Home » Personal collection » Acorn tapes » Electron_User » Electron_User_tape25b_acorn_eu_1991_july.wav » Chaos3
Chaos3
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » Personal collection » Acorn tapes » Electron_User » Electron_User_tape25b_acorn_eu_1991_july.wav |
Filename: | Chaos3 |
Read OK: | ✔ |
File size: | 0818 bytes |
Load address: | FFFF1A00 |
Exec address: | FFFF8023 |
Duplicates
There are 3 duplicate copies of this file in the archive:
- AEW website » mu » mu_5_25_discs_Micro_User_09_05_D-MU09_05.ssd » Chaos3
- AEW website » mu » mu_Micro_User_09_05_MU9-5_B.uef » Chaos3
- Personal collection » Acorn tapes » Electron_User » Electron_User_tape25a_acorn_eu_1991_july.wav » Chaos3
- Personal collection » Acorn tapes » Electron_User » Electron_User_tape25b_acorn_eu_1991_july.wav » Chaos3
File contents
10REM DIAGRAMS OF CHAOS 20REM by Jim Vernon 30REM (c) The Micro User 40MODE1 50PRINT'" ANY FORMULA y=F(x)" 60PRINT'"This prog. graphs F(x) iterated M%"'"times against changing c for the "'"chosen formula. Ranges of y and of c "'"and the initial value of x can be "'"varied." 70PRINT'"The range of c is divided into D%"'"intervals and y is iterated M% times"'"for each value of c, the first T% "'"values ignored and the rest,if within"'"the chosen range of Y, graphed." 80REM Input constants, ranges etc. 90INPUT'"Formula - in x and c ",X$ 100INPUT'"Limits of c (=C0,C1)",C0,C1 110INPUT"Limits of y (=Y0,Y1)",Y0,Y1 120INPUT"Initial x (=IX)",IX 130INPUT"No. of points on c axis(D%)",D% 140INPUT "Total No. of iterations per val.c(=M%)",M% 150INPUT"No. not to be printed(T%)",T% 160INPUT"Value of XMAX",XMAX 170INPUT"NAME of File",A$ 180CLS 190VDU19,7,0,0,0,0:VDU19,0,7,0,0,0 200REM Draw axes (with 10 divisions), mark ranges etc. 210PROCaxis(200,150,200,950) 220FOR Q%=1 TO 10:PROCaxis(200,150+Q%*80,210,150+Q%*80) :NEXT 230PROCaxis(200,150,1000,150) 240FOR Q%=1 TO 10:PROCaxis(200+Q%*80,150,200+Q%*80,160) :NEXT 250PRINTTAB(2,0);A$ 260PRINTTAB(15,1)"y = ";X$ 270PRINTTAB(1,2);Y1:PRINTTAB(1,26);Y0 280PROCiter(3,4) 290PRINTTAB(6,28);C0:PRINTTAB(19,28)"c":PRINTTAB(30,28);C1 300PRINTTAB(0,30)"M%=";M%;" : T%=";T%;" : D%=";D%;" : IX=";IX 310REM Calculate values of F(x) iterated M% times for each c 320K=C1-C0:P=K/D% :L=Y1-Y0 330FOR c=C0 TO C1 STEP P 340y=IX 350FOR N% = 1 TO M% 360y=FNformula(y) 370REM First T% values of y not shown 380IF N%<=T% GOTO @@@@ 390YS=(y-Y0)*800/L+150 400CS=(c-C0)*800/K+200 410REM y not plotted if outside range 420IF YS<150 OR YS>950 GOTO 440 