Home » CEEFAX disks » telesoftware2.adl » OS\BITS/B\OSB22

OS\BITS/B\OSB22

This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.

Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.

Tape/disk: Home » CEEFAX disks » telesoftware2.adl
Filename: OS\BITS/B\OSB22
Read OK:
File size: 2BBD bytes
Load address: 0800
Exec address: 8023
Duplicates

There is 1 duplicate copy of this file in the archive:

File contents
   10REM  OSbits module B/osb22
   20REM  Floating Point Arithmetic - Addition and Subtraction
   30REM  Version 1.5 30.5.87
   40 
   50*KEY1MO.3|M|NL.|M
   60 
   70DIM code% &300
   80 
   90PRINT '"Floating Point Addition and Subtraction"'
  100INPUT "Enter the first number "fp1
  110INPUT "Enter the second number "fp2
  120PRINT
  130 
  140FOR pass%=0 TO 2 STEP 2
  150P%=code%
  160 
  170[OPT pass%
  180 
  190\  Transfer numbers from input_1 and 2 into
  200\  workspace for addition
  210 
  220JSR transfer_in
  230 
  240JSR fp_add                   \ Addition subroutine
  250 
  260\  Transfer result into 'result_add'
  270 
  280LDX #5
  290 
  300.transfer_out_loop
  310 
  320LDA fpws_1-1, X
  330STA result_add-1, X
  340DEX
  350BNE transfer_out_loop 
  360 
  370\  Transfer numbers from input_1 and 2 into
  380\  workspace for subtraction
  390 
  400JSR transfer_in
  410 
  420JSR fp_sub                   \ Subtraction subroutine
  430 
  440\  Transfer result into 'result_sub'
  450 
  460LDX #5
  470 
  480.transfer_out_loop2
  490 
  500LDA fpws_1-1, X
  510STA result_sub-1, X
  520DEX
  530BNE transfer_out_loop2
  540 
  550RTS
  560 
  570\  Reservation of workspace.  Note bytes for sign of fp numbers
  580\  and for overflow (oflow) during calculations.
  590 
  600.input_1      OPT FNEQUF(fp1)
  610.input_2      OPT FNEQUF(fp2)
  620.fpws_1_sign  OPT FNEQUB(0)
  630.fpws_1_oflow OPT FNEQUB(0)
  640.fpws_1       OPT FNEQUM(5,0)
  650.fpws_2_sign  OPT FNEQUB(0)
  660.fpws_2_oflow OPT FNEQUB(0)
  670.fpws_2       OPT FNEQUM(5,0)
  680.result_add   OPT FNEQUM(5,0)
  690.result_sub   OPT FNEQUM(5,0)
  700 
  710.fp_add
  720  
  730\  Adds together the numbers in fpws_1 and fpws_1
  740\  and puts the result in fpws_1
  750 
  760\  First allow for zeros in the workspace
  770  
  780LDA fpws_2+1
  790ORA fpws_2                  \ Zero if exponent & top mantissa byte zero
  800BEQ exit_addition           \ If 2nd no is 0  result = 1st no
  810 
  820LDA fpws_1+1
  830ORA fpws_1                  \ Zero if exponent & top mantissa byte zero
  840BNE dont_transfer           \ If only 1st no is zero answer is 2nd no
  850 
  860LDX #5
  870 
  880.zero_compensation_loop      \ transfer second no and exit addition
  890 
  900LDA fpws_2-1, X
  910STA fpws_1-1, X
  920DEX
  930BNE zero_compensation_loop
  940JMP exit_addition
  950 
  960.dont_transfer
  970 
  980JSR move_sign_bit           \ Move sign and restore top bit
  990 
 1000JSR equate_exponents        \ Denormalise smaller number
 1010 
 1020JSR neg_convert             \ Convert neg nos to 2's complement
 1030 
 1040JSR add_mantissae
 1050 
 1060JSR neg_convert_back        \ Convert 2's complement back to neg
 1070 
 1080\  Trap a zero result or renormalising routine will loop indefinately
 1090 
 1100LDA fpws_1_oflow
 1110ORA fpws_1+1
 1120ORA fpws_1+2
 1130ORA fpws_1+3
 1140ORA fpws_1+4                \ ORing bytes together gives 0 if all are 0
 1150 
 1160BEQ zero_result             \ Put zero into workspace then exit
 1170 
 1180JSR renormalise
 1190 
 1200JSR replace_sign_bit        \ Replace top bit with sign
 1210 
 1220.exit_addition
 1230 
 1240RTS
 1250 
 1260.zero_result
 1270 
 1280LDA #0
 1290STA fpws_1                  \ Clear exponent of a zero number
 1300 
 1310RTS
 1320 
 1330.fp_sub
 1340  
 1350\  Subtracts the number in fpws_2 from fpws_1
 1360\  and puts the result in fpws_1
 1370 
 1380\  First allow for zeros in the workspace
 1390  
 1400LDA fpws_2+1
 1410ORA fpws_2                  \ Zero if exponent & top mantissa byte zero
 1420BEQ exit_subtraction        \ If 2nd no is 0  result = 1st no
 1430 
 1440LDA fpws_1+1
 1450ORA fpws_1                  \ Zero if exponent & top mantissa byte zero
 1460BNE dont_transfer_sub       \ If only 1st no is zero answer is -2nd no
 1470 
 1480LDX #5
 1490 
 1500.zero_compensation_loop2     \ transfer second no and exit subtraction
 1510 
 1520LDA fpws_2-1, X
 1530STA fpws_1-1, X
 1540DEX
 1550BNE zero_compensation_loop2
 1560LDA fpws_1+1
 1570EOR #&80
 1580STA fpws_1+1                 \ Change sign of second number -> result
 1590JMP exit_subtraction
 1600 
 1610.dont_transfer_sub
 1620 
 1630JSR move_sign_bit           \ Move sign and restore top bit
 1640 
 1650JSR equate_exponents        \ Denormalise smaller number
 1660 
 1670JSR neg_convert             \ Convert neg nos to 2's complement
 1680 
 1690JSR subtract_mantissae
 1700 
 1710JSR neg_convert_back        \ Convert 2's complement back to neg
 1720 
 1730\  Trap a zero result or renormalising routine will loop indefinately
 1740 
 1750LDA fpws_1_oflow
 1760ORA fpws_1+1
 1770ORA fpws_1+2
 1780ORA fpws_1+3
 1790ORA fpws_1+4                \ ORing bytes together gives 0 if all are 0
 1800 
 1810BEQ zero_result             \ Put zero into workspace then exit
 1820 
 1830JSR renormalise
 1840 
 1850JSR replace_sign_bit        \ Replace top bit with sign
 1860 
 1870.exit_subtraction
 1880 
 1890RTS
 1900 
 1910.transfer_in
 1920 
 1930\  This subroutine takes the numbers in input_1 and
 1940\  input_2 and puts them in fpws_1 and fpws_2
 1950 
 1960LDX #5
 1970 
 1980.transfer_in_loop
 1990 
 2000LDA input_1-1, X
 2010STA fpws_1-1, X
 2020LDA input_2-1, X
 2030STA fpws_2-1, X
 2040DEX
 2050BNE transfer_in_loop 
 2060 
 2070LDA #0
 2080STA fpws_1_oflow
 2090STA fpws_2_oflow
 2100 
 2110RTS
 2120 
 2130.move_sign_bit
 2140 
 2150\  This routine transfers the sign bit from the top of the mantissae
 2160\  and puts it into a sign byte - ANDing to leave top bit only
 2170\  and then restores the top bit of the mantissae
 2180  
 2190LDA fpws_1+1
 2200AND #&80
 2210STA fpws_1_sign             \ fpws_1_sign is -ve if number was -ve
 2220LDA #&80
 2230ORA fpws_1+1
 2240STA fpws_1+1                \ Restores the top bit of the number
 2250 
 2260LDA fpws_2+1
 2270AND #&80
 2280STA fpws_2_sign             \ fpws_2_sign is -ve if number was -ve
 2290LDA #&80
 2300ORA fpws_2+1
 2310STA fpws_2+1                \ Restores the top bit of the number
 2320 
 2330RTS
 2340 
 2350.equate_exponents
 2360 
 2370\  This routine modifies the smaller number so that the exponents
 2380\  are the same
 2390 
 2400SEC
 2410LDA fpws_1
 2420SBC fpws_2                  \ Find which exponent is greater
 2430BEQ exponents_equal
 2440BPL ws1_is_greater
 2450 
 2460.ws2_is_greater
 2470 
 2480INC fpws_1                  \ Increase the lesser exponent
 2490LSR fpws_1+1                \ Shift mantissa right to compensate
 2500ROR fpws_1+2
 2510ROR fpws_1+3
 2520ROR fpws_1+4
 2530 
 2540LDA fpws_2
 2550CMP fpws_1
 2560BNE ws2_is_greater          \ Finish when exponents are equal
 2570RTS
 2580 
 2590.ws1_is_greater
 2600 
 2610INC fpws_2                  \ Increase lesser exponent
 2620LSR fpws_2+1                \ Shift mantissa right to compensate
 2630ROR fpws_2+2
 2640ROR fpws_2+3
 2650ROR fpws_2+4
 2660 
 2670LDA fpws_1
 2680CMP fpws_2
 2690BNE ws1_is_greater         \ Finish when exponents are equal
 2700 
 2710.exponents_equal
 2720 
 2730RTS
 2740 
 2750.neg_convert
 2760 
 2770\  Because the fp format is not 2's complement we have to convert
 2780\  negative numbers to 2's complement before calculating with them
 2790\  for addition and subtraction.
 2800 
 2810LDA fpws_2_sign
 2820BPL fp2_pos
 2830 
 2840SEC                         \ Subtract from zero
 2850LDA #0
 2860SBC fpws_2+4
 2870STA fpws_2+4
 2880LDA #0
 2890SBC fpws_2+3
 2900STA fpws_2+3
 2910LDA #0
 2920SBC fpws_2+2
 2930STA fpws_2+2
 2940LDA #0
 2950SBC fpws_2+1
 2960STA fpws_2+1
 2970LDA #0
 2980SBC fpws_2_oflow            \ Don't forget to include the overflow
 2990STA fpws_2_oflow
 3000 
 3010.fp2_pos
 3020 
 3030LDA fpws_1_sign
 3040BPL fp1_pos
 3050 
 3060.convert_sign_fpws1
 3070 
 3080SEC                         \ Subtract from zero
 3090LDA #0
 3100SBC fpws_1+4
 3110STA fpws_1+4
 3120LDA #0
 3130SBC fpws_1+3
 3140STA fpws_1+3
 3150LDA #0
 3160SBC fpws_1+2
 3170STA fpws_1+2
 3180LDA #0
 3190SBC fpws_1+1
 3200STA fpws_1+1
 3210LDA #0
 3220SBC fpws_1_oflow            \ Overflow
 3230STA fpws_1_oflow
 3240 
 3250. fp1_pos
 3260 
 3270RTS
 3280 
 3290.add_mantissae
 3300 
 3310\  This routine adds the mantissae with overflows
 3320 
 3330CLC
 3340LDA fpws_1+4                \ Standard add but with bytes reversed
 3350ADC fpws_2+4
 3360STA fpws_1+4
 3370LDA fpws_1+3
 3380ADC fpws_2+3
 3390STA fpws_1+3
 3400LDA fpws_1+2
 3410ADC fpws_2+2
 3420STA fpws_1+2
 3430LDA fpws_1+1
 3440ADC fpws_2+1
 3450STA fpws_1+1
 3460LDA fpws_1_oflow
 3470ADC fpws_2_oflow
 3480STA fpws_1_oflow
 3490 
 3500RTS
 3510 
 3520.subtract_mantissae
 3530 
 3540\  This routine subtracts the mantissae with overflows
 3550 
 3560SEC
 3570LDA fpws_1+4                \ Standard subtract but with bytes reversed
 3580SBC fpws_2+4
 3590STA fpws_1+4
 3600LDA fpws_1+3
 3610SBC fpws_2+3
 3620STA fpws_1+3
 3630LDA fpws_1+2
 3640SBC fpws_2+2
 3650STA fpws_1+2
 3660LDA fpws_1+1
 3670SBC fpws_2+1
 3680STA fpws_1+1
 3690LDA fpws_1_oflow
 3700SBC fpws_2_oflow
 3710STA fpws_1_oflow
 3720 
 3730RTS
 3740 
 3750.neg_convert_back
 3760 
 3770\  This routine converts any 2's complement result into fp format
 3780 
 3790LDA fpws_1_oflow
 3800BPL res_pos
 3810 
 3820JSR convert_sign_fpws1
 3830LDA #&80
 3840STA fpws_1_sign
 3850RTS
 3860 
 3870.res_pos
 3880 
 3890LDA #0
 3900STA fpws_1_sign
 3910 
 3920RTS
 3930 
 3940.renormalise
 3950 
 3960\ This routine modifies the mantissa and exponent of the result
 3970\ To produce a normalised format number.
 3980 
 3990LDA fpws_1_oflow
 4000BNE shift_right             \ If overflow is >0 we shift mantissa right
 4010 
 4020LDA fpws_1+1                \ Top byte of mantissa is shifted left
 4030BMI normalised              \ until top bit is set (i.e. -ve)
 4040 
 4050.shift_left_loop
 4060 
 4070DEC fpws_1                  \ Decrease the exponent
 4080ASL fpws_1+4                \ Shift mantissa left to compensate
 4090ROL fpws_1+3
 4100ROL fpws_1+2
 4110ROL fpws_1+1
 4120 
 4130BPL shift_left_loop
 4140 
 4150RTS                         \ Number renormalised
 4160 
 4170.shift_right
 4180 
 4190INC fpws_1                  \ Increase the exponent
 4200BEQ too_big                 \ If exp is zero we have overflow
 4210LSR fpws_1_oflow
 4220ROR fpws_1+1                \ Shift mantissa right to compensate
 4230ROR fpws_1+2
 4240ROR fpws_1+3
 4250ROR fpws_1+4
 4260 
 4270LDA fpws_1_oflow
 4280BNE shift_right
 4290 
 4300.normalised
 4310 
 4320RTS
 4330 
 4340.replace_sign_bit
 4350 
 4360CLC
 4370LDA fpws_1+1
 4380AND #&7F
 4390ADC fpws_1_sign
 4400STA fpws_1+1                \ If +ve clear top bit of mantissa
 4410 
 4420RTS
 4430 
 4440.too_big
 4450 
 4460\  This is an error condition - number 20
 4470 
 4480BRK
 4490OPT  FNEQUB(20)
 4500OPT  FNEQUS("Result of multiplication is too big")
 4510OPT  FNEQUB(0)
 4520 
 4530]
 4540NEXT
 4550 
 4560CALL code%
 4570 
 4580PRINT"Results:"'
 4590PRINT "Addition (code) is  ";FNfp(result_add)
 4600PRINT "Addition (BASIC) is ";fp1+fp2
 4610 
 4620PRINT "Subtraction (code) is  ";FNfp(result_sub)
 4630PRINT "Subtraction (BASIC) is ";fp1-fp2
 4640 
 4650END
 4660 
 4670**** EQUate a Byte ****
 4680DEF FNEQUB(N%)
 4690?P%=N% MOD 256
 4700IF (pass% AND 3) = 3 THEN PRINT ~?P%
 4710P%=P%+1
 4720=pass%
 4730 
 4740**** EQUate a String ****
 4750DEF FNEQUS(N$)
 4760LOCAL N%
 4770WIDTH 40
 4780FOR N%=1 TO LEN(N$)
 4790K%=ASC(MID$(N$,N%,1))
 4800P%?(N%-1)=K%
 4810IF (pass% AND 3) = 3 THEN PRINT ~P%?(N%-1);
 4820NEXT
 4830IF (pass% AND 3) = 3 THEN PRINT
 4840P%=P%+LEN(N$)
 4850WIDTH 0
 4860=pass%
 4870 
 4880**** EQUate a section of Memory ****
 4890DEF FNEQUM(number%,byte%)
 4900LOCAL N%
 4910WIDTH 40
 4920FOR N%=0 TO number%-1
 4930P%?N%=byte%
 4940IF (pass% AND 3) = 3 THEN PRINT ~P%?N%;
 4950NEXT
 4960IF (pass% AND 3) = 3 THEN PRINT
 4970P%=P%+number%
 4980WIDTH 0
 4990=pass%
 5000 
 5010**** EQUate a floating point number ****
 5020We use the variable `
 5030to gain access to BASIC's fp conversion
 5040routines. No other variables beginning
 5050with ` can be defined.
 5060DEF FNEQUF(`)
 5070LOCAL M%, N%
 5080WIDTH 40
 5090M% = 3+(!&4C0 AND &FFFF)
 5100FOR N%=0 TO 4
 5110P%?N%=M%?N%
 5120IF (pass% AND 3) = 3 THEN PRINT ~P%?N%;
 5130NEXT
 5140IF (pass% AND 3) = 3 THEN PRINT
 5150P%=P%+5
 5160WIDTH 0
 5170=pass%
 5180 
 5190**** Reverse FP ****
 5200Puts fp number from memory
 5210into variable ` (POUND)
 5220DEF FNfp(mem%)
 5230LOCAL M%, N%
 5240`=0
 5250M% = 3+(!&4C0 AND &FFFF)
 5260FOR N%=0 TO 4
 5270M%?N%=mem%?N%
 5280NEXT
 5290=`

