat| 00000e20 6f 72 73 0d 61 67 61 69 6e 20 62 75 74 20 79 6f |ors.again but yo| 00000e30 75 20 63 6f 75 6c 64 20 61 64 64 20 6f 6e 20 74 |u could add on t| 00000e40 68 65 20 69 6e 70 75 74 20 72 6f 75 74 69 6e 65 |he input routine| 00000e50 20 66 72 6f 6d 20 6d 6f 64 75 6c 65 20 31 32 2e | from module 12.| 00000e60 0d 0d 54 68 65 20 73 75 62 72 6f 75 74 69 6e 65 |..The subroutine| 00000e70 20 61 74 20 27 64 69 76 5f 62 79 5f 62 61 73 65 | at 'div_by_base| 00000e80 27 20 64 69 76 69 64 65 73 20 74 68 65 20 6e 75 |' divides the nu| 00000e90 6d 62 65 72 20 72 65 6d 61 69 6e 69 6e 67 0d 69 |mber remaining.i| 00000ea0 6e 20 27 64 69 76 69 64 65 6e 64 27 20 62 79 20 |n 'dividend' by | 00000eb0 31 30 20 61 6e 64 20 70 75 74 73 20 69 74 20 62 |10 and puts it b| 00000ec0 61 63 6b 20 69 6e 20 27 64 69 76 69 64 65 6e 64 |ack in 'dividend| 00000ed0 27 20 77 69 74 68 20 74 68 65 0d 72 65 6d 61 69 |' with the.remai| 00000ee0 6e 64 65 72 20 69 6e 20 74 68 65 20 61 63 63 75 |nder in the accu| 00000ef0 6d 75 6c 61 74 6f 72 20 72 65 61 64 79 20 66 6f |mulator ready fo| 00000f00 72 20 26 33 30 20 74 6f 20 62 65 20 61 64 64 65 |r &30 to be adde| 00000f10 64 20 61 6e 64 0d 74 68 65 20 41 53 43 49 49 20 |d and.the ASCII | 00000f20 76 61 6c 75 65 20 73 74 6f 72 65 64 20 69 6e 20 |value stored in | 00000f30 74 68 65 20 62 75 66 66 65 72 2e 20 20 41 73 20 |the buffer. As | 00000f40 77 65 20 70 72 6f 63 65 65 64 20 74 68 65 20 59 |we proceed the Y| 00000f50 0d 72 65 67 69 73 74 65 72 20 70 6f 69 6e 74 73 |.register points| 00000f60 20 74 6f 20 74 68 65 20 72 69 67 68 74 20 70 6c | to the right pl| 00000f70 61 63 65 20 69 6e 20 74 68 65 20 62 75 66 66 65 |ace in the buffe| 00000f80 72 2e 20 20 4e 6f 74 65 20 74 68 61 74 0d 77 65 |r. Note that.we| 00000f90 20 77 6f 72 6b 20 62 61 63 6b 77 61 72 64 73 20 | work backwards | 00000fa0 66 72 6f 6d 20 74 68 65 20 65 6e 64 20 74 6f 20 |from the end to | 00000fb0 74 68 65 20 62 65 67 69 6e 6e 69 6e 67 20 6f 66 |the beginning of| 00000fc0 20 74 68 65 0d 6e 75 6d 62 65 72 2e 0d 0d 54 68 | the.number...Th| 00000fd0 65 20 62 75 66 66 65 72 20 69 73 20 66 69 6e 61 |e buffer is fina| 00000fe0 6c 6c 79 20 70 72 69 6e 74 65 64 20 6f 75 74 20 |lly printed out | 00000ff0 61 74 20 27 70 72 69 6e 74 5f 63 68 61 72 61 63 |at 'print_charac| 00001000 74 65 72 73 27 0d 77 68 69 63 68 20 6d 6f 76 65 |ters'.which move| 00001010 73 20 66 6f 72 77 61 72 64 73 20 61 6c 6f 6e 67 |s forwards along| 00001020 20 74 68 65 20 62 75 66 66 65 72 20 