430PLOT 69,CS,YS 440NEXT 450YMAX=(XMAX-Y0)*800/L+150 460IF YMAX<150 OR YMAX>950 GOTO 490 470PLOT 69,CS,YMAX 480REM Same calculations and plot for next value of c 490NEXT:PROCsave(A$):END 500: 510REM Formula defined 520DEF FNformula(x)=EVAL(X$) 530: 540REM Procedure for drawing lines to make axes etc. 550DEFPROCaxis(L%,M%,O%,P%) 560MOVE L%,M%:DRAW O%,P% 570ENDPROC 580: 590DEFPROCiter(A%,B%) 600LOCAL A$ 610FOR I=1 TO 19 620A$ = MID$("y iterated M% times",I,1) 630PRINTTAB(A%,B%+I)A$ 640NEXT:ENDPROC 650: 660DEFPROCcli($&700)LOCALX%,Y% 670Y%=7:CALL&FFF7:ENDPROC 680: 690DEF PROCsave(Z$) 700IF PAGE<&8000 PROCcli("SAVE "+Z$+" 3000 8000") 710IF PAGE>&8000 OSCLI("ScreenSave "+Z$) 720ENDPROC
� DIAGRAMS OF CHAOS � by Jim Vernon � (c) The Micro User (�1 2�'" ANY FORMULA y=F(x)" <��'"This prog. graphs F(x) iterated M%"'"times against changing c for the "'"chosen formula. Ranges of y and of c "'"and the initial value of x can be "'"varied." F��'"The range of c is divided into D%"'"intervals and y is iterated M% times"'"for each value of c, the first T% "'"values ignored and the rest,if within"'"the chosen range of Y, graphed." P"� Input constants, ranges etc. Z �'"Formula - in x and c ",X$ d"�'"Limits of c (=C0,C1)",C0,C1 n!�"Limits of y (=Y0,Y1)",Y0,Y1 x�"Initial x (=IX)",IX �%�"No. of points on c axis(D%)",D% �1� "Total No. of iterations per val.c(=M%)",M% �#�"No. not to be printed(T%)",T% ��"Value of XMAX",XMAX ��"NAME of File",A$ �� ��19,7,0,0,0,0:�19,0,7,0,0,0 �5� Draw axes (with 10 divisions), mark ranges etc. ��axis(200,150,200,950) �5� Q%=1 � 10:�axis(200,150+Q%*80,210,150+Q%*80) :� ��axis(200,150,1000,150) �5� Q%=1 � 10:�axis(200+Q%*80,150,200+Q%*80,160) :� � �2,0);A$ �15,1)"y = ";X$ �1,2);Y1:�1,26);Y0 �iter(3,4) "&�6,28);C0:�19,28)"c":�30,28);C1 ,7�0,30)"M%=";M%;" : T%=";T%;" : D%=";D%;" : IX=";IX 6;� Calculate values of F(x) iterated M% times for each c @K=C1-C0:P=K/D% :L=Y1-Y0 J� c=C0 � C1 � P Ty=IX ^� N% = 1 � M% hy=�formula(y) r$� First T% values of y not shown |� N%<=T% � @@@@ �YS=(y-Y0)*800/L+150 �CS=(c-C0)*800/K+200 �$� y not plotted if outside range �� YS<150 � YS>950 � �txA �� 69,CS,YS �� �YMAX=(XMAX-Y0)*800/L+150 � � YMAX<150 � YMAX>950 � �djA �� 69,CS,YMAX �4� Same calculations and plot for next value of c ��:�save(A$):� �: �� Formula defined � �formula(x)=�(X$) : 3� Procedure for drawing lines to make axes etc. &��axis(L%,M%,O%,P%) 0� L%,M%:� O%,P% :� D: N��iter(A%,B%) X� A$ b� I=1 � 19 l$A$ = �"y iterated M% times",I,1) v�A%,B%+I)A$ ��:� �: ���cli($&700)�X%,Y% �Y%=7:�&FFF7:� �: �� �save(Z$) �+� �<&8000 �cli("SAVE "+Z$+" 3000 8000") �!� �>&8000 �("ScreenSave "+Z$) �� �
00000000 0d 00 0a 17 f4 20 44 49 41 47 52 41 4d 53 20 4f |..... DIAGRAMS O| 00000010 46 20 43 48 41 4f 53 0d 00 14 13 f4 20 62 79 20 |F CHAOS..... by | 00000020 4a 69 6d 20 56 65 72 6e 6f 6e 0d 00 1e 18 f4 20 |Jim Vernon..... | 00000030 28 63 29 20 54 68 65 20 4d 69 63 72 6f 20 55 73 |(c) The Micro Us| 00000040 65 72 0d 00 28 06 eb 31 0d 00 32 1c f1 27 22 20 |er..(..1..2..'" | 00000050 20 41 4e 59 20 46 4f 52 4d 55 4c 41 20 79 3d 46 | ANY FORMULA y=F| 00000060 28 78 29 22 0d 00 3c a5 f1 27 22 54 68 69 73 20 |(x)"..<..'"This | 00000070 70 72 6f 67 2e 20 67 72 61 70 68 73 20 46 28 78 |prog. graphs F(x| 00000080 29 20 69 74 65 72 61 74 65 64 20 4d 25 22 27 22 |) iterated M%"'"| 00000090 74 69 6d 65 73 20 61 67 61 69 6e 73 74 20 63 68 |times against ch| 000000a0 61 6e 67 69 6e 67 20 63 20 66 6f 72 20 74 68 65 |anging c for the| 000000b0 20 22 27 22 63 68 6f 73 65 6e 20 66 6f 72 6d 75 | "'"chosen formu| 000000c0 6c 61 2e 20 52 61 6e 67 65 73 20 6f 66 20 79 20 |la. Ranges of y | 000000d0 61 6e 64 20 6f 66 20 63 20 22 27 22 61 6e 64 20 |and of c "'"and | 000000e0 74 68 65 20 69 6e 69 74 69 61 6c 20 76 61 6c 75 |the initial valu| 000000f0 65 20 6f 66 20 78 20 63 61 6e 20 62 65 20 22 27 |e of x can be "'| 00000100 22 76 61 72 69 65 64 2e 22 0d 00 46 bf f1 27 22 |"varied."..F..'"| 00000110 54 68 65 20 72 61 6e 67 65 20 6f 66 20 63 20 69 |The range of c i| 00000120 73 20 64 69 76 69 64 65 64 20 69 6e 74 6f 20 44 |s divided into D| 00000130 25 22 27 22 69 6e 74 65 72 76 61 6c 73 20 61 6e |%"'"intervals an| 00000140 64 20 79 20 69 73 20 69 74 65 72 61 74 65 64 20 |d y is iterated | 00000150 4d 25 20 74 69 6d 65 73 22 27 22 66 6f 72 20 65 |M% times"'"for e| 00000160 61 63 68 20 76 61 6c 75 65 20 6f 66 20 63 2c 20 |ach value of c, | 00000170 74 68 65 20 66 69 72 73 74 20 54 25 20 22 27 22 |the first T% "'"| 00000180 76 61 6c 75 65 73 20 69 67 6e 6f 72 65 64 20 61 |values ignored a| 00000190 6e 64 20 74 68 65 20 72 65 73 74 2c 69 66 20 77 |nd the rest,if w| 000001a0 69 74 68 69 6e 22 27 22 74 68 65 20 63 68 6f 73 |ithin"'"the chos| 000001b0 65 6e 20 72 61 6e 67 65 20 6f 66 20 59 2c 20 67 |en range of Y, g| 000001c0 72 61 70 68 65 64 2e 22 0d 00 50 22 f4 20 49 6e |raphed."..P". In| 000001d0 70 75 74 20 63 6f 6e 73 74 61 6e 74 73 2c 20 72 |put constants, r| 000001e0 61 6e 67 65 73 20 65 74 63 2e 0d 00 5a 20 e8 27 |anges etc...Z .'