�  OSbits module B/osb22
;�  Floating Point Arithmetic - Addition and Subtraction
�  Version 1.5 30.5.87
( 
2*KEY1MO.3|M|NL.|M
< 
F� code% &300
P 
Z1� '"Floating Point Addition and Subtraction"'
d"� "Enter the first number "fp1
n#� "Enter the second number "fp2
x�
� 
�� pass%=0 � 2 � 2
�P%=code%
� 
�[OPT pass%
� 
�/\  Transfer numbers from input_1 and 2 into
�\  workspace for addition
� 
�JSR transfer_in
� 
�6JSR fp_add                   \ Addition subroutine
� 
(\  Transfer result into 'result_add'
 

LDX #5
" 
,.transfer_out_loop
6 
@LDA fpws_1-1, X
JSTA result_add-1, X
TDEX
^BNE transfer_out_loop 
h 
r/\  Transfer numbers from input_1 and 2 into
| \  workspace for subtraction
� 
�JSR transfer_in
� 
�9JSR fp_sub                   \ Subtraction subroutine
� 
�(\  Transfer result into 'result_sub'
� 
�
LDX #5
� 
�.transfer_out_loop2
� 
�LDA fpws_1-1, X
�STA result_sub-1, X
DEX
BNE transfer_out_loop2
 
&RTS
0 
:C\  Reservation of workspace.  Note bytes for sign of fp numbers
D4\  and for overflow (oflow) during calculations.
N 
X .input_1      OPT �EQUF(fp1)
b .input_2      OPT �EQUF(fp2)
l.fpws_1_sign  OPT �EQUB(0)
v.fpws_1_oflow OPT �EQUB(0)
� .fpws_1       OPT �EQUM(5,0)
�.fpws_2_sign  OPT �EQUB(0)
�.fpws_2_oflow OPT �EQUB(0)
� .fpws_2       OPT �EQUM(5,0)
� .result_add   OPT �EQUM(5,0)
� .result_sub   OPT �EQUM(5,0)
� 
�.fp_add
�  
�5\  Adds together the numbers in fpws_1 and fpws_1
�$\  and puts the result in fpws_1
� 
�-\  First allow for zeros in the workspace
  
LDA fpws_2+1
J�A fpws_2                  \ Zero if exponent & top mantissa byte zero
 ABEQ exit_addition           \ If 2nd no is 0  result = 1st no
* 
4LDA fpws_1+1
>J�A fpws_1                  \ Zero if exponent & top mantissa byte zero
HIBNE dont_transfer           \ If only 1st no is zero answer is 2nd no
R 
\
LDX #5
f 
pG.zero_compensation_loop      \ transfer second no and exit addition
z 
�LDA fpws_2-1, X
�STA fpws_1-1, X
�DEX
�BNE zero_compensation_loop
�JMP exit_addition
� 
�.dont_transfer
� 
�?JSR move_sign_bit           \ Move sign and restore top bit
� 
�<JSR equate_exponents        \ Denormalise smaller number
� 
�CJSR neg_convert             \ Convert neg nos to 2's complement
 
JSR add_mantissae
 
$DJSR neg_convert_back        \ Convert 2's complement back to neg
. 
8I\  Trap a zero result or renormalising routine will loop indefinately
B 
LLDA fpws_1_oflow
V�A fpws_1+1
`�A fpws_1+2
j�A fpws_1+3
tI�A fpws_1+4                \ �ing bytes together gives 0 if all are 0
~ 
�CBEQ zero_result             \ Put zero into workspace then exit
� 
�JSR renormalise
� 
�;JSR replace_sign_bit        \ Replace top bit with sign
� 
�.exit_addition
� 
�RTS
� 
�.zero_result
� 

LDA #0

ASTA fpws_1                  \ Clear exponent of a zero number
 
RTS
( 
2.fp_sub
<  
F1\  Subtracts the number in fpws_2 from fpws_1
P$\  and puts the result in fpws_1
Z 
d-\  First allow for zeros in the workspace
n  
xLDA fpws_2+1
�J�A fpws_2                  \ Zero if exponent & top mantissa byte zero
�ABEQ exit_subtraction        \ If 2nd no is 0  result = 1st no
� 
�LDA fpws_1+1
�J�A fpws_1                  \ Zero if exponent & top mantissa byte zero
�JBNE dont_transfer_sub       \ If only 1st no is zero answer is -2nd no
� 
�
LDX #5
� 
�J.zero_compensation_loop2     \ transfer second no and exit subtraction
� 
�LDA fpws_2-1, X
�STA fpws_1-1, X
DEX
BNE zero_compensation_loop2
LDA fpws_1+1
"
� #&80
,ISTA fpws_1+1                 \ Change sign of second number -> result
6JMP exit_subtraction
@ 
J.dont_transfer_sub
T 
^?JSR move_sign_bit           \ Move sign and restore top bit
h 
r<JSR equate_exponents        \ Denormalise smaller number
| 
�CJSR neg_convert             \ Convert neg nos to 2's complement
� 
�JSR subtract_mantissae
� 
�DJSR neg_convert_back        \ Convert 2's complement back to neg
� 
�I\  Trap a zero result or renormalising routine will loop indefinately
� 
�LDA fpws_1_oflow
��A fpws_1+1
��A fpws_1+2
��A fpws_1+3
�I�A fpws_1+4                \ �ing bytes together gives 0 if all are 0
 
CBEQ zero_result             \ Put zero into workspace then exit
 
&JSR renormalise
0 
:;JSR replace_sign_bit        \ Replace top bit with sign
D 
N.exit_subtraction
X 
bRTS
l 
v.transfer_in
� 
�7\  This subroutine takes the numbers in input_1 and
�1\  input_2 and puts them in fpws_1 and fpws_2
� 
�
LDX #5
� 
�.transfer_in_loop
� 
�LDA input_1-1, X
�STA fpws_1-1, X
�LDA input_2-1, X
�STA fpws_2-1, X
�DEX
BNE transfer_in_loop 
 

LDA #0
 STA fpws_1_oflow
*STA fpws_2_oflow
4 
>RTS
H 
R.move_sign_bit
\ 
fH\  This routine transfers the sign bit from the top of the mantissae
p@\  and puts it into a sign byte - �ing to leave top bit only
z5\  and then restores the top bit of the mantissae
�  
�LDA fpws_1+1
�
� #&80
�FSTA fpws_1_sign             \ fpws_1_sign is -ve if number was -ve
�LDA #&80
��A fpws_1+1
�DSTA fpws_1+1                \ Restores the top bit of the number
� 
�LDA fpws_2+1
�
� #&80
�FSTA fpws_2_sign             \ fpws_2_sign is -ve if number was -ve
�LDA #&80
��A fpws_2+1
	DSTA fpws_2+1                \ Restores the top bit of the number
	 
	RTS
	$ 
	..equate_exponents
	8 
	BE\  This routine modifies the smaller number so that the exponents
	L\  are the same
	V 
	`SEC
	jLDA fpws_1
	t@SBC fpws_2                  \ Find which exponent is greater
	~BEQ exponents_equal
	�BPL ws1_is_greater
	� 
	�.ws2_is_greater
	� 
	�>INC fpws_1                  \ Increase the lesser exponent
	�DLSR fpws_1+1                \ Shift mantissa right to compensate
	�ROR fpws_1+2
	�ROR fpws_1+3
	�ROR fpws_1+4
	� 
	�LDA fpws_2
	�CMP fpws_1
ABNE ws2_is_greater          \ Finish when exponents are equal

RTS
 
.ws1_is_greater
( 
2:INC fpws_2                  \ Increase lesser exponent
<DLSR fpws_2+1                \ Shift mantissa right to compensate
FROR fpws_2+2
PROR fpws_2+3
ZROR fpws_2+4
d 
nLDA fpws_1
xCMP fpws_2
�@BNE ws1_is_greater         \ Finish when exponents are equal
� 
�.exponents_equal
� 
�RTS
� 
�.neg_convert
� 
�E\  Because the fp format is not 2's complement we have to convert
�F\  negative numbers to 2's complement before calculating with them
�$\  for addition and subtraction.
� 
�LDA fpws_2_sign
BPL fp2_pos
 
4SEC                         \ Subtract from zero
"
LDA #0
,SBC fpws_2+4
6STA fpws_2+4
@
LDA #0
JSBC fpws_2+3
TSTA fpws_2+3
^
LDA #0
hSBC fpws_2+2
rSTA fpws_2+2
|
LDA #0
�SBC fpws_2+1
�STA fpws_2+1
�
LDA #0
�FSBC fpws_2_oflow            \ Don't forget to include the overflow
�STA fpws_2_oflow
� 
�.fp2_pos
� 
�LDA fpws_1_sign
�BPL fp1_pos
� 
�.convert_sign_fpws1
� 
4SEC                         \ Subtract from zero

LDA #0
SBC fpws_1+4
&STA fpws_1+4
0
LDA #0
:SBC fpws_1+3
DSTA fpws_1+3
N
LDA #0
XSBC fpws_1+2
bSTA fpws_1+2
l
LDA #0
vSBC fpws_1+1
�STA fpws_1+1
�
LDA #0
�*SBC fpws_1_oflow            \ Overflow
�STA fpws_1_oflow
� 
�
. fp1_pos
� 
�RTS
� 
�.add_mantissae
� 
�5\  This routine adds the mantissae with overflows
� 

CLC

FLDA fpws_1+4                \ Standard add but with bytes reversed

ADC fpws_2+4

 STA fpws_1+4

*LDA fpws_1+3

4ADC fpws_2+3

>STA fpws_1+3

HLDA fpws_1+2

RADC fpws_2+2

\STA fpws_1+2

fLDA fpws_1+1

pADC fpws_2+1

zSTA fpws_1+1

�LDA fpws_1_oflow

�ADC fpws_2_oflow

�STA fpws_1_oflow

� 

�RTS

� 

�.subtract_mantissae

� 

�:\  This routine subtracts the mantissae with overflows

� 

�SEC

�KLDA fpws_1+4                \ Standard subtract but with bytes reversed

�SBC fpws_2+4
STA fpws_1+4
LDA fpws_1+3
SBC fpws_2+3
$STA fpws_1+3
.LDA fpws_1+2
8SBC fpws_2+2
BSTA fpws_1+2
LLDA fpws_1+1
VSBC fpws_2+1
`STA fpws_1+1
jLDA fpws_1_oflow
tSBC fpws_2_oflow
~STA fpws_1_oflow
� 
�RTS
� 
�.neg_convert_back
� 
�E\  This routine converts any 2's complement result into fp format
� 
�LDA fpws_1_oflow
�BPL res_pos
� 
�JSR convert_sign_fpws1
�LDA #&80
STA fpws_1_sign

RTS
 
.res_pos
( 
2
LDA #0
<STA fpws_1_sign
F 
PRTS
Z 
d.renormalise
n 
xC\ This routine modifies the mantissa and exponent of the result
�,\ To produce a normalised format number.
� 
�LDA fpws_1_oflow
�KBNE shift_right             \ If overflow is >0 we shift mantissa right
� 
�FLDA fpws_1+1                \ Top byte of mantissa is shifted left
�ABMI normalised              \ until top bit is set (i.e. -ve)
� 
�.shift_left_loop
� 
�7DEC fpws_1                  \ Decrease the exponent
�CASL fpws_1+4                \ Shift mantissa left to compensate
�ROL fpws_1+3
ROL fpws_1+2
ROL fpws_1+1
 
"BPL shift_left_loop
, 
65RTS                         \ Number renormalised
@ 
J.shift_right
T 
^7INC fpws_1                  \ Increase the exponent
hABEQ too_big                 \ If exp is zero we have overflow
rLSR fpws_1_oflow
|DROR fpws_1+1                \ Shift mantissa right to compensate
�ROR fpws_1+2
�ROR fpws_1+3
�ROR fpws_1+4
� 
�LDA fpws_1_oflow
�BNE shift_right
� 
�.normalised
� 
�RTS
� 
�.replace_sign_bit
� 
CLC
LDA fpws_1+1

� #&7F
&ADC fpws_1_sign
0BSTA fpws_1+1                \ If +ve clear top bit of mantissa
: 
DRTS
N 
X.too_big
b 
l-\  This is an error condition - number 20
v 
�BRK
�OPT  �EQUB(20)
�5OPT  �EQUS("Result of multiplication is too big")
�OPT  �EQUB(0)
� 
�]
��
� 
�� code%
� 
��"Results:"'
�,� "Addition (code) is  ";�fp(result_add)
�$� "Addition (BASIC) is ";fp1+fp2
 
/� "Subtraction (code) is  ";�fp(result_sub)
'� "Subtraction (BASIC) is ";fp1-fp2
  