66 72 6f 6d | the buffer from| 00001030 20 74 68 65 20 70 6f 69 6e 74 20 77 68 65 72 65 | the point where| 00001040 0d 74 68 65 20 59 20 72 65 67 69 73 74 65 72 20 |.the Y register | 00001050 66 69 6e 69 73 68 65 64 20 6d 6f 76 69 6e 67 20 |finished moving | 00001060 62 61 63 6b 77 61 72 64 73 20 77 68 69 6c 65 20 |backwards while | 00001070 6c 6f 61 64 69 6e 67 0d 64 69 67 69 74 73 20 69 |loading.digits i| 00001080 6e 74 6f 20 74 68 65 20 62 75 66 66 65 72 2e 20 |nto the buffer. | 00001090 20 54 68 69 73 20 69 73 20 75 6e 6c 69 6b 65 6c | This is unlikel| 000010a0 79 20 74 6f 20 62 65 20 74 68 65 20 66 72 6f 6e |y to be the fron| 000010b0 74 20 6f 66 0d 74 68 65 20 62 75 66 66 65 72 20 |t of.the buffer | 000010c0 75 6e 6c 65 73 73 20 74 68 65 20 6e 75 6d 62 65 |unless the numbe| 000010d0 72 20 69 73 20 76 65 72 79 20 6c 61 72 67 65 2e |r is very large.| 000010e0 20 20 4e 6f 74 65 20 61 6c 73 6f 20 74 68 61 74 | Note also that| 000010f0 0d 74 68 65 72 65 20 63 6f 75 6c 64 20 62 65 20 |.there could be | 00001100 61 20 6d 69 6e 75 73 20 73 69 67 6e 20 61 74 20 |a minus sign at | 00001110 74 68 65 20 66 69 72 73 74 20 6f 63 63 75 70 69 |the first occupi| 00001120 65 64 20 70 6f 73 69 74 69 6f 6e 0d 69 6e 20 74 |ed position.in t| 00001130 68 65 20 62 75 66 66 65 72 2e 20 20 49 20 70 75 |he buffer. I pu| 00001140 74 20 61 20 7a 65 72 6f 20 62 79 74 65 20 28 61 |t a zero byte (a| 00001150 20 6e 75 6c 6c 29 20 61 74 20 74 68 65 20 65 6e | null) at the en| 00001160 64 20 6f 66 20 74 68 65 0d 62 75 66 66 65 72 20 |d of the.buffer | 00001170 73 70 61 63 65 20 65 61 72 6c 79 20 69 6e 20 74 |space early in t| 00001180 68 65 20 70 72 6f 67 72 61 6d 20 73 6f 20 79 6f |he program so yo| 00001190 75 20 63 61 6e 20 75 73 65 20 61 20 42 45 51 20 |u can use a BEQ | 000011a0 74 6f 0d 66 69 6e 64 20 74 68 65 20 65 6e 64 20 |to.find the end | 000011b0 6f 66 20 79 6f 75 72 20 6e 75 6d 62 65 72 20 61 |of your number a| 000011c0 6e 64 20 73 74 6f 70 20 70 72 69 6e 74 69 6e 67 |nd stop printing| 000011d0 2e 0d 0d 54 68 65 72 65 20 69 73 20 61 20 73 69 |...There is a si| 000011e0 6d 70 6c 65 20 6d 65 74 68 6f 64 20 65 6d 70 6c |mple method empl| 000011f0 6f 79 65 64 20 74 6f 20 73 65 65 20 69 66 20 61 |oyed to see if a| 00001200 20 6d 75 6c 74 69 2d 62 79 74 65 0d 6e 75 6d 62 | multi-byte.numb| 00001210 65 72 20 69 73 20 7a 65 72 6f 2e 20 20 49 66 20 |er is zero. If | 00001220 79 6f 75 20 6c 6f 67 69 63 61 6c 6c 79 20 4f 52 |you logically OR| 00001230 20 61 6c 6c 