Home » Archimedes archive » Acorn User » AU 1997-01 B.adf » Regulars » StarInfo/Allen/!Ignotum/Formulae/Formulae/Diff

StarInfo/Allen/!Ignotum/Formulae/Formulae/Diff

This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.

Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.

Tape/disk: Home » Archimedes archive » Acorn User » AU 1997-01 B.adf » Regulars
Filename: StarInfo/Allen/!Ignotum/Formulae/Formulae/Diff
Read OK:
File size: 071D bytes
Load address: 0000
Exec address: 0000
File contents
# Maths > Differentiation

# New entries should take the form of:
#     Formula
#     Note 1
#     Note 2
#     Note 3
#     Note 4
#     Note 5
#     Formula
#     Note 1
#     And so on...
# To fit snugly into the window, each line should be no longer
# than 42 characters.
# There is a limit of 25 formulas per topic.

# Any notes should be made here, at the beginning and should
# be preceeded by a hash (#).

sinx>cosx
'>' means 'goes to' rather than 'greater
than'.



cosx>-sinx





tanx>sec�x





secx>secxtanx





cosecx>-cosecxcotx





cotx>-cosec�x





e^x>e^x
Where e is the constant 2.718. This does
not change when differentiated. However,
e^ax>ae^ax.


arcsinx>1/(1-x�)^�
Arcsine=inverse sine, also written as
sin^(-1)x. This is not the same as 1/sinx
which would be written as (sinx)^-1.


arccosx>-1/(1-x�)^�
Arccosine=inverse cosine, also written as
cos^(-1)x. This is not the same as 1/cosx
which would be written as (cosx)^-1.


arctanx>1/(1+x�)
Arctan=inverse tan, also written as
tan^(-1)x. This is not the same as 1/tanx
which would be written as (tanx)^-1.


logx>1/x





(ax^b+c)^d>d(abx^(b-1))(ax^b+c)^(d-1)
To differentiate a bracket such as this
with respect to x, you would bring down
the power (d), differentiate what is in 
the bracket and multiply these by the 
bracket with the power reduced by 1.
dy/dx=(dy/du)(du/dx)
Where dy/dx is the differential of the
equation y=f(x). This is called the chain
rule and it is not as obvious as it first
seems as they are NOT fractions, but they
can sometimes be treated as if they are.
uv>v(du/dx)+u(dv/dx)
This is called the product rule, where u
and v are both functions of x.



u/v>(v(du/dx)-u(dv/dx))/v�
This is called the quotient rule where u
and v are both functions of x.






























