*�
4 
>**** EQUate a Byte ****
H� �EQUB(N%)
R?P%=N% � 256
\� (pass% � 3) = 3 � � ~?P%
fP%=P%+1
p
=pass%
z 
�**** EQUate a String ****
�� �EQUS(N$)
�� N%
�� 40
�� N%=1 � �(N$)
�K%=�(�N$,N%,1))
�P%?(N%-1)=K%
�%� (pass% � 3) = 3 � � ~P%?(N%-1);
��
�� (pass% � 3) = 3 � �
�P%=P%+�(N$)
�� 0
�
=pass%
 
(**** EQUate a section of Memory ****
� �EQUM(number%,byte%)
$� N%
.� 40
8� N%=0 � number%-1
BP%?N%=byte%
L!� (pass% � 3) = 3 � � ~P%?N%;
V�
`� (pass% � 3) = 3 � �
jP%=P%+number%
t� 0
~
=pass%
� 
�,**** EQUate a floating point number ****
�We use the variable `
�+to gain access to BASIC's fp conversion
�*routines. No other variables beginning
�with ` can be defined.
�� �EQUF(`)
�� M%, N%
�� 40
�M% = 3+(!&4C0 � &FFFF)
�� N%=0 � 4
�P%?N%=M%?N%
!� (pass% � 3) = 3 � � ~P%?N%;