20 74 68 65 20 62 79 74 65 73 20 74 | all the bytes t| 00001240 6f 67 65 74 68 65 72 0d 79 6f 75 20 77 69 6c 6c |ogether.you will| 00001250 20 67 65 74 20 61 20 7a 65 72 6f 20 72 65 73 75 | get a zero resu| 00001260 6c 74 20 6f 6e 6c 79 20 69 66 20 65 61 63 68 20 |lt only if each | 00001270 62 79 74 65 20 69 6e 64 69 76 69 64 75 61 6c 6c |byte individuall| 00001280 79 0d 77 61 73 20 7a 65 72 6f 20 28 73 69 6e 63 |y.was zero (sinc| 00001290 65 20 41 20 4f 52 20 42 20 69 73 20 6f 6e 6c 79 |e A OR B is only| 000012a0 20 7a 65 72 6f 20 69 66 20 62 6f 74 68 20 41 20 | zero if both A | 000012b0 61 6e 64 20 42 20 61 72 65 0d 7a 65 72 6f 29 2e |and B are.zero).| 000012c0 20 20 54 68 69 73 20 69 73 20 75 73 65 64 20 61 | This is used a| 000012d0 74 20 74 68 65 20 73 74 61 72 74 20 6f 66 20 27 |t the start of '| 000012e0 6f 75 74 70 75 74 5f 63 68 61 72 61 63 74 65 72 |output_character| 000012f0 5f 6c 6f 6f 70 27 0d 74 6f 20 73 65 65 20 69 66 |_loop'.to see if| 00001300 20 74 68 65 72 65 20 69 73 20 61 6e 79 74 68 69 | there is anythi| 00001310 6e 67 20 6c 65 66 74 20 69 6e 20 74 68 65 20 73 |ng left in the s| 00001320 6f 75 72 63 65 20 6e 75 6d 62 65 72 20 69 6e 0d |ource number in.| 00001330 27 64 69 76 69 64 65 6e 64 27 2e 20 20 54 68 69 |'dividend'. Thi| 00001340 73 20 63 68 65 63 6b 69 6e 67 20 61 76 6f 69 64 |s checking avoid| 00001350 73 20 61 6e 79 20 6c 65 61 64 69 6e 67 20 7a 65 |s any leading ze| 00001360 72 6f 73 0d 61 70 70 65 61 72 69 6e 67 20 69 6e |ros.appearing in| 00001370 20 74 68 65 20 6e 75 6d 62 65 72 2e 0d 0d 54 68 | the number...Th| 00001380 65 72 65 27 73 20 61 6e 6f 74 68 65 72 20 73 69 |ere's another si| 00001390 6d 69 6c 61 72 20 74 72 69 63 6b 2c 20 77 68 69 |milar trick, whi| 000013a0 63 68 20 49 20 68 61 76 65 20 6e 6f 74 20 75 73 |ch I have not us| 000013b0 65 64 20 68 65 72 65 2c 0d 62 75 74 20 69 74 20 |ed here,.but it | 000013c0 63 61 6e 20 62 65 20 75 73 65 64 20 74 6f 20 73 |can be used to s| 000013d0 65 65 20 69 66 20 74 68 65 20 70 72 6f 64 75 63 |ee if the produc| 000013e0 74 20 6f 72 20 71 75 6f 74 69 65 6e 74 20 6f 66 |t or quotient of| 000013f0 20 74 77 6f 0d 6e 75 6d 62 65 72 73 20 69 73 20 | two.numbers is | 00001400 6e 65 67 61 74 69 76 65 20 6f 72 20 70 6f 73 69 |negative or posi| 00001410 74 69 76 65 2e 20 20 49 66 20 79 6f 75 20 45 4f |tive. If you EO| 00001420 52 20 74 68 65 20 6d 6f 73 74 0d 73 69 67 6e 69 |R the most.signi| 00001430 66 69 63 61 6e 74 20 62 79 74 65 73 20 74 6f 67 |ficant bytes