00000000  23 20 4d 61 74 68 73 20  3e 20 44 69 66 66 65 72  |# Maths > Differ|
00000010  65 6e 74 69 61 74 69 6f  6e 0a 0a 23 20 4e 65 77  |entiation..# New|
00000020  20 65 6e 74 72 69 65 73  20 73 68 6f 75 6c 64 20  | entries should |
00000030  74 61 6b 65 20 74 68 65  20 66 6f 72 6d 20 6f 66  |take the form of|
00000040  3a 0a 23 20 20 20 20 20  46 6f 72 6d 75 6c 61 0a  |:.#     Formula.|
00000050  23 20 20 20 20 20 4e 6f  74 65 20 31 0a 23 20 20  |#     Note 1.#  |
00000060  20 20 20 4e 6f 74 65 20  32 0a 23 20 20 20 20 20  |   Note 2.#     |
00000070  4e 6f 74 65 20 33 0a 23  20 20 20 20 20 4e 6f 74  |Note 3.#     Not|
00000080  65 20 34 0a 23 20 20 20  20 20 4e 6f 74 65 20 35  |e 4.#     Note 5|
00000090  0a 23 20 20 20 20 20 46  6f 72 6d 75 6c 61 0a 23  |.#     Formula.#|
000000a0  20 20 20 20 20 4e 6f 74  65 20 31 0a 23 20 20 20  |     Note 1.#   |
000000b0  20 20 41 6e 64 20 73 6f  20 6f 6e 2e 2e 2e 0a 23  |  And so on....#|
000000c0  20 54 6f 20 66 69 74 20  73 6e 75 67 6c 79 20 69  | To fit snugly i|
000000d0  6e 74 6f 20 74 68 65 20  77 69 6e 64 6f 77 2c 20  |nto the window, |
000000e0  65 61 63 68 20 6c 69 6e  65 20 73 68 6f 75 6c 64  |each line should|
000000f0  20 62 65 20 6e 6f 20 6c  6f 6e 67 65 72 0a 23 20  | be no longer.# |
00000100  74 68 61 6e 20 34 32 20  63 68 61 72 61 63 74 65  |than 42 characte|
00000110  72 73 2e 0a 23 20 54 68  65 72 65 20 69 73 20 61  |rs..# There is a|
00000120  20 6c 69 6d 69 74 20 6f  66 20 32 35 20 66 6f 72  | limit of 25 for|
00000130  6d 75 6c 61 73 20 70 65  72 20 74 6f 70 69 63 2e  |mulas per topic.|
00000140  0a 0a 23 20 41 6e 79 20  6e 6f 74 65 73 20 73 68  |..# Any notes sh|
00000150  6f 75 6c 64 20 62 65 20  6d 61 64 65 20 68 65 72  |ould be made her|
00000160  65 2c 20 61 74 20 74 68  65 20 62 65 67 69 6e 6e  |e, at the beginn|
00000170  69 6e 67 20 61 6e 64 20  73 68 6f 75 6c 64 0a 23  |ing and should.#|
00000180  20 62 65 20 70 72 65 63  65 65 64 65 64 20 62 79  | be preceeded by|
00000190  20 61 20 68 61 73 68 20  28 23 29 2e 0a 0a 73 69  | a hash (#)...si|
000001a0  6e 78 3e 63 6f 73 78 0a  27 3e 27 20 6d 65 61 6e  |nx>cosx.'>' mean|
000001b0  73 20 27 67 6f 65 73 20  74 6f 27 20 72 61 74 68  |s 'goes to' rath|
000001c0  65 72 20 74 68 61 6e 20  27 67 72 65 61 74 65 72  |er than 'greater|
000001d0  0a 74 68 61 6e 27 2e 0a  0a 0a 0a 63 6f 73 78 3e  |.than'.....cosx>|
000001e0  2d 73 69 6e 78 0a 0a 0a  0a 0a 0a 74 61 6e 78 3e  |-sinx......tanx>|
000001f0  73 65 63 b2 78 0a 0a 0a  0a 0a 0a 73 65 63 78 3e  |sec.x......secx>|
00000200  73 65 63 78 74 61 6e 78  0a 0a 0a 0a 0a 0a 63 6f  |secxtanx......co|
00000210  73 65 63 78 3e 2d 63 6f  73 65 63 78 63 6f 74 78  |secx>-cosecxcotx|
00000220  0a 0a 0a 0a 0a 0a 63 6f  74 78 3e 2d 63 6f 73 65  |......cotx>-cose|
00000230  63 b2 78 0a 0a 0a 0a 0a  0a 65 5e 78 3e 65 5e 78  |c.x......e^x>e^x|
00000240  0a 57 68 65 72 65 20 65  20 69 73 20 74 68 65 20  |.Where e is the |