| 000001f0 22 46 6f 72 6d 75 6c 61 20 2d 20 69 6e 20 78 20 |"Formula - in x | 00000200 61 6e 64 20 63 20 22 2c 58 24 0d 00 64 22 e8 27 |and c ",X$..d".'| 00000210 22 4c 69 6d 69 74 73 20 6f 66 20 63 20 28 3d 43 |"Limits of c (=C| 00000220 30 2c 43 31 29 22 2c 43 30 2c 43 31 0d 00 6e 21 |0,C1)",C0,C1..n!| 00000230 e8 22 4c 69 6d 69 74 73 20 6f 66 20 79 20 28 3d |."Limits of y (=| 00000240 59 30 2c 59 31 29 22 2c 59 30 2c 59 31 0d 00 78 |Y0,Y1)",Y0,Y1..x| 00000250 19 e8 22 49 6e 69 74 69 61 6c 20 78 20 28 3d 49 |.."Initial x (=I| 00000260 58 29 22 2c 49 58 0d 00 82 25 e8 22 4e 6f 2e 20 |X)",IX...%."No. | 00000270 6f 66 20 70 6f 69 6e 74 73 20 6f 6e 20 63 20 61 |of points on c a| 00000280 78 69 73 28 44 25 29 22 2c 44 25 0d 00 8c 31 e8 |xis(D%)",D%...1.| 00000290 20 22 54 6f 74 61 6c 20 4e 6f 2e 20 6f 66 20 69 | "Total No. of i| 000002a0 74 65 72 61 74 69 6f 6e 73 20 70 65 72 20 76 61 |terations per va| 000002b0 6c 2e 63 28 3d 4d 25 29 22 2c 4d 25 0d 00 96 23 |l.c(=M%)",M%...#| 000002c0 e8 22 4e 6f 2e 20 6e 6f 74 20 74 6f 20 62 65 20 |."No. not to be | 000002d0 70 72 69 6e 74 65 64 28 54 25 29 22 2c 54 25 0d |printed(T%)",T%.| 000002e0 00 a0 19 e8 22 56 61 6c 75 65 20 6f 66 20 58 4d |...."Value of XM| 000002f0 41 58 22 2c 58 4d 41 58 0d 00 aa 16 e8 22 4e 41 |AX",XMAX....."NA| 00000300 4d 45 20 6f 66 20 46 69 6c 65 22 2c 41 24 0d 00 |ME of File",A$..| 00000310 b4 05 db 0d 00 be 1f ef 31 39 2c 37 2c 30 2c 30 |........19,7,0,0| 00000320 2c 30 2c 30 3a ef 31 39 2c 30 2c 37 2c 30 2c 30 |,0,0:.19,0,7,0,0| 00000330 2c 30 0d 00 c8 35 f4 20 44 72 61 77 20 61 78 65 |,0...5. Draw axe| 00000340 73 20 28 77 69 74 68 20 31 30 20 64 69 76 69 73 |s (with 10 divis| 00000350 69 6f 6e 73 29 2c 20 6d 61 72 6b 20 72 61 6e 67 |ions), mark rang| 00000360 65 73 20 65 74 63 2e 0d 00 d2 1a f2 61 78 69 73 |es etc......axis| 00000370 28 32 30 30 2c 31 35 30 2c 32 30 30 2c 39 35 30 |(200,150,200,950| 00000380 29 0d 00 dc 35 e3 20 51 25 3d 31 20 b8 20 31 30 |)...5. Q%=1 . 10| 00000390 3a f2 61 78 69 73 28 32 30 30 2c 31 35 30 2b 51 |:.axis(200,150+Q| 000003a0 25 2a 38 30 2c 32 31 30 2c 31 35 30 2b 51 25 2a |%*80,210,150+Q%*| 000003b0 38 30 29 20 3a ed 0d 00 e6 1b f2 61 78 69 73 28 |80) :......axis(| 000003c0 32 30 30 2c 31 35 30 2c 31 30 30 30 2c 31 35 30 |200,150,1000,150| 000003d0 29 0d 00 f0 35 e3 20 51 25 3d 31 20 b8 20 31 30 |)...5. Q%=1 . 