tog| 00001440 65 74 68 65 72 20 74 68 65 6e 20 74 68 65 20 74 |ether then the t| 00001450 6f 70 20 62 69 74 20 6f 66 20 74 68 65 20 72 65 |op bit of the re| 00001460 73 75 6c 74 20 69 73 0d 63 6c 65 61 72 20 69 66 |sult is.clear if| 00001470 20 74 68 65 79 20 68 61 76 65 20 74 68 65 20 73 | they have the s| 00001480 61 6d 65 20 73 69 67 6e 20 28 69 2e 65 2e 20 74 |ame sign (i.e. t| 00001490 68 65 20 70 72 6f 64 75 63 74 20 6f 72 0d 71 75 |he product or.qu| 000014a0 6f 74 69 65 6e 74 20 69 73 20 70 6f 73 69 74 69 |otient is positi| 000014b0 76 65 29 20 61 6e 64 20 73 65 74 20 69 66 20 74 |ve) and set if t| 000014c0 68 65 20 6f 70 70 6f 73 69 74 65 20 69 73 20 74 |he opposite is t| 000014d0 72 75 65 2e 20 20 54 68 69 73 0d 6d 65 61 6e 73 |rue. This.means| 000014e0 20 61 20 42 50 4c 20 6f 72 20 42 4d 49 20 28 77 | a BPL or BMI (w| 000014f0 68 69 63 68 20 65 66 66 65 63 74 69 76 65 6c 79 |hich effectively| 00001500 20 6c 6f 6f 6b 73 20 61 74 20 74 68 65 20 74 6f | looks at the to| 00001510 70 20 62 69 74 29 0d 63 61 6e 20 62 65 20 75 73 |p bit).can be us| 00001520 65 64 20 74 6f 20 63 6f 6e 74 72 6f 6c 20 74 68 |ed to control th| 00001530 65 20 61 63 74 69 6f 6e 20 6f 66 20 74 68 65 20 |e action of the | 00001540 70 72 6f 67 72 61 6d 20 61 74 20 74 68 69 73 0d |program at this.| 00001550 70 6f 69 6e 74 2e 0d 0d 54 68 65 72 65 20 69 73 |point...There is| 00001560 20 61 20 73 69 6d 70 6c 65 20 63 68 61 6e 67 65 | a simple change| 00001570 20 79 6f 75 20 63 61 6e 20 6d 61 6b 65 20 74 6f | you can make to| 00001580 20 74 68 65 20 64 69 76 69 73 69 6f 6e 0d 72 6f | the division.ro| 00001590 75 74 69 6e 65 2e 20 20 41 73 20 69 74 20 69 73 |utine. As it is| 000015a0 20 61 74 20 74 68 65 20 6d 6f 6d 65 6e 74 20 74 | at the moment t| 000015b0 68 65 20 72 65 73 75 6c 74 20 61 6e 64 20 74 68 |he result and th| 000015c0 65 20 64 69 76 69 64 65 6e 64 0d 61 72 65 20 73 |e dividend.are s| 000015d0 65 70 61 72 61 74 65 20 77 6f 72 64 73 20 62 75 |eparate words bu| 000015e0 74 20 79 6f 75 20 77 69 6c 6c 20 6e 6f 74 69 63 |t you will notic| 000015f0 65 20 74 68 61 74 20 61 73 20 74 68 65 20 64 69 |e that as the di| 00001600 76 69 64 65 6e 64 0d 69 73 20 72 6f 74 61 74 65 |vidend.is rotate| 00001610 64 20 6c 65 66 74 20 69 6e 74 6f 20 74 68 65 20 |d left into the | 00001620 61 63 63 75 6d 75 6c 61 74 6f 72 2c 20 62 69 74 |accumulator, bit| 00001630 20 62 79 20 62 69 74 2c 20 65 6d 70 74 79 20 62 | by bit, empty b| 00001640 69 74 73 0d 61 72 65 20 61 64 64 65 