00000250  63 6f 6e 73 74 61 6e 74  20 32 2e 37 31 38 2e 20  |constant 2.718. |
00000260  54 68 69 73 20 64 6f 65  73 0a 6e 6f 74 20 63 68  |This does.not ch|
00000270  61 6e 67 65 20 77 68 65  6e 20 64 69 66 66 65 72  |ange when differ|
00000280  65 6e 74 69 61 74 65 64  2e 20 48 6f 77 65 76 65  |entiated. Howeve|
00000290  72 2c 0a 65 5e 61 78 3e  61 65 5e 61 78 2e 0a 0a  |r,.e^ax>ae^ax...|
000002a0  0a 61 72 63 73 69 6e 78  3e 31 2f 28 31 2d 78 b2  |.arcsinx>1/(1-x.|
000002b0  29 5e bd 0a 41 72 63 73  69 6e 65 3d 69 6e 76 65  |)^..Arcsine=inve|
000002c0  72 73 65 20 73 69 6e 65  2c 20 61 6c 73 6f 20 77  |rse sine, also w|
000002d0  72 69 74 74 65 6e 20 61  73 0a 73 69 6e 5e 28 2d  |ritten as.sin^(-|
000002e0  31 29 78 2e 20 54 68 69  73 20 69 73 20 6e 6f 74  |1)x. This is not|
000002f0  20 74 68 65 20 73 61 6d  65 20 61 73 20 31 2f 73  | the same as 1/s|
00000300  69 6e 78 0a 77 68 69 63  68 20 77 6f 75 6c 64 20  |inx.which would |
00000310  62 65 20 77 72 69 74 74  65 6e 20 61 73 20 28 73  |be written as (s|
00000320  69 6e 78 29 5e 2d 31 2e  0a 0a 0a 61 72 63 63 6f  |inx)^-1....arcco|
00000330  73 78 3e 2d 31 2f 28 31  2d 78 b2 29 5e bd 0a 41  |sx>-1/(1-x.)^..A|
00000340  72 63 63 6f 73 69 6e 65  3d 69 6e 76 65 72 73 65  |rccosine=inverse|
00000350  20 63 6f 73 69 6e 65 2c  20 61 6c 73 6f 20 77 72  | cosine, also wr|
00000360  69 74 74 65 6e 20 61 73  0a 63 6f 73 5e 28 2d 31  |itten as.cos^(-1|
00000370  29 78 2e 20 54 68 69 73  20 69 73 20 6e 6f 74 20  |)x. This is not |
00000380  74 68 65 20 73 61 6d 65  20 61 73 20 31 2f 63 6f  |the same as 1/co|
00000390  73 78 0a 77 68 69 63 68  20 77 6f 75 6c 64 20 62  |sx.which would b|
000003a0  65 20 77 72 69 74 74 65  6e 20 61 73 20 28 63 6f  |e written as (co|
000003b0  73 78 29 5e 2d 31 2e 0a  0a 0a 61 72 63 74 61 6e  |sx)^-1....arctan|
000003c0  78 3e 31 2f 28 31 2b 78  b2 29 0a 41 72 63 74 61  |x>1/(1+x.).Arcta|
000003d0  6e 3d 69 6e 76 65 72 73  65 20 74 61 6e 2c 20 61  |n=inverse tan, a|
000003e0  6c 73 6f 20 77 72 69 74  74 65 6e 20 61 73 0a 74  |lso written as.t|
000003f0  61 6e 5e 28 2d 31 29 78  2e 20 54 68 69 73 20 69  |an^(-1)x. This i|
00000400  73 20 6e 6f 74 20 74 68  65 20 73 61 6d 65 20 61  |s not the same a|
00000410  73 20 31 2f 74 61 6e 78  0a 77 68 69 63 68 20 77  |s 1/tanx.which w|
00000420  6f 75 6c 64 20 62 65 20  77 72 69 74 74 65 6e 20  |ould be written |
00000430  61 73 20 28 74 61 6e 78  29 5e 2d 31 2e 0a 0a 0a  |as (tanx)^-1....|
00000440  6c 6f 67 78 3e 31 2f 78  0a 0a 0a 0a 0a 0a 28 61  |logx>1/x......(a|
00000450  78 5e 62 2b 63 29 5e 64  3e 64 28 61 62 78 5e 28  |x^b+c)^d>d(abx^(|
00000460  62 2d 31 29 29 28 61 78  5e 62 2b 63 29 5e 28 64  |b-1))(ax^b+c)^(d|
00000470  2d 31 29 0a 54 6f 20 64  69 66 66 65 72 65 6e 74  |-1).To different|
00000480  69 61 74 65 20 61 20 62  72 61 63 6b 65 74 20 73  |iate a bracket s|
00000490  75 63 68 20 61 73 20 74  68 69 73 0a 77 69 74 68  |uch as this.with|
000004a0  20 72 65 73 70 65 63 74  20 74 6f 20 78 2c 20 79  | respect to x, y|