�
� (pass% � 3) = 3 � �
P%=P%+5
(� 0
2
=pass%
< 
F**** Reverse FP ****
PPuts fp number from memory
Zinto variable ` (POUND)
d� �fp(mem%)
n� M%, N%
x`=0
�M% = 3+(!&4C0 � &FFFF)
�� N%=0 � 4
�M%?N%=mem%?N%
��
�=`
�
00000000  0d 00 0a 1c f4 20 20 4f  53 62 69 74 73 20 6d 6f  |.....  OSbits mo|
00000010  64 75 6c 65 20 42 2f 6f  73 62 32 32 0d 00 14 3b  |dule B/osb22...;|
00000020  f4 20 20 46 6c 6f 61 74  69 6e 67 20 50 6f 69 6e  |.  Floating Poin|
00000030  74 20 41 72 69 74 68 6d  65 74 69 63 20 2d 20 41  |t Arithmetic - A|
00000040  64 64 69 74 69 6f 6e 20  61 6e 64 20 53 75 62 74  |ddition and Subt|
00000050  72 61 63 74 69 6f 6e 0d  00 1e 1a f4 20 20 56 65  |raction.....  Ve|
00000060  72 73 69 6f 6e 20 31 2e  35 20 33 30 2e 35 2e 38  |rsion 1.5 30.5.8|
00000070  37 0d 00 28 05 20 0d 00  32 15 2a 4b 45 59 31 4d  |7..(. ..2.*KEY1M|
00000080  4f 2e 33 7c 4d 7c 4e 4c  2e 7c 4d 0d 00 3c 05 20  |O.3|M|NL.|M..<. |
00000090  0d 00 46 10 de 20 63 6f  64 65 25 20 26 33 30 30  |..F.. code% &300|
000000a0  0d 00 50 05 20 0d 00 5a  31 f1 20 27 22 46 6c 6f  |..P. ..Z1. '"Flo|
000000b0  61 74 69 6e 67 20 50 6f  69 6e 74 20 41 64 64 69  |ating Point Addi|
000000c0  74 69 6f 6e 20 61 6e 64  20 53 75 62 74 72 61 63  |tion and Subtrac|
000000d0  74 69 6f 6e 22 27 0d 00  64 22 e8 20 22 45 6e 74  |tion"'..d". "Ent|
000000e0  65 72 20 74 68 65 20 66  69 72 73 74 20 6e 75 6d  |er the first num|
000000f0  62 65 72 20 22 66 70 31  0d 00 6e 23 e8 20 22 45  |ber "fp1..n#. "E|
00000100  6e 74 65 72 20 74 68 65  20 73 65 63 6f 6e 64 20  |nter the second |
00000110  6e 75 6d 62 65 72 20 22  66 70 32 0d 00 78 05 f1  |number "fp2..x..|
00000120  0d 00 82 05 20 0d 00 8c  15 e3 20 70 61 73 73 25  |.... ..... pass%|
00000130  3d 30 20 b8 20 32 20 88  20 32 0d 00 96 0c 50 25  |=0 . 2 . 2....P%|
00000140  3d 63 6f 64 65 25 0d 00  a0 05 20 0d 00 aa 0e 5b  |=code%.... ....[|
00000150  4f 50 54 20 70 61 73 73  25 0d 00 b4 05 20 0d 00  |OPT pass%.... ..|
00000160  be 2f 5c 20 20 54 72 61  6e 73 66 65 72 20 6e 75  |./\  Transfer nu|
00000170  6d 62 65 72 73 20 66 72  6f 6d 20 69 6e 70 75 74  |mbers from input|
00000180  5f 31 20 61 6e 64 20 32  20 69 6e 74 6f 0d 00 c8  |_1 and 2 into...|
00000190  1d 5c 20 20 77 6f 72 6b  73 70 61 63 65 20 66 6f  |.\  workspace fo|
000001a0  72 20 61 64 64 69 74 69  6f 6e 0d 00 d2 05 20 0d  |r addition.... .|
000001b0  00 dc 13 4a 53 52 20 74  72 61 6e 73 66 65 72 5f  |...JSR transfer_|
000001c0  69 6e 0d 00 e6 05 20 0d  00 f0 36 4a 53 52 20 66  |in.... ...6JSR f|
000001d0  70 5f 61 64 64 20 20 20  20 20 20 20 20 20 20 20  |p_add           |
000001e0  20 20 20 20 20 20 20 20  5c 20 41 64 64 69 74 69  |        \ Additi|
000001f0  6f 6e 20 73 75 62 72 6f  75 74 69 6e 65 0d 00 fa  |on subroutine...|
00000200  05 20 0d 01 04 28 5c 20  20 54 72 61 6e 73 66 65  |. ...(\  Transfe|
00000210  72 20 72 65 73 75 6c 74  20 69 6e 74 6f 20 27 72  |r result into 'r|
00000220  65 73 75 6c 74 5f 61 64  64 27 0d 01 0e 05 20 0d  |esult_add'.... .|
00000230  01 18 0a 4c 44 58 20 23  35 0d 01 22 05 20 0d 01  |...LDX #5..". ..|
00000240  2c 16 2e 74 72 61 6e 73  66 65 72 5f 6f 75 74 5f  |,..transfer_out_|
00000250  6c 6f 6f 70 0d 01 36 05  20 0d 01 40 13 4c 44 41  |loop..6. ..@.LDA|
00000260  20 66 70 77 73 5f 31 2d  31 2c 20 58 0d 01 4a 17  | fpws_1-1, X..J.|
00000270  53 54 41 20 72 65 73 75  6c 74 5f 61 64 64 2d 31  |STA result_add-1|
00000280  2c 20 58 0d 01 54 07 44  45 58 0d 01 5e 1a 42 4e  |, X..T.DEX..^.BN|
00000290  45 20 74 72 61 6e 73 66  65 72 5f 6f 75 74 5f 6c  |E transfer_out_l|
000002a0  6f 6f 70 20 0d 01 68 05  20 0d 01 72 2f 5c 20 20  |oop ..h. ..r/\  |
000002b0  54 72 61 6e 73 66 65 72  20 6e 75 6d 62 65 72 73  |Transfer numbers|
000002c0  20 66 72 6f 6d 20 69 6e  70 75 74 5f 31 20 61 6e  | from input_1 an|
000002d0  64 20 32 20 69 6e 74 6f  0d 01 7c 20 5c 20 20 77  |d 2 into..| \  w|
000002e0  6f 72 6b 73 70 61 63 65  20 66 6f 72 20 73 75 62  |orkspace for sub|
000002f0  74 72 61 63 74 69 6f 6e  0d 01 86 05 20 0d 01 90  |traction.... ...|
00000300  13 4a 53 52 20 74 72 61  6e 73 66 65 72 5f 69 6e  |.JSR transfer_in|
00000310  0d 01 9a 05 20 0d 01 a4  39 4a 53 52 20 66 70 5f  |.... ...9JSR fp_|
00000320  73 75 62 20 20 20 20 20  20 20 20 20 20 20 20 20  |sub             |
00000330  20 20 20 20 20 20 5c 20  53 75 62 74 72 61 63 74  |      \ Subtract|
00000340  69 6f 6e 20 73 75 62 72  6f 75 74 69 6e 65 0d 01  |ion subroutine..|
00000350  ae 05 20 0d 01 b8 28 5c  20 20 54 72 61 6e 73 66  |.. ...(\  Transf|
00000360  65 72 20 72 65 73 75 6c  74 20 69 6e 74 6f 20 27  |er result into '|
00000370  72 65 73 75 6c 74 5f 73  75 62 27 0d 01 c2 05 20  |result_sub'.... |
00000380  0d 01 cc 0a 4c 44 58 20  23 35 0d 01 d6 05 20 0d  |....LDX #5.... .|
00000390  01 e0 17 2e 74 72 61 6e  73 66 65 72 5f 6f 75 74  |....transfer_out|
000003a0  5f 6c 6f 6f 70 32 0d 01  ea 05 20 0d 01 f4 13 4c  |_loop2.... ....L|
000003b0  44 41 20 66 70 77 73 5f  31 2d 31 2c 20 58 0d 01  |DA fpws_1-1, X..|
000003c0  fe 17 53 54 41 20 72 65  73 75 6c 74 5f 73 75 62  |..STA result_sub|
000003d0  2d 31 2c 20 58 0d 02 08  07 44 45 58 0d 02 12 1a  |-1, X....DEX....|
000003e0  42 4e 45 20 74 72 61 6e  73 66 65 72 5f 6f 75 74  |BNE transfer_out|
000003f0  5f 6c 6f 6f 70 32 0d 02  1c 05 20 0d 02 26 07 52  |_loop2.... ..&.R|
00000400  54 53 0d 02 30 05 20 0d  02 3a 43 5c 20 20 52 65  |TS..0. ..:C\  Re|
00000410  73 65 72 76 61 74 69 6f  6e 20 6f 66 20 77 6f 72  |servation of wor|
00000420  6b 73 70 61 63 65 2e 20  20 4e 6f 74 65 20 62 79  |kspace.  Note by|
00000430  74 65 73 20 66 6f 72 20  73 69 67 6e 20 6f 66 20  |tes for sign of |
00000440  66 70 20 6e 75 6d 62 65  72 73 0d 02 44 34 5c 20  |fp numbers..D4\ |
00000450  20 61 6e 64 20 66 6f 72  20 6f 76 65 72 66 6c 6f  | and for overflo|
00000460  77 20 28 6f 66 6c 6f 77  29 20 64 75 72 69 6e 67  |w (oflow) during|
00000470  20 63 61 6c 63 75 6c 61  74 69 6f 6e 73 2e 0d 02  | calculations...|
00000480  4e 05 20 0d 02 58 20 2e  69 6e 70 75 74 5f 31 20  |N. ..X .input_1 |
00000490  20 20 20 20 20 4f 50 54  20 a4 45 51 55 46 28 66  |     OPT .EQUF(f|
000004a0  70 31 29 0d 02 62 20 2e  69 6e 70 75 74 5f 32 20  |p1)..b .input_2 |
000004b0  20 20 20 20 20 4f 50 54  20 a4 45 51 55 46 28 66  |     OPT .EQUF(f|
000004c0  70 32 29 0d 02 6c 1e 2e  66 70 77 73 5f 31 5f 73  |p2)..l..fpws_1_s|
000004d0  69 67 6e 20 20 4f 50 54  20 a4 45 51 55 42 28 30  |ign  OPT .EQUB(0|
000004e0  29 0d 02 76 1e 2e 66 70  77 73 5f 31 5f 6f 66 6c  |)..v..fpws_1_ofl|
000004f0  6f 77 20 4f 50 54 20 a4  45 51 55 42 28 30 29 0d  |ow OPT .EQUB(0).|
00000500  02 80 20 2e 66 70 77 73  5f 31 20 20 20 20 20 20  |.. .fpws_1      |
00000510  20 4f 50 54 20 a4 45 51  55 4d 28 35 2c 30 29 0d  | OPT .EQUM(5,0).|
00000520  02 8a 1e 2e 66 70 77 73  5f 32 5f 73 69 67 6e 20  |....fpws_2_sign |
00000530  20 4f 50 54 20 a4 45 51  55 42 28 30 29 0d 02 94  | OPT .EQUB(0)...|
00000540  1e 2e 66 70 77 73 5f 32  5f 6f 66 6c 6f 77 20 4f  |..fpws_2_oflow O|
00000550  50 54 20 a4 45 51 55 42  28 30 29 0d 02 9e 20 2e  |PT .EQUB(0)... .|
00000560  66 70 77 73 5f 32 20 20  20 20 20 20 20 4f 50 54  |fpws_2       OPT|
00000570  20 a4 45 51 55 4d 28 35  2c 30 29 0d 02 a8 20 2e  | .EQUM(5,0)... .|
00000580  72 65 73 75 6c 74 5f 61  64 64 20 20 20 4f 50 54  |result_add   OPT|
00000590  20 a4 45 51 55 4d 28 35  2c 30 29 0d 02 b2 20 2e  | .EQUM(5,0)... .|
000005a0  72 65 73 75 6c 74 5f 73  75 62 20 20 20 4f 50 54  |result_sub   OPT|
000005b0  20 a4 45 51 55 4d 28 35  2c 30 29 0d 02 bc 05 20  | .EQUM(5,0).... |
000005c0  0d 02 c6 0b 2e 66 70 5f  61 64 64 0d 02 d0 06 20  |.....fp_add.... |
000005d0  20 0d 02 da 35 5c 20 20  41 64 64 73 20 74 6f 67  | ...5\  Adds tog|
000005e0  65 74 68 65 72 20 74 68  65 20 6e 75 6d 62 65 72  |ether the number|
000005f0  73 20 69 6e 20 66 70 77  73 5f 31 20 61 6e 64 20  |s in fpws_1 and |
00000600  66 70 77 73 5f 31 0d 02  e4 24 5c 20 20 61 6e 64  |fpws_1...$\  and|
00000610  20 70 75 74 73 20 74 68  65 20 72 65 73 75 6c 74  | puts the result|
00000620  20 69 6e 20 66 70 77 73  5f 31 0d 02 ee 05 20 0d  | in fpws_1.... .|
00000630  02 f8 2d 5c 20 20 46 69  72 73 74 20 61 6c 6c 6f  |..-\  First allo|
00000640  77 20 66 6f 72 20 7a 65  72 6f 73 20 69 6e 20 74  |w for zeros in t|
00000650  68 65 20 77 6f 72 6b 73  70 61 63 65 0d 03 02 06  |he workspace....|
00000660  20 20 0d 03 0c 10 4c 44  41 20 66 70 77 73 5f 32  |  ....LDA fpws_2|
00000670  2b 31 0d 03 16 4a 84 41  20 66 70 77 73 5f 32 20  |+1...J.A fpws_2 |
00000680  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00000690  20 5c 20 5a 65 72 6f 20  69 66 20 65 78 70 6f 6e  | \ Zero if expon|
000006a0  65 6e 74 20 26 20 74 6f  70 20 6d 61 6e 74 69 73  |ent & top mantis|
000006b0  73 61 20 62 79 74 65 20  7a 65 72 6f 0d 03 20 41  |sa byte zero.. A|
000006c0  42 45 51 20 65 78 69 74  5f 61 64 64 69 74 69 6f  |BEQ exit_additio|
000006d0  6e 20 20 20 20 20 20 20  20 20 20 20 5c 20 49 66  |n           \ If|
000006e0  20 32 6e 64 20 6e 6f 20  69 73 20 30 20 20 72 65  | 2nd no is 0  re|
000006f0  73 75 6c 74 20 3d 20 31  73 74 20 6e 6f 0d 03 2a  |sult = 1st no..*|
00000700  05 20 0d 03 34 10 4c 44  41 20 66 70 77 73 5f 31  |. ..4.LDA fpws_1|
00000710  2b 31 0d 03 3e 4a 84 41  20 66 70 77 73 5f 31 20  |+1..>J.A fpws_1 |
00000720  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00000730  20 5c 20 5a 65 72 6f 20  69 66 20 65 78 70 6f 6e  | \ Zero if expon|
00000740  65 6e 74 20 26 20 74 6f  70 20 6d 61 6e 74 69 73  |ent & top mantis|
00000750  73 61 20 62 79 74 65 20  7a 65 72 6f 0d 03 48 49  |sa byte zero..HI|
00000760  42 4e 45 20 64 6f 6e 74  5f 74 72 61 6e 73 66 65  |BNE dont_transfe|
00000770  72 20 20 20 20 20 20 20  20 20 20 20 5c 20 49 66  |r           \ If|
00000780  20 6f 6e 6c 79 20 31 73  74 20 6e 6f 20 69 73 20  | only 1st no is |
00000790  7a 65 72 6f 20 61 6e 73  77 65 72 20 69 73 20 32  |zero answer is 2|
000007a0  6e 64 20 6e 6f 0d 03 52  05 20 0d 03 5c 0a 4c 44  |nd no..R. ..\.LD|
000007b0  58 20 23 35 0d 03 66 05  20 0d 03 70 47 2e 7a 65  |X #5..f. ..pG.ze|
000007c0  72 6f 5f 63 6f 6d 70 65  6e 73 61 74 69 6f 6e 5f  |ro_compensation_|
000007d0  6c 6f 6f 70 20 20 20 20  20 20 5c 20 74 72 61 6e  |loop      \ tran|
000007e0  73 66 65 72 20 73 65 63  6f 6e 64 20 6e 6f 20 61  |sfer second no a|
000007f0  6e 64 20 65 78 69 74 20  61 64 64 69 74 69 6f 6e  |nd exit addition|
00000800  0d 03 7a 05 20 0d 03 84  13 4c 44 41 20 66 70 77  |..z. ....LDA fpw|
00000810  73 5f 32 2d 31 2c 20 58  0d 03 8e 13 53 54 41 20  |s_2-1, X....STA |
00000820  66 70 77 73 5f 31 2d 31  2c 20 58 0d 03 98 07 44  |fpws_1-1, X....D|
00000830  45 58 0d 03 a2 1e 42 4e  45 20 7a 65 72 6f 5f 63  |EX....BNE zero_c|
00000840  6f 6d 70 65 6e 73 61 74  69 6f 6e 5f 6c 6f 6f 70  |ompensation_loop|
00000850  0d 03 ac 15 4a 4d 50 20  65 78 69 74 5f 61 64 64  |....JMP exit_add|
00000860  69 74 69 6f 6e 0d 03 b6  05 20 0d 03 c0 12 2e 64  |ition.... .....d|
00000870  6f 6e 74 5f 74 72 61 6e  73 66 65 72 0d 03 ca 05  |ont_transfer....|
00000880  20 0d 03 d4 3f 4a 53 52  20 6d 6f 76 65 5f 73 69  | ...?JSR move_si|
00000890  67 6e 5f 62 69 74 20 20  20 20 20 20 20 20 20 20  |gn_bit          |
