Home » Archimedes archive » Archimedes World » AW-1997-01.adf » !AcornAns_AcornAns » Prime/Primes1
Prime/Primes1
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » Archimedes archive » Archimedes World » AW-1997-01.adf » !AcornAns_AcornAns |
Filename: | Prime/Primes1 |
Read OK: | ✔ |
File size: | 0337 bytes |
Load address: | 0000 |
Exec address: | 0000 |
Duplicates
There is 1 duplicate copy of this file in the archive:
- Archimedes archive » Archimedes World » AW-1997-02.adf » !AcornAns_AcornAns » Prime/Primes1
- Archimedes archive » Archimedes World » AW-1997-01.adf » !AcornAns_AcornAns » Prime/Primes1
File contents
10maxn=2^32 20np%=23+1.115*2*SQR(maxn)/LN(maxn) :REM approx upper bound on #primes<=SQR(maxn) 30DIM multiple%(np%-1), p%(np%-1) 40: 50n%=32768 60PROCprimes(n%) 70: 80END 90: 100: 110DEF PROCprimes(n%) 120anp%=0 130IF n%<=1 ENDPROC 140p%(0)=2:p%(1)=3:p%(2)=5:i%=2 150IF n%<5 FOR j%=0 TO (n%-1)DIV2:PRINT p%(j%):anp%+=1:NEXT:ENDPROC 160FOR j%=0 TO 2:PRINT p%(j%):anp%+=1:NEXT 170x%=5:plimsq%=25:limit%=2:dx%=2 180rootn%=INT SQR(n%) 190: 200WHILE TRUE 210 x%+=dx% 220 IF x%>n% ENDPROC 230 dx%=6-dx% 240 IF limit%<=i% THEN 250 IF x%>=plimsq% THEN 260 multiple%(limit%)=plimsq% 270 limit%+=1 280 IF limit%<=i% plimsq%=p%(limit%)*p%(limit%) 290 ENDIF 300 ENDIF 310 prime%=TRUE 320 j%=2 330 WHILE prime% AND (j%<limit%) 340 WHILE multiple%(j%)<x% multiple%(j%)+=2*p%(j%):ENDWHILE 350 prime%=x%<>multiple%(j%) 360 j%+=1 370 ENDWHILE 380 IF prime% THEN 390 PRINT x%:anp%+=1 400 IF x%<=rootn% i%+=1:p%(i%)=x% 410 ENDIF 420ENDWHILE 430: 440ENDPROC
maxn=2^32 Nnp%=23+1.115*2*�(maxn)/�(maxn) :� approx upper bound on #primes<=SQR(maxn) !� multiple%(np%-1), p%(np%-1) (: 2n%=32768 <�primes(n%) F: P� Z: d: n� �primes(n%) x anp%=0 � � n%<=1 � � p%(0)=2:p%(1)=3:p%(2)=5:i%=2 �1� n%<5 � j%=0 � (n%-1)�2:� p%(j%):anp%+=1:�:� �!� j%=0 � 2:� p%(j%):anp%+=1:� �"x%=5:plimsq%=25:limit%=2:dx%=2 �rootn%=� �(n%) �: �ȕ � � x%+=dx% � � x%>n% � � dx%=6-dx% � � limit%<=i% � � � x%>=plimsq% � multiple%(limit%)=plimsq% limit%+=1 1 � limit%<=i% plimsq%=p%(limit%)*p%(limit%) " � , � 6 prime%=� @ j%=2 J ȕ prime% � (j%<limit%) T3 ȕ multiple%(j%)<x% multiple%(j%)+=2*p%(j%):� ^ prime%=x%<>multiple%(j%) h j%+=1 r � | � prime% � � � x%:anp%+=1 �" � x%<=rootn% i%+=1:p%(i%)=x% � � �� �: �� �
00000000 0d 00 0a 0d 6d 61 78 6e 3d 32 5e 33 32 0d 00 14 |....maxn=2^32...| 00000010 4e 6e 70 25 3d 32 33 2b 31 2e 31 31 35 2a 32 2a |Nnp%=23+1.115*2*| 00000020 b6 28 6d 61 78 6e 29 2f aa 28 6d 61 78 6e 29 20 |.(maxn)/.(maxn) | 00000030 3a f4 20 61 70 70 72 6f 78 20 75 70 70 65 72 20 |:. approx upper | 00000040 62 6f 75 6e 64 20 6f 6e 20 23 70 72 69 6d 65 73 |bound on #primes| 00000050 3c 3d 53 51 52 28 6d 61 78 6e 29 0d 00 1e 21 de |<=SQR(maxn)...!.| 00000060 20 6d 75 6c 74 69 70 6c 65 25 28 6e 70 25 2d 31 | multiple%(np%-1| 00000070 29 2c 20 70 25 28 6e 70 25 2d 31 29 0d 00 28 05 |), p%(np%-1)..(.| 00000080 3a 0d 00 32 0c 6e 25 3d 33 32 37 36 38 0d 00 3c |:..2.n%=32768..<| 00000090 0f f2 70 72 69 6d 65 73 28 6e 25 29 0d 00 46 05 |..primes(n%)..F.