64 20 61 74 |its.are added at| 00001650 20 74 68 65 20 72 69 67 68 74 2e 20 20 41 74 20 | the right. At | 00001660 74 68 65 20 73 61 6d 65 20 74 69 6d 65 20 74 68 |the same time th| 00001670 65 20 72 65 73 75 6c 74 20 69 73 0d 62 65 69 6e |e result is.bein| 00001680 67 20 72 6f 74 61 74 65 64 20 6c 65 66 74 20 61 |g rotated left a| 00001690 6e 64 20 6d 65 61 6e 69 6e 67 66 75 6c 20 62 69 |nd meaningful bi| 000016a0 74 73 20 61 72 65 20 61 64 64 65 64 20 61 74 20 |ts are added at | 000016b0 74 68 65 0d 72 69 67 68 74 2e 0d 0d 54 68 65 20 |the.right...The | 000016c0 63 68 61 6e 67 65 20 74 6f 20 6d 61 6b 65 20 69 |change to make i| 000016d0 73 20 74 6f 20 63 6f 6d 62 69 6e 65 20 74 68 65 |s to combine the| 000016e0 20 74 77 6f 2e 20 20 54 68 69 73 20 77 61 79 20 | two. This way | 000016f0 79 6f 75 20 77 69 6c 6c 0d 6e 6f 74 20 68 61 76 |you will.not hav| 00001700 65 20 74 6f 20 63 6c 65 61 72 20 74 68 65 20 72 |e to clear the r| 00001710 65 73 75 6c 74 20 73 70 61 63 65 20 61 74 20 74 |esult space at t| 00001720 68 65 20 62 65 67 69 6e 6e 69 6e 67 2c 20 6f 6e |he beginning, on| 00001730 6c 79 0d 6f 6e 65 20 77 6f 72 64 20 77 69 6c 6c |ly.one word will| 00001740 20 62 65 20 72 6f 74 61 74 65 64 20 69 6e 73 74 | be rotated inst| 00001750 65 61 64 20 6f 66 20 74 77 6f 2c 20 61 6e 64 20 |ead of two, and | 00001760 79 6f 75 20 77 69 6c 6c 20 6e 6f 74 0d 68 61 76 |you will not.hav| 00001770 65 20 74 6f 20 74 72 61 6e 73 66 65 72 20 74 68 |e to transfer th| 00001780 65 20 63 6f 6e 74 65 6e 74 73 20 6f 66 20 74 68 |e contents of th| 00001790 65 20 77 6f 72 6b 73 70 61 63 65 73 20 61 74 20 |e workspaces at | 000017a0 74 68 65 20 65 6e 64 0d 6f 66 20 74 68 65 20 64 |the end.of the d| 000017b0 69 76 69 73 69 6f 6e 20 72 6f 75 74 69 6e 65 2e |ivision routine.| 000017c0 0d 0d 54 68 69 73 20 6c 65 61 64 73 20 74 6f 20 |..This leads to | 000017d0 61 6e 20 61 6c 67 6f 72 69 74 68 6d 20 6c 69 6b |an algorithm lik| 000017e0 65 20 74 68 69 73 3a 0d 0d 20 20 20 20 53 65 74 |e this:.. Set| 000017f0 20 61 63 63 75 6d 75 6c 61 74 6f 72 20 74 6f 20 | accumulator to | 00001800 7a 65 72 6f 0d 20 20 20 20 4c 6f 6f 70 20 73 74 |zero. Loop st| 00001810 61 72 74 73 20 68 65 72 65 0d 20 20 20 20 52 6f |arts here. Ro| 00001820 74 61 74 65 20 64 69 76 69 64 65 6e 64 2f 72 65 |tate dividend/re| 00001830 73 75 6c 74 20 6c 65 66 74 20 69 6e 74 6f 20 61 |sult left into a| 00001840 63 63 75 6d 75 6c 61 74 6f 72 0d 20 20 20 20 49 |ccumulator. I| 00001850 66 20 61 63 63 75 6d 