000004b0  6f 75 20 77 6f 75 6c 64  20 62 72 69 6e 67 20 64  |ou would bring d|
000004c0  6f 77 6e 0a 74 68 65 20  70 6f 77 65 72 20 28 64  |own.the power (d|
000004d0  29 2c 20 64 69 66 66 65  72 65 6e 74 69 61 74 65  |), differentiate|
000004e0  20 77 68 61 74 20 69 73  20 69 6e 20 0a 74 68 65  | what is in .the|
000004f0  20 62 72 61 63 6b 65 74  20 61 6e 64 20 6d 75 6c  | bracket and mul|
00000500  74 69 70 6c 79 20 74 68  65 73 65 20 62 79 20 74  |tiply these by t|
00000510  68 65 20 0a 62 72 61 63  6b 65 74 20 77 69 74 68  |he .bracket with|
00000520  20 74 68 65 20 70 6f 77  65 72 20 72 65 64 75 63  | the power reduc|
00000530  65 64 20 62 79 20 31 2e  0a 64 79 2f 64 78 3d 28  |ed by 1..dy/dx=(|
00000540  64 79 2f 64 75 29 28 64  75 2f 64 78 29 0a 57 68  |dy/du)(du/dx).Wh|
00000550  65 72 65 20 64 79 2f 64  78 20 69 73 20 74 68 65  |ere dy/dx is the|
00000560  20 64 69 66 66 65 72 65  6e 74 69 61 6c 20 6f 66  | differential of|
00000570  20 74 68 65 0a 65 71 75  61 74 69 6f 6e 20 79 3d  | the.equation y=|
00000580  66 28 78 29 2e 20 54 68  69 73 20 69 73 20 63 61  |f(x). This is ca|
00000590  6c 6c 65 64 20 74 68 65  20 63 68 61 69 6e 0a 72  |lled the chain.r|
000005a0  75 6c 65 20 61 6e 64 20  69 74 20 69 73 20 6e 6f  |ule and it is no|
000005b0  74 20 61 73 20 6f 62 76  69 6f 75 73 20 61 73 20  |t as obvious as |
000005c0  69 74 20 66 69 72 73 74  0a 73 65 65 6d 73 20 61  |it first.seems a|
000005d0  73 20 74 68 65 79 20 61  72 65 20 4e 4f 54 20 66  |s they are NOT f|
000005e0  72 61 63 74 69 6f 6e 73  2c 20 62 75 74 20 74 68  |ractions, but th|
000005f0  65 79 0a 63 61 6e 20 73  6f 6d 65 74 69 6d 65 73  |ey.can sometimes|
00000600  20 62 65 20 74 72 65 61  74 65 64 20 61 73 20 69  | be treated as i|
00000610  66 20 74 68 65 79 20 61  72 65 2e 0a 75 76 3e 76  |f they are..uv>v|
00000620  28 64 75 2f 64 78 29 2b  75 28 64 76 2f 64 78 29  |(du/dx)+u(dv/dx)|
00000630  0a 54 68 69 73 20 69 73  20 63 61 6c 6c 65 64 20  |.This is called |
00000640  74 68 65 20 70 72 6f 64  75 63 74 20 72 75 6c 65  |the product rule|
00000650  2c 20 77 68 65 72 65 20  75 0a 61 6e 64 20 76 20  |, where u.and v |
00000660  61 72 65 20 62 6f 74 68  20 66 75 6e 63 74 69 6f  |are both functio|
00000670  6e 73 20 6f 66 20 78 2e  0a 0a 0a 0a 75 2f 76 3e  |ns of x.....u/v>|
00000680  28 76 28 64 75 2f 64 78  29 2d 75 28 64 76 2f 64  |(v(du/dx)-u(dv/d|
00000690  78 29 29 2f 76 b2 0a 54  68 69 73 20 69 73 20 63  |x))/v..This is c|
000006a0  61 6c 6c 65 64 20 74 68  65 20 71 75 6f 74 69 65  |alled the quotie|
000006b0  6e 74 20 72 75 6c 65 20  77 68 65 72 65 20 75 0a  |nt rule where u.|
000006c0  61 6e 64 20 76 20 61 72  65 20 62 6f 74 68 20 66  |and v are both f|
000006d0  75 6e 63 74 69 6f 6e 73  20 6f 66 20 78 2e 0a 0a  |unctions of x...|
000006e0  0a 0a 0a 0a 0a 0a 0a 0a  0a 0a 0a 0a 0a 0a 0a 0a  |................|
*
00000710  0a 0a 0a 0a 0a 0a 0a 0a  0a 0a 0a 0a 0a           |.............|
0000071d