000008a0  20 5c 20 4d 6f 76 65 20  73 69 67 6e 20 61 6e 64  | \ Move sign and|
000008b0  20 72 65 73 74 6f 72 65  20 74 6f 70 20 62 69 74  | restore top bit|
000008c0  0d 03 de 05 20 0d 03 e8  3c 4a 53 52 20 65 71 75  |.... ...<JSR equ|
000008d0  61 74 65 5f 65 78 70 6f  6e 65 6e 74 73 20 20 20  |ate_exponents   |
000008e0  20 20 20 20 20 5c 20 44  65 6e 6f 72 6d 61 6c 69  |     \ Denormali|
000008f0  73 65 20 73 6d 61 6c 6c  65 72 20 6e 75 6d 62 65  |se smaller numbe|
00000900  72 0d 03 f2 05 20 0d 03  fc 43 4a 53 52 20 6e 65  |r.... ...CJSR ne|
00000910  67 5f 63 6f 6e 76 65 72  74 20 20 20 20 20 20 20  |g_convert       |
00000920  20 20 20 20 20 20 5c 20  43 6f 6e 76 65 72 74 20  |      \ Convert |
00000930  6e 65 67 20 6e 6f 73 20  74 6f 20 32 27 73 20 63  |neg nos to 2's c|
00000940  6f 6d 70 6c 65 6d 65 6e  74 0d 04 06 05 20 0d 04  |omplement.... ..|
00000950  10 15 4a 53 52 20 61 64  64 5f 6d 61 6e 74 69 73  |..JSR add_mantis|
00000960  73 61 65 0d 04 1a 05 20  0d 04 24 44 4a 53 52 20  |sae.... ..$DJSR |
00000970  6e 65 67 5f 63 6f 6e 76  65 72 74 5f 62 61 63 6b  |neg_convert_back|
00000980  20 20 20 20 20 20 20 20  5c 20 43 6f 6e 76 65 72  |        \ Conver|
00000990  74 20 32 27 73 20 63 6f  6d 70 6c 65 6d 65 6e 74  |t 2's complement|
000009a0  20 62 61 63 6b 20 74 6f  20 6e 65 67 0d 04 2e 05  | back to neg....|
000009b0  20 0d 04 38 49 5c 20 20  54 72 61 70 20 61 20 7a  | ..8I\  Trap a z|
000009c0  65 72 6f 20 72 65 73 75  6c 74 20 6f 72 20 72 65  |ero result or re|
000009d0  6e 6f 72 6d 61 6c 69 73  69 6e 67 20 72 6f 75 74  |normalising rout|
000009e0  69 6e 65 20 77 69 6c 6c  20 6c 6f 6f 70 20 69 6e  |ine will loop in|
000009f0  64 65 66 69 6e 61 74 65  6c 79 0d 04 42 05 20 0d  |definately..B. .|
00000a00  04 4c 14 4c 44 41 20 66  70 77 73 5f 31 5f 6f 66  |.L.LDA fpws_1_of|
00000a10  6c 6f 77 0d 04 56 0f 84  41 20 66 70 77 73 5f 31  |low..V..A fpws_1|
00000a20  2b 31 0d 04 60 0f 84 41  20 66 70 77 73 5f 31 2b  |+1..`..A fpws_1+|
00000a30  32 0d 04 6a 0f 84 41 20  66 70 77 73 5f 31 2b 33  |2..j..A fpws_1+3|
00000a40  0d 04 74 49 84 41 20 66  70 77 73 5f 31 2b 34 20  |..tI.A fpws_1+4 |
00000a50  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 5c  |               \|
00000a60  20 84 69 6e 67 20 62 79  74 65 73 20 74 6f 67 65  | .ing bytes toge|
00000a70  74 68 65 72 20 67 69 76  65 73 20 30 20 69 66 20  |ther gives 0 if |
00000a80  61 6c 6c 20 61 72 65 20  30 0d 04 7e 05 20 0d 04  |all are 0..~. ..|
00000a90  88 43 42 45 51 20 7a 65  72 6f 5f 72 65 73 75 6c  |.CBEQ zero_resul|
00000aa0  74 20 20 20 20 20 20 20  20 20 20 20 20 20 5c 20  |t             \ |
00000ab0  50 75 74 20 7a 65 72 6f  20 69 6e 74 6f 20 77 6f  |Put zero into wo|
00000ac0  72 6b 73 70 61 63 65 20  74 68 65 6e 20 65 78 69  |rkspace then exi|
00000ad0  74 0d 04 92 05 20 0d 04  9c 13 4a 53 52 20 72 65  |t.... ....JSR re|
00000ae0  6e 6f 72 6d 61 6c 69 73  65 0d 04 a6 05 20 0d 04  |normalise.... ..|
00000af0  b0 3b 4a 53 52 20 72 65  70 6c 61 63 65 5f 73 69  |.;JSR replace_si|
00000b00  67 6e 5f 62 69 74 20 20  20 20 20 20 20 20 5c 20  |gn_bit        \ |
00000b10  52 65 70 6c 61 63 65 20  74 6f 70 20 62 69 74 20  |Replace top bit |
00000b20  77 69 74 68 20 73 69 67  6e 0d 04 ba 05 20 0d 04  |with sign.... ..|
00000b30  c4 12 2e 65 78 69 74 5f  61 64 64 69 74 69 6f 6e  |...exit_addition|
00000b40  0d 04 ce 05 20 0d 04 d8  07 52 54 53 0d 04 e2 05  |.... ....RTS....|
00000b50  20 0d 04 ec 10 2e 7a 65  72 6f 5f 72 65 73 75 6c  | .....zero_resul|
00000b60  74 0d 04 f6 05 20 0d 05  00 0a 4c 44 41 20 23 30  |t.... ....LDA #0|
00000b70  0d 05 0a 41 53 54 41 20  66 70 77 73 5f 31 20 20  |...ASTA fpws_1  |
00000b80  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00000b90  5c 20 43 6c 65 61 72 20  65 78 70 6f 6e 65 6e 74  |\ Clear exponent|
00000ba0  20 6f 66 20 61 20 7a 65  72 6f 20 6e 75 6d 62 65  | of a zero numbe|
00000bb0  72 0d 05 14 05 20 0d 05  1e 07 52 54 53 0d 05 28  |r.... ....RTS..(|
00000bc0  05 20 0d 05 32 0b 2e 66  70 5f 73 75 62 0d 05 3c  |. ..2..fp_sub..<|
00000bd0  06 20 20 0d 05 46 31 5c  20 20 53 75 62 74 72 61  |.  ..F1\  Subtra|
00000be0  63 74 73 20 74 68 65 20  6e 75 6d 62 65 72 20 69  |cts the number i|
00000bf0  6e 20 66 70 77 73 5f 32  20 66 72 6f 6d 20 66 70  |n fpws_2 from fp|
00000c00  77 73 5f 31 0d 05 50 24  5c 20 20 61 6e 64 20 70  |ws_1..P$\  and p|
00000c10  75 74 73 20 74 68 65 20  72 65 73 75 6c 74 20 69  |uts the result i|
00000c20  6e 20 66 70 77 73 5f 31  0d 05 5a 05 20 0d 05 64  |n fpws_1..Z. ..d|
00000c30  2d 5c 20 20 46 69 72 73  74 20 61 6c 6c 6f 77 20  |-\  First allow |
00000c40  66 6f 72 20 7a 65 72 6f  73 20 69 6e 20 74 68 65  |for zeros in the|
00000c50  20 77 6f 72 6b 73 70 61  63 65 0d 05 6e 06 20 20  | workspace..n.  |
00000c60  0d 05 78 10 4c 44 41 20  66 70 77 73 5f 32 2b 31  |..x.LDA fpws_2+1|
00000c70  0d 05 82 4a 84 41 20 66  70 77 73 5f 32 20 20 20  |...J.A fpws_2   |
00000c80  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 5c  |               \|
00000c90  20 5a 65 72 6f 20 69 66  20 65 78 70 6f 6e 65 6e  | Zero if exponen|
00000ca0  74 20 26 20 74 6f 70 20  6d 61 6e 74 69 73 73 61  |t & top mantissa|
00000cb0  20 62 79 74 65 20 7a 65  72 6f 0d 05 8c 41 42 45  | byte zero...ABE|
00000cc0  51 20 65 78 69 74 5f 73  75 62 74 72 61 63 74 69  |Q exit_subtracti|
00000cd0  6f 6e 20 20 20 20 20 20  20 20 5c 20 49 66 20 32  |on        \ If 2|
00000ce0  6e 64 20 6e 6f 20 69 73  20 30 20 20 72 65 73 75  |nd no is 0  resu|
00000cf0  6c 74 20 3d 20 31 73 74  20 6e 6f 0d 05 96 05 20  |lt = 1st no.... |
00000d00  0d 05 a0 10 4c 44 41 20  66 70 77 73 5f 31 2b 31  |....LDA fpws_1+1|
00000d10  0d 05 aa 4a 84 41 20 66  70 77 73 5f 31 20 20 20  |...J.A fpws_1   |
00000d20  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 5c  |               \|
00000d30  20 5a 65 72 6f 20 69 66  20 65 78 70 6f 6e 65 6e  | Zero if exponen|
00000d40  74 20 26 20 74 6f 70 20  6d 61 6e 74 69 73 73 61  |t & top mantissa|
00000d50  20 62 79 74 65 20 7a 65  72 6f 0d 05 b4 4a 42 4e  | byte zero...JBN|
00000d60  45 20 64 6f 6e 74 5f 74  72 61 6e 73 66 65 72 5f  |E dont_transfer_|
00000d70  73 75 62 20 20 20 20 20  20 20 5c 20 49 66 20 6f  |sub       \ If o|
00000d80  6e 6c 79 20 31 73 74 20  6e 6f 20 69 73 20 7a 65  |nly 1st no is ze|
00000d90  72 6f 20 61 6e 73 77 65  72 20 69 73 20 2d 32 6e  |ro answer is -2n|
00000da0  64 20 6e 6f 0d 05 be 05  20 0d 05 c8 0a 4c 44 58  |d no.... ....LDX|
00000db0  20 23 35 0d 05 d2 05 20  0d 05 dc 4a 2e 7a 65 72  | #5.... ...J.zer|
00000dc0  6f 5f 63 6f 6d 70 65 6e  73 61 74 69 6f 6e 5f 6c  |o_compensation_l|
00000dd0  6f 6f 70 32 20 20 20 20  20 5c 20 74 72 61 6e 73  |oop2     \ trans|
00000de0  66 65 72 20 73 65 63 6f  6e 64 20 6e 6f 20 61 6e  |fer second no an|
00000df0  64 20 65 78 69 74 20 73  75 62 74 72 61 63 74 69  |d exit subtracti|
00000e00  6f 6e 0d 05 e6 05 20 0d  05 f0 13 4c 44 41 20 66  |on.... ....LDA f|
00000e10  70 77 73 5f 32 2d 31 2c  20 58 0d 05 fa 13 53 54  |pws_2-1, X....ST|
00000e20  41 20 66 70 77 73 5f 31  2d 31 2c 20 58 0d 06 04  |A fpws_1-1, X...|
00000e30  07 44 45 58 0d 06 0e 1f  42 4e 45 20 7a 65 72 6f  |.DEX....BNE zero|
00000e40  5f 63 6f 6d 70 65 6e 73  61 74 69 6f 6e 5f 6c 6f  |_compensation_lo|
00000e50  6f 70 32 0d 06 18 10 4c  44 41 20 66 70 77 73 5f  |op2....LDA fpws_|
00000e60  31 2b 31 0d 06 22 0a 82  20 23 26 38 30 0d 06 2c  |1+1..".. #&80..,|
00000e70  49 53 54 41 20 66 70 77  73 5f 31 2b 31 20 20 20  |ISTA fpws_1+1   |
00000e80  20 20 20 20 20 20 20 20  20 20 20 20 20 20 5c 20  |              \ |
00000e90  43 68 61 6e 67 65 20 73  69 67 6e 20 6f 66 20 73  |Change sign of s|
00000ea0  65 63 6f 6e 64 20 6e 75  6d 62 65 72 20 2d 3e 20  |econd number -> |
00000eb0  72 65 73 75 6c 74 0d 06  36 18 4a 4d 50 20 65 78  |result..6.JMP ex|
00000ec0  69 74 5f 73 75 62 74 72  61 63 74 69 6f 6e 0d 06  |it_subtraction..|
00000ed0  40 05 20 0d 06 4a 16 2e  64 6f 6e 74 5f 74 72 61  |@. ..J..dont_tra|
00000ee0  6e 73 66 65 72 5f 73 75  62 0d 06 54 05 20 0d 06  |nsfer_sub..T. ..|
00000ef0  5e 3f 4a 53 52 20 6d 6f  76 65 5f 73 69 67 6e 5f  |^?JSR move_sign_|
00000f00  62 69 74 20 20 20 20 20  20 20 20 20 20 20 5c 20  |bit           \ |
00000f10  4d 6f 76 65 20 73 69 67  6e 20 61 6e 64 20 72 65  |Move sign and re|
00000f20  73 74 6f 72 65 20 74 6f  70 20 62 69 74 0d 06 68  |store top bit..h|
00000f30  05 20 0d 06 72 3c 4a 53  52 20 65 71 75 61 74 65  |. ..r<JSR equate|
00000f40  5f 65 78 70 6f 6e 65 6e  74 73 20 20 20 20 20 20  |_exponents      |
00000f50  20 20 5c 20 44 65 6e 6f  72 6d 61 6c 69 73 65 20  |  \ Denormalise |
00000f60  73 6d 61 6c 6c 65 72 20  6e 75 6d 62 65 72 0d 06  |smaller number..|
00000f70  7c 05 20 0d 06 86 43 4a  53 52 20 6e 65 67 5f 63  ||. ...CJSR neg_c|
00000f80  6f 6e 76 65 72 74 20 20  20 20 20 20 20 20 20 20  |onvert          |
00000f90  20 20 20 5c 20 43 6f 6e  76 65 72 74 20 6e 65 67  |   \ Convert neg|
00000fa0  20 6e 6f 73 20 74 6f 20  32 27 73 20 63 6f 6d 70  | nos to 2's comp|
00000fb0  6c 65 6d 65 6e 74 0d 06  90 05 20 0d 06 9a 1a 4a  |lement.... ....J|
00000fc0  53 52 20 73 75 62 74 72  61 63 74 5f 6d 61 6e 74  |SR subtract_mant|
00000fd0  69 73 73 61 65 0d 06 a4  05 20 0d 06 ae 44 4a 53  |issae.... ...DJS|
00000fe0  52 20 6e 65 67 5f 63 6f  6e 76 65 72 74 5f 62 61  |R neg_convert_ba|
00000ff0  63 6b 20 20 20 20 20 20  20 20 5c 20 43 6f 6e 76  |ck        \ Conv|
00001000  65 72 74 20 32 27 73 20  63 6f 6d 70 6c 65 6d 65  |ert 2's compleme|
00001010  6e 74 20 62 61 63 6b 20  74 6f 20 6e 65 67 0d 06  |nt back to neg..|
00001020  b8 05 20 0d 06 c2 49 5c  20 20 54 72 61 70 20 61  |.. ...I\  Trap a|
00001030  20 7a 65 72 6f 20 72 65  73 75 6c 74 20 6f 72 20  | zero result or |
00001040  72 65 6e 6f 72 6d 61 6c  69 73 69 6e 67 20 72 6f  |renormalising ro|
00001050  75 74 69 6e 65 20 77 69  6c 6c 20 6c 6f 6f 70 20  |utine will loop |
00001060  69 6e 64 65 66 69 6e 61  74 65 6c 79 0d 06 cc 05  |indefinately....|
00001070  20 0d 06 d6 14 4c 44 41  20 66 70 77 73 5f 31 5f  | ....LDA fpws_1_|
00001080  6f 66 6c 6f 77 0d 06 e0  0f 84 41 20 66 70 77 73  |oflow.....A fpws|
00001090  5f 31 2b 31 0d 06 ea 0f  84 41 20 66 70 77 73 5f  |_1+1.....A fpws_|
000010a0  31 2b 32 0d 06 f4 0f 84  41 20 66 70 77 73 5f 31  |1+2.....A fpws_1|
000010b0  2b 33 0d 06 fe 49 84 41  20 66 70 77 73 5f 31 2b  |+3...I.A fpws_1+|
000010c0  34 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |4               |
000010d0  20 5c 20 84 69 6e 67 20  62 79 74 65 73 20 74 6f  | \ .ing bytes to|
000010e0  67 65 74 68 65 72 20 67  69 76 65 73 20 30 20 69  |gether gives 0 i|
000010f0  66 20 61 6c 6c 20 61 72  65 20 30 0d 07 08 05 20  |f all are 0.... |
00001100  0d 07 12 43 42 45 51 20  7a 65 72 6f 5f 72 65 73  |...CBEQ zero_res|
00001110  75 6c 74 20 20 20 20 20  20 20 20 20 20 20 20 20  |ult             |
00001120  5c 20 50 75 74 20 7a 65  72 6f 20 69 6e 74 6f 20  |\ Put zero into |
00001130  77 6f 72 6b 73 70 61 63  65 20 74 68 65 6e 20 65  |workspace then e|
00001140  78 69 74 0d 07 1c 05 20  0d 07 26 13 4a 53 52 20  |xit.... ..&.JSR |
00001150  72 65 6e 6f 72 6d 61 6c  69 73 65 0d 07 30 05 20  |renormalise..0. |
00001160  0d 07 3a 3b 4a 53 52 20  72 65 70 6c 61 63 65 5f  |..:;JSR replace_|