75 6c 61 74 6f 72 20 69 73 |f accumulator is| 00001860 20 3c 20 64 69 76 69 73 6f 72 20 72 65 70 65 61 | < divisor repea| 00001870 74 20 6c 6f 6f 70 0d 20 20 20 20 49 66 20 61 63 |t loop. If ac| 00001880 63 75 6d 75 6c 61 74 6f 72 20 69 73 20 3e 3d 20 |cumulator is >= | 00001890 64 69 76 69 73 6f 72 20 74 68 65 6e 3a 0d 20 20 |divisor then:. | 000018a0 20 20 20 20 20 20 41 64 64 20 6f 6e 65 20 74 6f | Add one to| 000018b0 20 64 69 76 69 64 65 6e 64 2f 72 65 73 75 6c 74 | dividend/result| 000018c0 0d 20 20 20 20 20 20 20 20 53 75 62 74 72 61 63 |. Subtrac| 000018d0 74 20 64 69 76 69 73 6f 72 20 66 72 6f 6d 20 61 |t divisor from a| 000018e0 63 63 75 6d 75 6c 61 74 6f 72 0d 20 20 20 20 52 |ccumulator. R| 000018f0 65 70 65 61 74 20 6c 6f 6f 70 20 75 6e 74 69 6c |epeat loop until| 00001900 20 66 69 6e 69 73 68 65 64 0d 0d 49 74 20 69 73 | finished..It is| 00001910 20 73 69 6d 70 6c 65 20 74 6f 20 6d 61 6b 65 20 | simple to make | 00001920 74 68 69 73 20 63 68 61 6e 67 65 20 62 75 74 20 |this change but | 00001930 69 74 20 73 70 65 65 64 73 20 74 68 69 6e 67 73 |it speeds things| 00001940 20 75 70 20 61 6e 64 0d 61 6c 73 6f 20 72 65 6d | up and.also rem| 00001950 6f 76 65 73 20 74 68 65 20 6e 65 65 64 20 66 6f |oves the need fo| 00001960 72 20 6f 6e 65 20 6f 66 20 74 68 65 20 77 6f 72 |r one of the wor| 00001970 6b 73 70 61 63 65 20 77 6f 72 64 73 0d 28 27 72 |kspace words.('r| 00001980 65 73 75 6c 74 27 29 2e 20 20 27 64 69 76 69 64 |esult'). 'divid| 00001990 65 6e 64 27 20 6e 6f 77 20 77 69 6c 6c 20 73 74 |end' now will st| 000019a0 61 72 74 20 68 6f 6c 64 69 6e 67 20 74 68 65 20 |art holding the | 000019b0 64 69 76 69 64 65 6e 64 0d 62 75 74 20 77 69 6c |dividend.but wil| 000019c0 6c 20 67 72 61 64 75 61 6c 6c 79 2c 20 62 69 74 |l gradually, bit| 000019d0 20 62 79 20 62 69 74 2c 20 62 65 63 6f 6d 65 20 | by bit, become | 000019e0 74 68 65 20 72 65 73 75 6c 74 2e 20 20 54 68 69 |the result. Thi| 000019f0 73 20 69 73 0d 74 68 65 20 6d 65 74 68 6f 64 20 |s is.the method | 00001a00 49 20 77 69 6c 6c 20 75 73 65 20 69 6e 20 61 20 |I will use in a | 00001a10 67 65 6e 65 72 61 6c 20 72 6f 75 74 69 6e 65 20 |general routine | 00001a20 6e 65 78 74 20 74 69 6d 65 2c 20 62 75 74 0d 79 |next time, but.y| 00001a30 6f 75 20 63 6f 75 6c 64 20 74 72 79 20 6d 6f 64 |ou could try mod| 00001a40 69 66 79 69 6e 67 20 74 68 69 73 20 6d 6f 64 75 |ifying this modu| 00001a50 6c 65 20 66 6f 72 20 79 6f 75 72 73 65 6c 66 2e |le for yourself.| 00001a60 0d |.| 00001a61