| 000000a0 3a 0d 00 50 05 e0 0d 00 5a 05 3a 0d 00 64 05 3a |:..P....Z.:..d.:| 000000b0 0d 00 6e 11 dd 20 f2 70 72 69 6d 65 73 28 6e 25 |..n.. .primes(n%| 000000c0 29 0d 00 78 0a 61 6e 70 25 3d 30 0d 00 82 0d e7 |)..x.anp%=0.....| 000000d0 20 6e 25 3c 3d 31 20 e1 0d 00 8c 20 70 25 28 30 | n%<=1 .... p%(0| 000000e0 29 3d 32 3a 70 25 28 31 29 3d 33 3a 70 25 28 32 |)=2:p%(1)=3:p%(2| 000000f0 29 3d 35 3a 69 25 3d 32 0d 00 96 31 e7 20 6e 25 |)=5:i%=2...1. n%| 00000100 3c 35 20 e3 20 6a 25 3d 30 20 b8 20 28 6e 25 2d |<5 . j%=0 . (n%-| 00000110 31 29 81 32 3a f1 20 70 25 28 6a 25 29 3a 61 6e |1).2:. p%(j%):an| 00000120 70 25 2b 3d 31 3a ed 3a e1 0d 00 a0 21 e3 20 6a |p%+=1:.:....!. j| 00000130 25 3d 30 20 b8 20 32 3a f1 20 70 25 28 6a 25 29 |%=0 . 2:. p%(j%)| 00000140 3a 61 6e 70 25 2b 3d 31 3a ed 0d 00 aa 22 78 25 |:anp%+=1:...."x%| 00000150 3d 35 3a 70 6c 69 6d 73 71 25 3d 32 35 3a 6c 69 |=5:plimsq%=25:li| 00000160 6d 69 74 25 3d 32 3a 64 78 25 3d 32 0d 00 b4 12 |mit%=2:dx%=2....| 00000170 72 6f 6f 74 6e 25 3d a8 20 b6 28 6e 25 29 0d 00 |rootn%=. .(n%)..| 00000180 be 05 3a 0d 00 c8 08 c8 95 20 b9 0d 00 d2 0c 20 |..:...... ..... | 00000190 78 25 2b 3d 64 78 25 0d 00 dc 0e 20 e7 20 78 25 |x%+=dx%.... . x%| 000001a0 3e 6e 25 20 e1 0d 00 e6 0e 20 64 78 25 3d 36 2d |>n% ..... dx%=6-| 000001b0 64 78 25 0d 00 f0 13 20 e7 20 6c 69 6d 69 74 25 |dx%.... . limit%| 000001c0 3c 3d 69 25 20 8c 0d 00 fa 15 20 20 e7 20 78 25 |<=i% ..... . x%| 000001d0 3e 3d 70 6c 69 6d 73 71 25 20 8c 0d 01 04 20 20 |>=plimsq% .... | 000001e0 20 20 6d 75 6c 74 69 70 6c 65 25 28 6c 69 6d 69 | multiple%(limi| 000001f0 74 25 29 3d 70 6c 69 6d 73 71 25 0d 01 0e 10 20 |t%)=plimsq%.... | 00000200 20 20 6c 69 6d 69 74 25 2b 3d 31 0d 01 18 31 20 | limit%+=1...1 | 00000210 20 20 e7 20 6c 69 6d 69 74 25 3c 3d 69 25 20 70 | . limit%<=i% p| 00000220 6c 69 6d 73 71 25 3d 70 25 28 6c 69 6d 69 74 25 |limsq%=p%(limit%| 00000230 29 2a 70 25 28 6c 69 6d 69 74 25 29 0d 01 22 07 |)*p%(limit%)..".| 00000240 20 20 cd 0d 01 2c 06 20 cd 0d 01 36 0d 20 70 72 | ...,. ...6. pr| 00000250 69 6d 65 25 3d b9 0d 01 40 09 20 6a 25 3d 32 0d |ime%=...@. j%=2.| 00000260 01 4a 1c 20 c8 95 20 70 72 69 6d 65 25 20 80 20 |.J. .. prime% . | 00000270 28 6a 25 3c 6c 69 6d 69 74 25 29 0d 01 54 33 20 |(j%<limit%)..T3 | 00000280 20 c8 95 20 6d 75 6c 74 69 70 6c 65 25 28 6a 25 | .. multiple%(j%| 00000290 29 3c 78 25 20 6d 75 6c 74 69 70 6c 65 25 28 6a |)<x% multiple%(j| 000002a0 25 29 2b 3d 32 2a 70 25 28 6a 25 29 3a ce 0d 01 |%)+=2*p%(j%):...| 000002b0 5e 1e 20 20 70 72 69 6d 65 25 3d 78 25 3c 3e 6d |^. prime%=x%<>m| 000002c0 75 6c 74 69 70 6c 65 25 28 6a 25 29 0d 01 68 0b |ultiple%(j%)..h.| 000002d0 20 20 6a 25 2b 3d 31 0d 01 72 06 20 ce 0d 01 7c | j%+=1..r. ...|| 000002e0 0f 20 e7 20 70 72 69 6d 65 25 20 8c 0d 01 86 12 |. . prime% .....| 000002f0 20 20 f1 20 78 25 3a 61 6e 70 25 2b 3d 31 0d 01 | . x%:anp%+=1..| 00000300 90 22 20 20 e7 20 78 25 3c 3d 72 6f 6f 74 6e 25 |." . x%<=rootn%| 00000310 20 69 25 2b 3d 31 3a 70 25 28 69 25 29 3d 78 25 | i%+=1:p%(i%)=x%| 00000320 0d 01 9a 06 20 cd 0d 01 a4 05 ce 0d 01 ae 05 3a |.... ..........:| 00000330 0d 01 b8 05 e1 0d ff |.......| 00000337