00001170  73 69 67 6e 5f 62 69 74  20 20 20 20 20 20 20 20  |sign_bit        |
00001180  5c 20 52 65 70 6c 61 63  65 20 74 6f 70 20 62 69  |\ Replace top bi|
00001190  74 20 77 69 74 68 20 73  69 67 6e 0d 07 44 05 20  |t with sign..D. |
000011a0  0d 07 4e 15 2e 65 78 69  74 5f 73 75 62 74 72 61  |..N..exit_subtra|
000011b0  63 74 69 6f 6e 0d 07 58  05 20 0d 07 62 07 52 54  |ction..X. ..b.RT|
000011c0  53 0d 07 6c 05 20 0d 07  76 10 2e 74 72 61 6e 73  |S..l. ..v..trans|
000011d0  66 65 72 5f 69 6e 0d 07  80 05 20 0d 07 8a 37 5c  |fer_in.... ...7\|
000011e0  20 20 54 68 69 73 20 73  75 62 72 6f 75 74 69 6e  |  This subroutin|
000011f0  65 20 74 61 6b 65 73 20  74 68 65 20 6e 75 6d 62  |e takes the numb|
00001200  65 72 73 20 69 6e 20 69  6e 70 75 74 5f 31 20 61  |ers in input_1 a|
00001210  6e 64 0d 07 94 31 5c 20  20 69 6e 70 75 74 5f 32  |nd...1\  input_2|
00001220  20 61 6e 64 20 70 75 74  73 20 74 68 65 6d 20 69  | and puts them i|
00001230  6e 20 66 70 77 73 5f 31  20 61 6e 64 20 66 70 77  |n fpws_1 and fpw|
00001240  73 5f 32 0d 07 9e 05 20  0d 07 a8 0a 4c 44 58 20  |s_2.... ....LDX |
00001250  23 35 0d 07 b2 05 20 0d  07 bc 15 2e 74 72 61 6e  |#5.... .....tran|
00001260  73 66 65 72 5f 69 6e 5f  6c 6f 6f 70 0d 07 c6 05  |sfer_in_loop....|
00001270  20 0d 07 d0 14 4c 44 41  20 69 6e 70 75 74 5f 31  | ....LDA input_1|
00001280  2d 31 2c 20 58 0d 07 da  13 53 54 41 20 66 70 77  |-1, X....STA fpw|
00001290  73 5f 31 2d 31 2c 20 58  0d 07 e4 14 4c 44 41 20  |s_1-1, X....LDA |
000012a0  69 6e 70 75 74 5f 32 2d  31 2c 20 58 0d 07 ee 13  |input_2-1, X....|
000012b0  53 54 41 20 66 70 77 73  5f 32 2d 31 2c 20 58 0d  |STA fpws_2-1, X.|
000012c0  07 f8 07 44 45 58 0d 08  02 19 42 4e 45 20 74 72  |...DEX....BNE tr|
000012d0  61 6e 73 66 65 72 5f 69  6e 5f 6c 6f 6f 70 20 0d  |ansfer_in_loop .|
000012e0  08 0c 05 20 0d 08 16 0a  4c 44 41 20 23 30 0d 08  |... ....LDA #0..|
000012f0  20 14 53 54 41 20 66 70  77 73 5f 31 5f 6f 66 6c  | .STA fpws_1_ofl|
00001300  6f 77 0d 08 2a 14 53 54  41 20 66 70 77 73 5f 32  |ow..*.STA fpws_2|
00001310  5f 6f 66 6c 6f 77 0d 08  34 05 20 0d 08 3e 07 52  |_oflow..4. ..>.R|
00001320  54 53 0d 08 48 05 20 0d  08 52 12 2e 6d 6f 76 65  |TS..H. ..R..move|
00001330  5f 73 69 67 6e 5f 62 69  74 0d 08 5c 05 20 0d 08  |_sign_bit..\. ..|
00001340  66 48 5c 20 20 54 68 69  73 20 72 6f 75 74 69 6e  |fH\  This routin|
00001350  65 20 74 72 61 6e 73 66  65 72 73 20 74 68 65 20  |e transfers the |
00001360  73 69 67 6e 20 62 69 74  20 66 72 6f 6d 20 74 68  |sign bit from th|
00001370  65 20 74 6f 70 20 6f 66  20 74 68 65 20 6d 61 6e  |e top of the man|
00001380  74 69 73 73 61 65 0d 08  70 40 5c 20 20 61 6e 64  |tissae..p@\  and|
00001390  20 70 75 74 73 20 69 74  20 69 6e 74 6f 20 61 20  | puts it into a |
000013a0  73 69 67 6e 20 62 79 74  65 20 2d 20 80 69 6e 67  |sign byte - .ing|
000013b0  20 74 6f 20 6c 65 61 76  65 20 74 6f 70 20 62 69  | to leave top bi|
000013c0  74 20 6f 6e 6c 79 0d 08  7a 35 5c 20 20 61 6e 64  |t only..z5\  and|
000013d0  20 74 68 65 6e 20 72 65  73 74 6f 72 65 73 20 74  | then restores t|
000013e0  68 65 20 74 6f 70 20 62  69 74 20 6f 66 20 74 68  |he top bit of th|
000013f0  65 20 6d 61 6e 74 69 73  73 61 65 0d 08 84 06 20  |e mantissae.... |
00001400  20 0d 08 8e 10 4c 44 41  20 66 70 77 73 5f 31 2b  | ....LDA fpws_1+|
00001410  31 0d 08 98 0a 80 20 23  26 38 30 0d 08 a2 46 53  |1..... #&80...FS|
00001420  54 41 20 66 70 77 73 5f  31 5f 73 69 67 6e 20 20  |TA fpws_1_sign  |
00001430  20 20 20 20 20 20 20 20  20 20 20 5c 20 66 70 77  |           \ fpw|
00001440  73 5f 31 5f 73 69 67 6e  20 69 73 20 2d 76 65 20  |s_1_sign is -ve |
00001450  69 66 20 6e 75 6d 62 65  72 20 77 61 73 20 2d 76  |if number was -v|
00001460  65 0d 08 ac 0c 4c 44 41  20 23 26 38 30 0d 08 b6  |e....LDA #&80...|
00001470  0f 84 41 20 66 70 77 73  5f 31 2b 31 0d 08 c0 44  |..A fpws_1+1...D|
00001480  53 54 41 20 66 70 77 73  5f 31 2b 31 20 20 20 20  |STA fpws_1+1    |
00001490  20 20 20 20 20 20 20 20  20 20 20 20 5c 20 52 65  |            \ Re|
000014a0  73 74 6f 72 65 73 20 74  68 65 20 74 6f 70 20 62  |stores the top b|
000014b0  69 74 20 6f 66 20 74 68  65 20 6e 75 6d 62 65 72  |it of the number|
000014c0  0d 08 ca 05 20 0d 08 d4  10 4c 44 41 20 66 70 77  |.... ....LDA fpw|
000014d0  73 5f 32 2b 31 0d 08 de  0a 80 20 23 26 38 30 0d  |s_2+1..... #&80.|
000014e0  08 e8 46 53 54 41 20 66  70 77 73 5f 32 5f 73 69  |..FSTA fpws_2_si|
000014f0  67 6e 20 20 20 20 20 20  20 20 20 20 20 20 20 5c  |gn             \|
00001500  20 66 70 77 73 5f 32 5f  73 69 67 6e 20 69 73 20  | fpws_2_sign is |
00001510  2d 76 65 20 69 66 20 6e  75 6d 62 65 72 20 77 61  |-ve if number wa|
00001520  73 20 2d 76 65 0d 08 f2  0c 4c 44 41 20 23 26 38  |s -ve....LDA #&8|
00001530  30 0d 08 fc 0f 84 41 20  66 70 77 73 5f 32 2b 31  |0.....A fpws_2+1|
00001540  0d 09 06 44 53 54 41 20  66 70 77 73 5f 32 2b 31  |...DSTA fpws_2+1|
00001550  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00001560  5c 20 52 65 73 74 6f 72  65 73 20 74 68 65 20 74  |\ Restores the t|
00001570  6f 70 20 62 69 74 20 6f  66 20 74 68 65 20 6e 75  |op bit of the nu|
00001580  6d 62 65 72 0d 09 10 05  20 0d 09 1a 07 52 54 53  |mber.... ....RTS|
00001590  0d 09 24 05 20 0d 09 2e  15 2e 65 71 75 61 74 65  |..$. .....equate|
000015a0  5f 65 78 70 6f 6e 65 6e  74 73 0d 09 38 05 20 0d  |_exponents..8. .|
000015b0  09 42 45 5c 20 20 54 68  69 73 20 72 6f 75 74 69  |.BE\  This routi|
000015c0  6e 65 20 6d 6f 64 69 66  69 65 73 20 74 68 65 20  |ne modifies the |
000015d0  73 6d 61 6c 6c 65 72 20  6e 75 6d 62 65 72 20 73  |smaller number s|
000015e0  6f 20 74 68 61 74 20 74  68 65 20 65 78 70 6f 6e  |o that the expon|
000015f0  65 6e 74 73 0d 09 4c 13  5c 20 20 61 72 65 20 74  |ents..L.\  are t|
00001600  68 65 20 73 61 6d 65 0d  09 56 05 20 0d 09 60 07  |he same..V. ..`.|
00001610  53 45 43 0d 09 6a 0e 4c  44 41 20 66 70 77 73 5f  |SEC..j.LDA fpws_|
00001620  31 0d 09 74 40 53 42 43  20 66 70 77 73 5f 32 20  |1..t@SBC fpws_2 |
00001630  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00001640  20 5c 20 46 69 6e 64 20  77 68 69 63 68 20 65 78  | \ Find which ex|
00001650  70 6f 6e 65 6e 74 20 69  73 20 67 72 65 61 74 65  |ponent is greate|
00001660  72 0d 09 7e 17 42 45 51  20 65 78 70 6f 6e 65 6e  |r..~.BEQ exponen|
00001670  74 73 5f 65 71 75 61 6c  0d 09 88 16 42 50 4c 20  |ts_equal....BPL |
00001680  77 73 31 5f 69 73 5f 67  72 65 61 74 65 72 0d 09  |ws1_is_greater..|
00001690  92 05 20 0d 09 9c 13 2e  77 73 32 5f 69 73 5f 67  |.. .....ws2_is_g|
000016a0  72 65 61 74 65 72 0d 09  a6 05 20 0d 09 b0 3e 49  |reater.... ...>I|
000016b0  4e 43 20 66 70 77 73 5f  31 20 20 20 20 20 20 20  |NC fpws_1       |
000016c0  20 20 20 20 20 20 20 20  20 20 20 5c 20 49 6e 63  |           \ Inc|
000016d0  72 65 61 73 65 20 74 68  65 20 6c 65 73 73 65 72  |rease the lesser|
000016e0  20 65 78 70 6f 6e 65 6e  74 0d 09 ba 44 4c 53 52  | exponent...DLSR|
000016f0  20 66 70 77 73 5f 31 2b  31 20 20 20 20 20 20 20  | fpws_1+1       |
00001700  20 20 20 20 20 20 20 20  20 5c 20 53 68 69 66 74  |         \ Shift|
00001710  20 6d 61 6e 74 69 73 73  61 20 72 69 67 68 74 20  | mantissa right |
00001720  74 6f 20 63 6f 6d 70 65  6e 73 61 74 65 0d 09 c4  |to compensate...|
00001730  10 52 4f 52 20 66 70 77  73 5f 31 2b 32 0d 09 ce  |.ROR fpws_1+2...|
00001740  10 52 4f 52 20 66 70 77  73 5f 31 2b 33 0d 09 d8  |.ROR fpws_1+3...|
00001750  10 52 4f 52 20 66 70 77  73 5f 31 2b 34 0d 09 e2  |.ROR fpws_1+4...|
00001760  05 20 0d 09 ec 0e 4c 44  41 20 66 70 77 73 5f 32  |. ....LDA fpws_2|
00001770  0d 09 f6 0e 43 4d 50 20  66 70 77 73 5f 31 0d 0a  |....CMP fpws_1..|
00001780  00 41 42 4e 45 20 77 73  32 5f 69 73 5f 67 72 65  |.ABNE ws2_is_gre|
00001790  61 74 65 72 20 20 20 20  20 20 20 20 20 20 5c 20  |ater          \ |
000017a0  46 69 6e 69 73 68 20 77  68 65 6e 20 65 78 70 6f  |Finish when expo|
000017b0  6e 65 6e 74 73 20 61 72  65 20 65 71 75 61 6c 0d  |nents are equal.|
000017c0  0a 0a 07 52 54 53 0d 0a  14 05 20 0d 0a 1e 13 2e  |...RTS.... .....|
000017d0  77 73 31 5f 69 73 5f 67  72 65 61 74 65 72 0d 0a  |ws1_is_greater..|
000017e0  28 05 20 0d 0a 32 3a 49  4e 43 20 66 70 77 73 5f  |(. ..2:INC fpws_|
000017f0  32 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |2               |
00001800  20 20 20 5c 20 49 6e 63  72 65 61 73 65 20 6c 65  |   \ Increase le|
00001810  73 73 65 72 20 65 78 70  6f 6e 65 6e 74 0d 0a 3c  |sser exponent..<|
00001820  44 4c 53 52 20 66 70 77  73 5f 32 2b 31 20 20 20  |DLSR fpws_2+1   |
00001830  20 20 20 20 20 20 20 20  20 20 20 20 20 5c 20 53  |             \ S|
00001840  68 69 66 74 20 6d 61 6e  74 69 73 73 61 20 72 69  |hift mantissa ri|
00001850  67 68 74 20 74 6f 20 63  6f 6d 70 65 6e 73 61 74  |ght to compensat|
00001860  65 0d 0a 46 10 52 4f 52  20 66 70 77 73 5f 32 2b  |e..F.ROR fpws_2+|
00001870  32 0d 0a 50 10 52 4f 52  20 66 70 77 73 5f 32 2b  |2..P.ROR fpws_2+|
00001880  33 0d 0a 5a 10 52 4f 52  20 66 70 77 73 5f 32 2b  |3..Z.ROR fpws_2+|
00001890  34 0d 0a 64 05 20 0d 0a  6e 0e 4c 44 41 20 66 70  |4..d. ..n.LDA fp|
000018a0  77 73 5f 31 0d 0a 78 0e  43 4d 50 20 66 70 77 73  |ws_1..x.CMP fpws|
000018b0  5f 32 0d 0a 82 40 42 4e  45 20 77 73 31 5f 69 73  |_2...@BNE ws1_is|
000018c0  5f 67 72 65 61 74 65 72  20 20 20 20 20 20 20 20  |_greater        |
000018d0  20 5c 20 46 69 6e 69 73  68 20 77 68 65 6e 20 65  | \ Finish when e|
000018e0  78 70 6f 6e 65 6e 74 73  20 61 72 65 20 65 71 75  |xponents are equ|
000018f0  61 6c 0d 0a 8c 05 20 0d  0a 96 14 2e 65 78 70 6f  |al.... .....expo|
00001900  6e 65 6e 74 73 5f 65 71  75 61 6c 0d 0a a0 05 20  |nents_equal.... |
00001910  0d 0a aa 07 52 54 53 0d  0a b4 05 20 0d 0a be 10  |....RTS.... ....|
00001920  2e 6e 65 67 5f 63 6f 6e  76 65 72 74 0d 0a c8 05  |.neg_convert....|
00001930  20 0d 0a d2 45 5c 20 20  42 65 63 61 75 73 65 20  | ...E\  Because |
00001940  74 68 65 20 66 70 20 66  6f 72 6d 61 74 20 69 73  |the fp format is|
00001950  20 6e 6f 74 20 32 27 73  20 63 6f 6d 70 6c 65 6d  | not 2's complem|
00001960  65 6e 74 20 77 65 20 68  61 76 65 20 74 6f 20 63  |ent we have to c|
00001970  6f 6e 76 65 72 74 0d 0a  dc 46 5c 20 20 6e 65 67  |onvert...F\  neg|
00001980  61 74 69 76 65 20 6e 75  6d 62 65 72 73 20 74 6f  |ative numbers to|
00001990  20 32 27 73 20 63 6f 6d  70 6c 65 6d 65 6e 74 20  | 2's complement |
000019a0  62 65 66 6f 72 65 20 63  61 6c 63 75 6c 61 74 69  |before calculati|
000019b0  6e 67 20 77 69 74 68 20  74 68 65 6d 0d 0a e6 24  |ng with them...$|
000019c0  5c 20 20 66 6f 72 20 61  64 64 69 74 69 6f 6e 20  |\  for addition |
000019d0  61 6e 64 20 73 75 62 74  72 61 63 74 69 6f 6e 2e  |and subtraction.|
000019e0  0d 0a f0 05 20 0d 0a fa  13 4c 44 41 20 66 70 77  |.... ....LDA fpw|
000019f0  73 5f 32 5f 73 69 67 6e  0d 0b 04 0f 42 50 4c 20  |s_2_sign....BPL |
00001a00  66 70 32 5f 70 6f 73 0d  0b 0e 05 20 0d 0b 18 34  |fp2_pos.... ...4|
00001a10  53 45 43 20 20 20 20 20  20 20 20 20 20 20 20 20  |SEC             |
00001a20  20 20 20 20 20 20 20 20  20 20 20 20 5c 20 53 75  |            \ Su|
00001a30  62 74 72 61 63 74 20 66  72 6f 6d 20 7a 65 72 6f  |btract from zero|