10| 000003e0 3a f2 61 78 69 73 28 32 30 30 2b 51 25 2a 38 30 |:.axis(200+Q%*80| 000003f0 2c 31 35 30 2c 32 30 30 2b 51 25 2a 38 30 2c 31 |,150,200+Q%*80,1| 00000400 36 30 29 20 3a ed 0d 00 fa 0d f1 8a 32 2c 30 29 |60) :.......2,0)| 00000410 3b 41 24 0d 01 04 14 f1 8a 31 35 2c 31 29 22 79 |;A$......15,1)"y| 00000420 20 3d 20 22 3b 58 24 0d 01 0e 18 f1 8a 31 2c 32 | = ";X$......1,2| 00000430 29 3b 59 31 3a f1 8a 31 2c 32 36 29 3b 59 30 0d |);Y1:..1,26);Y0.| 00000440 01 18 0e f2 69 74 65 72 28 33 2c 34 29 0d 01 22 |....iter(3,4).."| 00000450 26 f1 8a 36 2c 32 38 29 3b 43 30 3a f1 8a 31 39 |&..6,28);C0:..19| 00000460 2c 32 38 29 22 63 22 3a f1 8a 33 30 2c 32 38 29 |,28)"c":..30,28)| 00000470 3b 43 31 0d 01 2c 37 f1 8a 30 2c 33 30 29 22 4d |;C1..,7..0,30)"M| 00000480 25 3d 22 3b 4d 25 3b 22 20 3a 20 54 25 3d 22 3b |%=";M%;" : T%=";| 00000490 54 25 3b 22 20 3a 20 44 25 3d 22 3b 44 25 3b 22 |T%;" : D%=";D%;"| 000004a0 20 3a 20 49 58 3d 22 3b 49 58 0d 01 36 3b f4 20 | : IX=";IX..6;. | 000004b0 43 61 6c 63 75 6c 61 74 65 20 76 61 6c 75 65 73 |Calculate values| 000004c0 20 6f 66 20 46 28 78 29 20 69 74 65 72 61 74 65 | of F(x) iterate| 000004d0 64 20 4d 25 20 74 69 6d 65 73 20 66 6f 72 20 65 |d M% times for e| 000004e0 61 63 68 20 63 0d 01 40 1b 4b 3d 43 31 2d 43 30 |ach c..@.K=C1-C0| 000004f0 3a 50 3d 4b 2f 44 25 20 3a 4c 3d 59 31 2d 59 30 |:P=K/D% :L=Y1-Y0| 00000500 0d 01 4a 13 e3 20 63 3d 43 30 20 b8 20 43 31 20 |..J.. c=C0 . C1 | 00000510 88 20 50 0d 01 54 08 79 3d 49 58 0d 01 5e 11 e3 |. P..T.y=IX..^..| 00000520 20 4e 25 20 3d 20 31 20 b8 20 4d 25 0d 01 68 11 | N% = 1 . M%..h.| 00000530 79 3d a4 66 6f 72 6d 75 6c 61 28 79 29 0d 01 72 |y=.formula(y)..r| 00000540 24 f4 20 46 69 72 73 74 20 54 25 20 76 61 6c 75 |$. First T% valu| 00000550 65 73 20 6f 66 20 79 20 6e 6f 74 20 73 68 6f 77 |es of y not show| 00000560 6e 0d 01 7c 13 e7 20 4e 25 3c 3d 54 25 20 e5 20 |n..|.. N%<=T% . | 00000570 40 40 40 40 0d 01 86 17 59 53 3d 28 79 2d 59 30 |@@@@....YS=(y-Y0| 00000580 29 2a 38 30 30 2f 4c 2b 31 35 30 0d 01 90 17 43 |)*800/L+150....C| 00000590 53 3d 28 63 2d 43 30 29 2a 38 30 30 2f 4b 2b 32 |S=(c-C0)*800/K+2| 000005a0 30 30 0d 01 9a 24 f4 20 79 20 6e 6f 74 20 70 6c |00...$. y not pl| 000005b0 6f 74 74 65 64 20 69 66 20 6f 75 74 73 69 64 65 |otted if outside| 000005c0 20 72 61 6e 67 65 0d 01 a4 1c e7 20 59 53 3c 31 | range..... YS<1| 000005d0 35 30 20 84 20 59 53 3e 39 35 30 20 e5 20 8d 74 |50 . YS>950 . .t| 000005e0 78 41 0d 01 ae 0e f0 20 36 39 2c 43 53 2c 59 53 |xA..... 69,CS,YS| 000005f0 0d 01 b8 05 ed 0d 01 c2 1c 59 4d 41 58 3d 28 58 |.........YMAX=(X| 00000600 4d 41 58 2d 59 30 29 2a 38 30 30 2f 4c 2b 31 35 |MAX-Y0)*800/L+15| 00000610 30 0d 01 cc 20 e7 20 59 4d 41 58 3c 31 35 30 20 |0... . YMAX<150 | 00000620 84 20 59 4d 41 58 3e 39 35 30 20 e5 20 8d 64 6a |. YMAX>950 . .dj| 00000630 41 0d 01 d6 10 f0 20 36 39 2c 43 53 2c 59 4d 41 |A..... 69,CS,YMA| 00000640 58 0d 01 e0 34 f4 20 53 61 6d 65 20 63 61 6c 63 |X...4. Same calc| 00000650 75 6c 61 74 69 6f 6e 73 20 61 6e 64 20 70 6c 6f |ulations and plo| 00000660 74 20 66 6f 72 20 6e 65 78 74 20 76 61 6c 75 65 |t for next value| 00000670 20 6f 66 20 63 0d 01 ea 11 ed 3a f2 73 61 76 65 | of c.....:.save| 00000680 28 41 24 29 3a e0 0d 01 f4 05 3a 0d 01 fe 15 f4 |(A$):.....:.....| 00000690 20 46 6f 72 6d 75 6c 61 20 64 65 66 69 6e 65 64 | Formula defined| 000006a0 0d 02 08 17 dd 20 a4 66 6f 72 6d 75 6c 61 28 78 |..... .formula(x| 000006b0 29 3d a0 28 58 24 29 0d 02 12 05 3a 0d 02 1c 33 |)=.(X$)....:...3| 000006c0 f4 20 50 72 6f 63 65 64 75 72 65 20 66 6f 72 20 |. Procedure for | 000006d0 64 72 61 77 69 6e 67 20 6c 69 6e 65 73 20 74 6f |drawing lines to| 000006e0 20 6d 61 6b 65 20 61 78 65 73 20 65 74 63 2e 0d | make axes etc..| 000006f0 02 26 17 dd f2 61 78 69 73 28 4c 25 2c 4d 25 2c |.&...axis(L%,M%,| 00000700 4f 25 2c 50 25 29 0d 02 30 13 ec 20 4c 25 2c 4d |O%,P%)..0.. L%,M| 00000710 25 3a df 20 4f 25 2c 50 25 0d 02 3a 05 e1 0d 02 |%:. O%,P%..:....| 00000720 44 05 3a 0d 02 4e 11 dd f2 69 74 65 72 28 41 25 |D.:..N...iter(A%| 00000730 2c 42 25 29 0d 02 58 08 ea 20 41 24 0d 02 62 0e |,B%)..X.. A$..b.| 00000740 e3 20 49 3d 31 20 b8 20 31 39 0d 02 6c 24 41 24 |. I=1 . 19..l$A$| 00000750 20 3d 20 c1 22 79 20 69 74 65 72 61 74 65 64 20 | = ."y iterated | 00000760 4d 25 20 74 69 6d 65 73 22 2c 49 2c 31 29 0d 02 |M% times",I,1)..| 00000770 76 10 f1 8a 41 25 2c 42 25 2b 49 29 41 24 0d 02 |v...A%,B%+I)A$..| 00000780 80 07 ed 3a e1 0d 02 8a 05 3a 0d 02 94 16 dd f2 |...:.....:......| 00000790 63 6c 69 28 24 26 37 30 30 29 ea 58 25 2c 59 25 |cli($&700).X%,Y%| 000007a0 0d 02 9e 11 59 25 3d 37 3a d6 26 46 46 46 37 3a |....Y%=7:.&FFF7:| 000007b0 e1 0d 02 a8 05 3a 0d 02 b2 0f dd 20 f2 73 61 76 |.....:..... .sav| 000007c0 65 28 5a 24 29 0d 02 bc 2b e7 20 90 3c 26 38 30 |e(Z$)...+. .<&80| 000007d0 30 30 20 f2 63 6c 69 28 22 53 41 56 45 20 22 2b |00 .cli("SAVE "+| 000007e0 5a 24 2b 22 20 33 30 30 30 20 38 30 30 30 22 29 |Z$+" 3000 8000")| 000007f0 0d 02 c6 21 e7 20 90 3e 26 38 30 30 30 20 ff 28 |...!. .>&8000 .(| 00000800 22 53 63 72 65 65 6e 53 61 76 65 20 22 2b 5a 24 |"ScreenSave "+Z$| 00000810 29 0d 02 d0 05 e1 0d ff |).......| 00000818