00001a40  0d 0b 22 0a 4c 44 41 20  23 30 0d 0b 2c 10 53 42  |..".LDA #0..,.SB|
00001a50  43 20 66 70 77 73 5f 32  2b 34 0d 0b 36 10 53 54  |C fpws_2+4..6.ST|
00001a60  41 20 66 70 77 73 5f 32  2b 34 0d 0b 40 0a 4c 44  |A fpws_2+4..@.LD|
00001a70  41 20 23 30 0d 0b 4a 10  53 42 43 20 66 70 77 73  |A #0..J.SBC fpws|
00001a80  5f 32 2b 33 0d 0b 54 10  53 54 41 20 66 70 77 73  |_2+3..T.STA fpws|
00001a90  5f 32 2b 33 0d 0b 5e 0a  4c 44 41 20 23 30 0d 0b  |_2+3..^.LDA #0..|
00001aa0  68 10 53 42 43 20 66 70  77 73 5f 32 2b 32 0d 0b  |h.SBC fpws_2+2..|
00001ab0  72 10 53 54 41 20 66 70  77 73 5f 32 2b 32 0d 0b  |r.STA fpws_2+2..|
00001ac0  7c 0a 4c 44 41 20 23 30  0d 0b 86 10 53 42 43 20  ||.LDA #0....SBC |
00001ad0  66 70 77 73 5f 32 2b 31  0d 0b 90 10 53 54 41 20  |fpws_2+1....STA |
00001ae0  66 70 77 73 5f 32 2b 31  0d 0b 9a 0a 4c 44 41 20  |fpws_2+1....LDA |
00001af0  23 30 0d 0b a4 46 53 42  43 20 66 70 77 73 5f 32  |#0...FSBC fpws_2|
00001b00  5f 6f 66 6c 6f 77 20 20  20 20 20 20 20 20 20 20  |_oflow          |
00001b10  20 20 5c 20 44 6f 6e 27  74 20 66 6f 72 67 65 74  |  \ Don't forget|
00001b20  20 74 6f 20 69 6e 63 6c  75 64 65 20 74 68 65 20  | to include the |
00001b30  6f 76 65 72 66 6c 6f 77  0d 0b ae 14 53 54 41 20  |overflow....STA |
00001b40  66 70 77 73 5f 32 5f 6f  66 6c 6f 77 0d 0b b8 05  |fpws_2_oflow....|
00001b50  20 0d 0b c2 0c 2e 66 70  32 5f 70 6f 73 0d 0b cc  | .....fp2_pos...|
00001b60  05 20 0d 0b d6 13 4c 44  41 20 66 70 77 73 5f 31  |. ....LDA fpws_1|
00001b70  5f 73 69 67 6e 0d 0b e0  0f 42 50 4c 20 66 70 31  |_sign....BPL fp1|
00001b80  5f 70 6f 73 0d 0b ea 05  20 0d 0b f4 17 2e 63 6f  |_pos.... .....co|
00001b90  6e 76 65 72 74 5f 73 69  67 6e 5f 66 70 77 73 31  |nvert_sign_fpws1|
00001ba0  0d 0b fe 05 20 0d 0c 08  34 53 45 43 20 20 20 20  |.... ...4SEC    |
00001bb0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00001bc0  20 20 20 20 20 5c 20 53  75 62 74 72 61 63 74 20  |     \ Subtract |
00001bd0  66 72 6f 6d 20 7a 65 72  6f 0d 0c 12 0a 4c 44 41  |from zero....LDA|
00001be0  20 23 30 0d 0c 1c 10 53  42 43 20 66 70 77 73 5f  | #0....SBC fpws_|
00001bf0  31 2b 34 0d 0c 26 10 53  54 41 20 66 70 77 73 5f  |1+4..&.STA fpws_|
00001c00  31 2b 34 0d 0c 30 0a 4c  44 41 20 23 30 0d 0c 3a  |1+4..0.LDA #0..:|
00001c10  10 53 42 43 20 66 70 77  73 5f 31 2b 33 0d 0c 44  |.SBC fpws_1+3..D|
00001c20  10 53 54 41 20 66 70 77  73 5f 31 2b 33 0d 0c 4e  |.STA fpws_1+3..N|
00001c30  0a 4c 44 41 20 23 30 0d  0c 58 10 53 42 43 20 66  |.LDA #0..X.SBC f|
00001c40  70 77 73 5f 31 2b 32 0d  0c 62 10 53 54 41 20 66  |pws_1+2..b.STA f|
00001c50  70 77 73 5f 31 2b 32 0d  0c 6c 0a 4c 44 41 20 23  |pws_1+2..l.LDA #|
00001c60  30 0d 0c 76 10 53 42 43  20 66 70 77 73 5f 31 2b  |0..v.SBC fpws_1+|
00001c70  31 0d 0c 80 10 53 54 41  20 66 70 77 73 5f 31 2b  |1....STA fpws_1+|
00001c80  31 0d 0c 8a 0a 4c 44 41  20 23 30 0d 0c 94 2a 53  |1....LDA #0...*S|
00001c90  42 43 20 66 70 77 73 5f  31 5f 6f 66 6c 6f 77 20  |BC fpws_1_oflow |
00001ca0  20 20 20 20 20 20 20 20  20 20 20 5c 20 4f 76 65  |           \ Ove|
00001cb0  72 66 6c 6f 77 0d 0c 9e  14 53 54 41 20 66 70 77  |rflow....STA fpw|
00001cc0  73 5f 31 5f 6f 66 6c 6f  77 0d 0c a8 05 20 0d 0c  |s_1_oflow.... ..|
00001cd0  b2 0d 2e 20 66 70 31 5f  70 6f 73 0d 0c bc 05 20  |... fp1_pos.... |
00001ce0  0d 0c c6 07 52 54 53 0d  0c d0 05 20 0d 0c da 12  |....RTS.... ....|
00001cf0  2e 61 64 64 5f 6d 61 6e  74 69 73 73 61 65 0d 0c  |.add_mantissae..|
00001d00  e4 05 20 0d 0c ee 35 5c  20 20 54 68 69 73 20 72  |.. ...5\  This r|
00001d10  6f 75 74 69 6e 65 20 61  64 64 73 20 74 68 65 20  |outine adds the |
00001d20  6d 61 6e 74 69 73 73 61  65 20 77 69 74 68 20 6f  |mantissae with o|
00001d30  76 65 72 66 6c 6f 77 73  0d 0c f8 05 20 0d 0d 02  |verflows.... ...|
00001d40  07 43 4c 43 0d 0d 0c 46  4c 44 41 20 66 70 77 73  |.CLC...FLDA fpws|
00001d50  5f 31 2b 34 20 20 20 20  20 20 20 20 20 20 20 20  |_1+4            |
00001d60  20 20 20 20 5c 20 53 74  61 6e 64 61 72 64 20 61  |    \ Standard a|
00001d70  64 64 20 62 75 74 20 77  69 74 68 20 62 79 74 65  |dd but with byte|
00001d80  73 20 72 65 76 65 72 73  65 64 0d 0d 16 10 41 44  |s reversed....AD|
00001d90  43 20 66 70 77 73 5f 32  2b 34 0d 0d 20 10 53 54  |C fpws_2+4.. .ST|
00001da0  41 20 66 70 77 73 5f 31  2b 34 0d 0d 2a 10 4c 44  |A fpws_1+4..*.LD|
00001db0  41 20 66 70 77 73 5f 31  2b 33 0d 0d 34 10 41 44  |A fpws_1+3..4.AD|
00001dc0  43 20 66 70 77 73 5f 32  2b 33 0d 0d 3e 10 53 54  |C fpws_2+3..>.ST|
00001dd0  41 20 66 70 77 73 5f 31  2b 33 0d 0d 48 10 4c 44  |A fpws_1+3..H.LD|
00001de0  41 20 66 70 77 73 5f 31  2b 32 0d 0d 52 10 41 44  |A fpws_1+2..R.AD|
00001df0  43 20 66 70 77 73 5f 32  2b 32 0d 0d 5c 10 53 54  |C fpws_2+2..\.ST|
00001e00  41 20 66 70 77 73 5f 31  2b 32 0d 0d 66 10 4c 44  |A fpws_1+2..f.LD|
00001e10  41 20 66 70 77 73 5f 31  2b 31 0d 0d 70 10 41 44  |A fpws_1+1..p.AD|
00001e20  43 20 66 70 77 73 5f 32  2b 31 0d 0d 7a 10 53 54  |C fpws_2+1..z.ST|
00001e30  41 20 66 70 77 73 5f 31  2b 31 0d 0d 84 14 4c 44  |A fpws_1+1....LD|
00001e40  41 20 66 70 77 73 5f 31  5f 6f 66 6c 6f 77 0d 0d  |A fpws_1_oflow..|
00001e50  8e 14 41 44 43 20 66 70  77 73 5f 32 5f 6f 66 6c  |..ADC fpws_2_ofl|
00001e60  6f 77 0d 0d 98 14 53 54  41 20 66 70 77 73 5f 31  |ow....STA fpws_1|
00001e70  5f 6f 66 6c 6f 77 0d 0d  a2 05 20 0d 0d ac 07 52  |_oflow.... ....R|
00001e80  54 53 0d 0d b6 05 20 0d  0d c0 17 2e 73 75 62 74  |TS.... .....subt|
00001e90  72 61 63 74 5f 6d 61 6e  74 69 73 73 61 65 0d 0d  |ract_mantissae..|
00001ea0  ca 05 20 0d 0d d4 3a 5c  20 20 54 68 69 73 20 72  |.. ...:\  This r|
00001eb0  6f 75 74 69 6e 65 20 73  75 62 74 72 61 63 74 73  |outine subtracts|
00001ec0  20 74 68 65 20 6d 61 6e  74 69 73 73 61 65 20 77  | the mantissae w|
00001ed0  69 74 68 20 6f 76 65 72  66 6c 6f 77 73 0d 0d de  |ith overflows...|
00001ee0  05 20 0d 0d e8 07 53 45  43 0d 0d f2 4b 4c 44 41  |. ....SEC...KLDA|
00001ef0  20 66 70 77 73 5f 31 2b  34 20 20 20 20 20 20 20  | fpws_1+4       |
00001f00  20 20 20 20 20 20 20 20  20 5c 20 53 74 61 6e 64  |         \ Stand|
00001f10  61 72 64 20 73 75 62 74  72 61 63 74 20 62 75 74  |ard subtract but|
00001f20  20 77 69 74 68 20 62 79  74 65 73 20 72 65 76 65  | with bytes reve|
00001f30  72 73 65 64 0d 0d fc 10  53 42 43 20 66 70 77 73  |rsed....SBC fpws|
00001f40  5f 32 2b 34 0d 0e 06 10  53 54 41 20 66 70 77 73  |_2+4....STA fpws|
00001f50  5f 31 2b 34 0d 0e 10 10  4c 44 41 20 66 70 77 73  |_1+4....LDA fpws|
00001f60  5f 31 2b 33 0d 0e 1a 10  53 42 43 20 66 70 77 73  |_1+3....SBC fpws|
00001f70  5f 32 2b 33 0d 0e 24 10  53 54 41 20 66 70 77 73  |_2+3..$.STA fpws|
00001f80  5f 31 2b 33 0d 0e 2e 10  4c 44 41 20 66 70 77 73  |_1+3....LDA fpws|
00001f90  5f 31 2b 32 0d 0e 38 10  53 42 43 20 66 70 77 73  |_1+2..8.SBC fpws|
00001fa0  5f 32 2b 32 0d 0e 42 10  53 54 41 20 66 70 77 73  |_2+2..B.STA fpws|
00001fb0  5f 31 2b 32 0d 0e 4c 10  4c 44 41 20 66 70 77 73  |_1+2..L.LDA fpws|
00001fc0  5f 31 2b 31 0d 0e 56 10  53 42 43 20 66 70 77 73  |_1+1..V.SBC fpws|
00001fd0  5f 32 2b 31 0d 0e 60 10  53 54 41 20 66 70 77 73  |_2+1..`.STA fpws|
00001fe0  5f 31 2b 31 0d 0e 6a 14  4c 44 41 20 66 70 77 73  |_1+1..j.LDA fpws|
00001ff0  5f 31 5f 6f 66 6c 6f 77  0d 0e 74 14 53 42 43 20  |_1_oflow..t.SBC |
00002000  66 70 77 73 5f 32 5f 6f  66 6c 6f 77 0d 0e 7e 14  |fpws_2_oflow..~.|
00002010  53 54 41 20 66 70 77 73  5f 31 5f 6f 66 6c 6f 77  |STA fpws_1_oflow|
00002020  0d 0e 88 05 20 0d 0e 92  07 52 54 53 0d 0e 9c 05  |.... ....RTS....|
00002030  20 0d 0e a6 15 2e 6e 65  67 5f 63 6f 6e 76 65 72  | .....neg_conver|
00002040  74 5f 62 61 63 6b 0d 0e  b0 05 20 0d 0e ba 45 5c  |t_back.... ...E\|
00002050  20 20 54 68 69 73 20 72  6f 75 74 69 6e 65 20 63  |  This routine c|
00002060  6f 6e 76 65 72 74 73 20  61 6e 79 20 32 27 73 20  |onverts any 2's |
00002070  63 6f 6d 70 6c 65 6d 65  6e 74 20 72 65 73 75 6c  |complement resul|
00002080  74 20 69 6e 74 6f 20 66  70 20 66 6f 72 6d 61 74  |t into fp format|
00002090  0d 0e c4 05 20 0d 0e ce  14 4c 44 41 20 66 70 77  |.... ....LDA fpw|
000020a0  73 5f 31 5f 6f 66 6c 6f  77 0d 0e d8 0f 42 50 4c  |s_1_oflow....BPL|
000020b0  20 72 65 73 5f 70 6f 73  0d 0e e2 05 20 0d 0e ec  | res_pos.... ...|
000020c0  1a 4a 53 52 20 63 6f 6e  76 65 72 74 5f 73 69 67  |.JSR convert_sig|
000020d0  6e 5f 66 70 77 73 31 0d  0e f6 0c 4c 44 41 20 23  |n_fpws1....LDA #|
000020e0  26 38 30 0d 0f 00 13 53  54 41 20 66 70 77 73 5f  |&80....STA fpws_|
000020f0  31 5f 73 69 67 6e 0d 0f  0a 07 52 54 53 0d 0f 14  |1_sign....RTS...|
00002100  05 20 0d 0f 1e 0c 2e 72  65 73 5f 70 6f 73 0d 0f  |. .....res_pos..|
00002110  28 05 20 0d 0f 32 0a 4c  44 41 20 23 30 0d 0f 3c  |(. ..2.LDA #0..<|
00002120  13 53 54 41 20 66 70 77  73 5f 31 5f 73 69 67 6e  |.STA fpws_1_sign|
00002130  0d 0f 46 05 20 0d 0f 50  07 52 54 53 0d 0f 5a 05  |..F. ..P.RTS..Z.|
00002140  20 0d 0f 64 10 2e 72 65  6e 6f 72 6d 61 6c 69 73  | ..d..renormalis|
00002150  65 0d 0f 6e 05 20 0d 0f  78 43 5c 20 54 68 69 73  |e..n. ..xC\ This|
00002160  20 72 6f 75 74 69 6e 65  20 6d 6f 64 69 66 69 65  | routine modifie|
00002170  73 20 74 68 65 20 6d 61  6e 74 69 73 73 61 20 61  |s the mantissa a|
00002180  6e 64 20 65 78 70 6f 6e  65 6e 74 20 6f 66 20 74  |nd exponent of t|
00002190  68 65 20 72 65 73 75 6c  74 0d 0f 82 2c 5c 20 54  |he result...,\ T|
000021a0  6f 20 70 72 6f 64 75 63  65 20 61 20 6e 6f 72 6d  |o produce a norm|
000021b0  61 6c 69 73 65 64 20 66  6f 72 6d 61 74 20 6e 75  |alised format nu|
000021c0  6d 62 65 72 2e 0d 0f 8c  05 20 0d 0f 96 14 4c 44  |mber..... ....LD|
000021d0  41 20 66 70 77 73 5f 31  5f 6f 66 6c 6f 77 0d 0f  |A fpws_1_oflow..|
000021e0  a0 4b 42 4e 45 20 73 68  69 66 74 5f 72 69 67 68  |.KBNE shift_righ|
000021f0  74 20 20 20 20 20 20 20  20 20 20 20 20 20 5c 20  |t             \ |
00002200  49 66 20 6f 76 65 72 66  6c 6f 77 20 69 73 20 3e  |If overflow is >|
00002210  30 20 77 65 20 73 68 69  66 74 20 6d 61 6e 74 69  |0 we shift manti|
00002220  73 73 61 20 72 69 67 68  74 0d 0f aa 05 20 0d 0f  |ssa right.... ..|
00002230  b4 46 4c 44 41 20 66 70  77 73 5f 31 2b 31 20 20  |.FLDA fpws_1+1  |
00002240  20 20 20 20 20 20 20 20  20 20 20 20 20 20 5c 20  |              \ |
00002250  54 6f 70 20 62 79 74 65  20 6f 66 20 6d 61 6e 74  |Top byte of mant|
00002260  69 73 73 61 20 69 73 20  73 68 69 66 74 65 64 20  |issa is shifted |
00002270  6c 65 66 74 0d 0f be 41  42 4d 49 20 6e 6f 72 6d  |left...ABMI norm|
00002280  61 6c 69 73 65 64 20 20  20 20 20 20 20 20 20 20  |alised          |
00002290  20 20 20 20 5c 20 75 6e  74 69 6c 20 74 6f 70 20  |    \ until top |
000022a0  62 69 74 20 69 73 20 73  65 74 20 28 69 2e 65 2e  |bit is set (i.e.|
000022b0  20 2d 76 65 29 0d 0f c8  05 20 0d 0f d2 14 2e 73  | -ve).... .....s|
000022c0  68 69 66 74 5f 6c 65 66  74 5f 6c 6f 6f 70 0d 0f  |hift_left_loop..|
000022d0  dc 05 20 0d 0f e6 37 44  45 43 20 66 70 77 73 5f  |.. ...7DEC fpws_|
000022e0  31 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |1               |
000022f0  20 20 20 5c 20 44 65 63  72 65 61 73 65 20 74 68  |   \ Decrease th|
00002300  65 20 65 78 70 6f 6e 65  6e 74 0d 0f f0 43 41 53  |e exponent...CAS|
00002310  4c 20 66 70 77 73 5f 31  2b 34 20 20 20 20 20 20  |L fpws_1+4      |
00002320  20 20 20 20 20 20 20 20  20 20 5c 20 53 68 69 66  |          \ Shif|
00002330  74 20 6d 61 6e 74 69 73  73 61 20 6c 65 66 74 20  |t mantissa left |
00002340  74 6f 20 63 6f 6d 70 65  6e 73 61 74 65 0d 0f fa  |to compensate...|
00002350  10 52 4f 4c 20 66 70 77  73 5f 31 2b 33 0d 10 04  |.ROL fpws_1+3...|
00002360  10 52 4f 4c 20 66 70 77  73 5f 31 2b 32 0d 10 0e  |.ROL fpws_1+2...|
00002370  10 52 4f 4c 20 66 70 77  73 5f 31 2b 31 0d 10 18  |.ROL fpws_1+1...|
00002380  05 20 0d 10 22 17 42 50  4c 20 73 68 69 66 74 5f  |. ..".BPL shift_|
00002390  6c 65 66 74 5f 6c 6f 6f  70 0d 10 2c 05 20 0d 10  |left_loop..,. ..|
000023a0  36 35 52 54 53 20 20 20  20 20 20 20 20 20 20 20  |65RTS           |
000023b0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 5c 20  |              \ |
000023c0  4e 75 6d 62 65 72 20 72  65 6e 6f 72 6d 61 6c 69  |Number renormali|
000023d0  73 65 64 0d 10 40 05 20  0d 10 4a 10 2e 73 68 69  |sed..@. ..J..shi|
000023e0  66 74 5f 72 69 67 68 74  0d 10 54 05 20 0d 10 5e  |ft_right..T. ..^|
000023f0  37 49 4e 43 20 66 70 77  73 5f 31 20 20 20 20 20  |7INC fpws_1     |
00002400  20 20 20 20 20 20 20 20  20 20 20 20 20 5c 20 49  |             \ I|
00002410  6e 63 72 65 61 73 65 20  74 68 65 20 65 78 70 6f  |ncrease the expo|
00002420  6e 65 6e 74 0d 10 68 41  42 45 51 20 74 6f 6f 5f  |nent..hABEQ too_|
00002430  62 69 67 20 20 20 20 20  20 20 20 20 20 20 20 20  |big             |
00002440  20 20 20 20 5c 20 49 66  20 65 78 70 20 69 73 20  |    \ If exp is |
00002450  7a 65 72 6f 20 77 65 20  68 61 76 65 20 6f 76 65  |zero we have ove|
00002460  72 66 6c 6f 77 0d 10 72  14 4c 53 52 20 66 70 77  |rflow..r.LSR fpw|
00002470  73 5f 31 5f 6f 66 6c 6f  77 0d 10 7c 44 52 4f 52  |s_1_oflow..|DROR|
00002480  20 66 70 77 73 5f 31 2b  31 20 20 20 20 20 20 20  | fpws_1+1       |
00002490  20 20 20 20 20 20 20 20  20 5c 20 53 68 69 66 74  |         \ Shift|
000024a0  20 6d 61 6e 74 69 73 73  61 20 72 69 67 68 74 20  | mantissa right |
000024b0  74 6f 20 63 6f 6d 70 65  6e 73 61 74 65 0d 10 86  |to compensate...|
000024c0  10 52 4f 52 20 66 70 77  73 5f 31 2b 32 0d 10 90  |.ROR fpws_1+2...|
000024d0  10 52 4f 52 20 66 70 77  73 5f 31 2b 33 0d 10 9a  |.ROR fpws_1+3...|
000024e0  10 52 4f 52 20 66 70 77  73 5f 31 2b 34 0d 10 a4  |.ROR fpws_1+4...|
000024f0  05 20 0d 10 ae 14 4c 44  41 20 66 70 77 73 5f 31  |. ....LDA fpws_1|
00002500  5f 6f 66 6c 6f 77 0d 10  b8 13 42 4e 45 20 73 68  |_oflow....BNE sh|
00002510  69 66 74 5f 72 69 67 68  74 0d 10 c2 05 20 0d 10  |ift_right.... ..|
00002520  cc 0f 2e 6e 6f 72 6d 61  6c 69 73 65 64 0d 10 d6  |...normalised...|
00002530  05 20 0d 10 e0 07 52 54  53 0d 10 ea 05 20 0d 10  |. ....RTS.... ..|
00002540  f4 15 2e 72 65 70 6c 61  63 65 5f 73 69 67 6e 5f  |...replace_sign_|
00002550  62 69 74 0d 10 fe 05 20  0d 11 08 07 43 4c 43 0d  |bit.... ....CLC.|
00002560  11 12 10 4c 44 41 20 66  70 77 73 5f 31 2b 31 0d  |...LDA fpws_1+1.|
00002570  11 1c 0a 80 20 23 26 37  46 0d 11 26 13 41 44 43  |.... #&7F..&.ADC|
00002580  20 66 70 77 73 5f 31 5f  73 69 67 6e 0d 11 30 42  | fpws_1_sign..0B|
00002590  53 54 41 20 66 70 77 73  5f 31 2b 31 20 20 20 20  |STA fpws_1+1    |
000025a0  20 20 20 20 20 20 20 20  20 20 20 20 5c 20 49 66  |            \ If|
000025b0  20 2b 76 65 20 63 6c 65  61 72 20 74 6f 70 20 62  | +ve clear top b|
000025c0  69 74 20 6f 66 20 6d 61  6e 74 69 73 73 61 0d 11  |it of mantissa..|
000025d0  3a 05 20 0d 11 44 07 52  54 53 0d 11 4e 05 20 0d  |:. ..D.RTS..N. .|
000025e0  11 58 0c 2e 74 6f 6f 5f  62 69 67 0d 11 62 05 20  |.X..too_big..b. |
000025f0  0d 11 6c 2d 5c 20 20 54  68 69 73 20 69 73 20 61  |..l-\  This is a|
00002600  6e 20 65 72 72 6f 72 20  63 6f 6e 64 69 74 69 6f  |n error conditio|
00002610  6e 20 2d 20 6e 75 6d 62  65 72 20 32 30 0d 11 76  |n - number 20..v|
00002620  05 20 0d 11 80 07 42 52  4b 0d 11 8a 12 4f 50 54  |. ....BRK....OPT|
00002630  20 20 a4 45 51 55 42 28  32 30 29 0d 11 94 35 4f  |  .EQUB(20)...5O|
00002640  50 54 20 20 a4 45 51 55  53 28 22 52 65 73 75 6c  |PT  .EQUS("Resul|
00002650  74 20 6f 66 20 6d 75 6c  74 69 70 6c 69 63 61 74  |t of multiplicat|
00002660  69 6f 6e 20 69 73 20 74  6f 6f 20 62 69 67 22 29  |ion is too big")|
00002670  0d 11 9e 11 4f 50 54 20  20 a4 45 51 55 42 28 30  |....OPT  .EQUB(0|
00002680  29 0d 11 a8 05 20 0d 11  b2 05 5d 0d 11 bc 05 ed  |).... ....].....|
00002690  0d 11 c6 05 20 0d 11 d0  0b d6 20 63 6f 64 65 25  |.... ..... code%|
000026a0  0d 11 da 05 20 0d 11 e4  10 f1 22 52 65 73 75 6c  |.... ....."Resul|
000026b0  74 73 3a 22 27 0d 11 ee  2c f1 20 22 41 64 64 69  |ts:"'...,. "Addi|
000026c0  74 69 6f 6e 20 28 63 6f  64 65 29 20 69 73 20 20  |tion (code) is  |
000026d0  22 3b a4 66 70 28 72 65  73 75 6c 74 5f 61 64 64  |";.fp(result_add|
000026e0  29 0d 11 f8 24 f1 20 22  41 64 64 69 74 69 6f 6e  |)...$. "Addition|
000026f0  20 28 42 41 53 49 43 29  20 69 73 20 22 3b 66 70  | (BASIC) is ";fp|
00002700  31 2b 66 70 32 0d 12 02  05 20 0d 12 0c 2f f1 20  |1+fp2.... .../. |
00002710  22 53 75 62 74 72 61 63  74 69 6f 6e 20 28 63 6f  |"Subtraction (co|
00002720  64 65 29 20 69 73 20 20  22 3b a4 66 70 28 72 65  |de) is  ";.fp(re|
00002730  73 75 6c 74 5f 73 75 62  29 0d 12 16 27 f1 20 22  |sult_sub)...'. "|
00002740  53 75 62 74 72 61 63 74  69 6f 6e 20 28 42 41 53  |Subtraction (BAS|
00002750  49 43 29 20 69 73 20 22  3b 66 70 31 2d 66 70 32  |IC) is ";fp1-fp2|
00002760  0d 12 20 05 20 0d 12 2a  05 e0 0d 12 34 05 20 0d  |.. . ..*....4. .|
00002770  12 3e 1b 2a 2a 2a 2a 20  45 51 55 61 74 65 20 61  |.>.**** EQUate a|
00002780  20 42 79 74 65 20 2a 2a  2a 2a 0d 12 48 0f dd 20  | Byte ****..H.. |
00002790  a4 45 51 55 42 28 4e 25  29 0d 12 52 10 3f 50 25  |.EQUB(N%)..R.?P%|
000027a0  3d 4e 25 20 83 20 32 35  36 0d 12 5c 1e e7 20 28  |=N% . 256..\.. (|
000027b0  70 61 73 73 25 20 80 20  33 29 20 3d 20 33 20 8c  |pass% . 3) = 3 .|
000027c0  20 f1 20 7e 3f 50 25 0d  12 66 0b 50 25 3d 50 25  | . ~?P%..f.P%=P%|
000027d0  2b 31 0d 12 70 0a 3d 70  61 73 73 25 0d 12 7a 05  |+1..p.=pass%..z.|
000027e0  20 0d 12 84 1d 2a 2a 2a  2a 20 45 51 55 61 74 65  | ....**** EQUate|
000027f0  20 61 20 53 74 72 69 6e  67 20 2a 2a 2a 2a 0d 12  | a String ****..|
00002800  8e 0f dd 20 a4 45 51 55  53 28 4e 24 29 0d 12 98  |... .EQUS(N$)...|
00002810  08 ea 20 4e 25 0d 12 a2  08 fe 20 34 30 0d 12 ac  |.. N%..... 40...|
00002820  12 e3 20 4e 25 3d 31 20  b8 20 a9 28 4e 24 29 0d  |.. N%=1 . .(N$).|
00002830  12 b6 13 4b 25 3d 97 28  c1 4e 24 2c 4e 25 2c 31  |...K%=.(.N$,N%,1|
00002840  29 29 0d 12 c0 10 50 25  3f 28 4e 25 2d 31 29 3d  |))....P%?(N%-1)=|
00002850  4b 25 0d 12 ca 25 e7 20  28 70 61 73 73 25 20 80  |K%...%. (pass% .|
00002860  20 33 29 20 3d 20 33 20  8c 20 f1 20 7e 50 25 3f  | 3) = 3 . . ~P%?|
00002870  28 4e 25 2d 31 29 3b 0d  12 d4 05 ed 0d 12 de 19  |(N%-1);.........|
00002880  e7 20 28 70 61 73 73 25  20 80 20 33 29 20 3d 20  |. (pass% . 3) = |
00002890  33 20 8c 20 f1 0d 12 e8  0f 50 25 3d 50 25 2b a9  |3 . .....P%=P%+.|
000028a0  28 4e 24 29 0d 12 f2 07  fe 20 30 0d 12 fc 0a 3d  |(N$)..... 0....=|
000028b0  70 61 73 73 25 0d 13 06  05 20 0d 13 10 28 2a 2a  |pass%.... ...(**|
000028c0  2a 2a 20 45 51 55 61 74  65 20 61 20 73 65 63 74  |** EQUate a sect|
000028d0  69 6f 6e 20 6f 66 20 4d  65 6d 6f 72 79 20 2a 2a  |ion of Memory **|
000028e0  2a 2a 0d 13 1a 1a dd 20  a4 45 51 55 4d 28 6e 75  |**..... .EQUM(nu|
000028f0  6d 62 65 72 25 2c 62 79  74 65 25 29 0d 13 24 08  |mber%,byte%)..$.|
00002900  ea 20 4e 25 0d 13 2e 08  fe 20 34 30 0d 13 38 16  |. N%..... 40..8.|
00002910  e3 20 4e 25 3d 30 20 b8  20 6e 75 6d 62 65 72 25  |. N%=0 . number%|
00002920  2d 31 0d 13 42 0f 50 25  3f 4e 25 3d 62 79 74 65  |-1..B.P%?N%=byte|
00002930  25 0d 13 4c 21 e7 20 28  70 61 73 73 25 20 80 20  |%..L!. (pass% . |
00002940  33 29 20 3d 20 33 20 8c  20 f1 20 7e 50 25 3f 4e  |3) = 3 . . ~P%?N|
00002950  25 3b 0d 13 56 05 ed 0d  13 60 19 e7 20 28 70 61  |%;..V....`.. (pa|
00002960  73 73 25 20 80 20 33 29  20 3d 20 33 20 8c 20 f1  |ss% . 3) = 3 . .|
00002970  0d 13 6a 11 50 25 3d 50  25 2b 6e 75 6d 62 65 72  |..j.P%=P%+number|
00002980  25 0d 13 74 07 fe 20 30  0d 13 7e 0a 3d 70 61 73  |%..t.. 0..~.=pas|
00002990  73 25 0d 13 88 05 20 0d  13 92 2c 2a 2a 2a 2a 20  |s%.... ...,**** |
000029a0  45 51 55 61 74 65 20 61  20 66 6c 6f 61 74 69 6e  |EQUate a floatin|
000029b0  67 20 70 6f 69 6e 74 20  6e 75 6d 62 65 72 20 2a  |g point number *|
000029c0  2a 2a 2a 0d 13 9c 19 57  65 20 75 73 65 20 74 68  |***....We use th|
000029d0  65 20 76 61 72 69 61 62  6c 65 20 60 0d 13 a6 2b  |e variable `...+|
000029e0  74 6f 20 67 61 69 6e 20  61 63 63 65 73 73 20 74  |to gain access t|
000029f0  6f 20 42 41 53 49 43 27  73 20 66 70 20 63 6f 6e  |o BASIC's fp con|
00002a00  76 65 72 73 69 6f 6e 0d  13 b0 2a 72 6f 75 74 69  |version...*routi|
00002a10  6e 65 73 2e 20 4e 6f 20  6f 74 68 65 72 20 76 61  |nes. No other va|
00002a20  72 69 61 62 6c 65 73 20  62 65 67 69 6e 6e 69 6e  |riables beginnin|
00002a30  67 0d 13 ba 1a 77 69 74  68 20 60 20 63 61 6e 20  |g....with ` can |
00002a40  62 65 20 64 65 66 69 6e  65 64 2e 0d 13 c4 0e dd  |be defined......|
00002a50  20 a4 45 51 55 46 28 60  29 0d 13 ce 0c ea 20 4d  | .EQUF(`)..... M|
00002a60  25 2c 20 4e 25 0d 13 d8  08 fe 20 34 30 0d 13 e2  |%, N%..... 40...|
00002a70  1a 4d 25 20 3d 20 33 2b  28 21 26 34 43 30 20 80  |.M% = 3+(!&4C0 .|
00002a80  20 26 46 46 46 46 29 0d  13 ec 0e e3 20 4e 25 3d  | &FFFF)..... N%=|
00002a90  30 20 b8 20 34 0d 13 f6  0f 50 25 3f 4e 25 3d 4d  |0 . 4....P%?N%=M|
00002aa0  25 3f 4e 25 0d 14 00 21  e7 20 28 70 61 73 73 25  |%?N%...!. (pass%|
00002ab0  20 80 20 33 29 20 3d 20  33 20 8c 20 f1 20 7e 50  | . 3) = 3 . . ~P|
00002ac0  25 3f 4e 25 3b 0d 14 0a  05 ed 0d 14 14 19 e7 20  |%?N%;.......... |
00002ad0  28 70 61 73 73 25 20 80  20 33 29 20 3d 20 33 20  |(pass% . 3) = 3 |
00002ae0  8c 20 f1 0d 14 1e 0b 50  25 3d 50 25 2b 35 0d 14  |. .....P%=P%+5..|
00002af0  28 07 fe 20 30 0d 14 32  0a 3d 70 61 73 73 25 0d  |(.. 0..2.=pass%.|
00002b00  14 3c 05 20 0d 14 46 18  2a 2a 2a 2a 20 52 65 76  |.<. ..F.**** Rev|
00002b10  65 72 73 65 20 46 50 20  2a 2a 2a 2a 0d 14 50 1e  |erse FP ****..P.|
00002b20  50 75 74 73 20 66 70 20  6e 75 6d 62 65 72 20 66  |Puts fp number f|
00002b30  72 6f 6d 20 6d 65 6d 6f  72 79 0d 14 5a 1b 69 6e  |rom memory..Z.in|
00002b40  74 6f 20 76 61 72 69 61  62 6c 65 20 60 20 28 50  |to variable ` (P|
00002b50  4f 55 4e 44 29 0d 14 64  0f dd 20 a4 66 70 28 6d  |OUND)..d.. .fp(m|
00002b60  65 6d 25 29 0d 14 6e 0c  ea 20 4d 25 2c 20 4e 25  |em%)..n.. M%, N%|
00002b70  0d 14 78 07 60 3d 30 0d  14 82 1a 4d 25 20 3d 20  |..x.`=0....M% = |
00002b80  33 2b 28 21 26 34 43 30  20 80 20 26 46 46 46 46  |3+(!&4C0 . &FFFF|
00002b90  29 0d 14 8c 0e e3 20 4e  25 3d 30 20 b8 20 34 0d  |)..... N%=0 . 4.|
00002ba0  14 96 11 4d 25 3f 4e 25  3d 6d 65 6d 25 3f 4e 25  |...M%?N%=mem%?N%|
00002bb0  0d 14 a0 05 ed 0d 14 aa  06 3d 60 0d ff           |.........=`..|
00002bbd
OS\BITS/B\OSB22.m0
OS\BITS/B\OSB22.m1
OS\BITS/B\OSB22.m2
OS\BITS/B\OSB22.m4
OS\BITS/B\OSB22.m5