Home » CEEFAX disks » telesoftware2.adl » OS\BITS/B\OSB23

OS\BITS/B\OSB23

This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.

Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.

Tape/disk: Home » CEEFAX disks » telesoftware2.adl
Filename: OS\BITS/B\OSB23
Read OK:
File size: 30EC bytes
Load address: 1900
Exec address: 8023
Duplicates

There is 1 duplicate copy of this file in the archive:

File contents
   10REM  Osbits Module B/osb23
   20REM  Floating Point Arithmetic - Multiplication and Division
   30REM  Version 2.0 30.5.87
   40 
   50*KEY1MO.3|M|NL.|M
   60 
   70DIM code% &350
   80zp=&80          :REM Temporary workspace of 4 bytes, preserved
   90 
  100FOR pass%=0 TO 2 STEP 2
  110P%=code%
  120 
  130[OPT pass%
  140 
  150\  Transfer the two numbers from the CALL block to input_1 and 2
  160 
  170JSR enter_parameters
  180 
  190\  Transfer numbers from input_1 and 2 into
  200\  workspace for multiplication
  210 
  220JSR transfer_in
  230 
  240JSR fp_mult                  \ Multiplication subroutine
  250 
  260\  Transfer result into 'result_mult'
  270 
  280LDX #5
  290 
  300.transfer_out_loop
  310 
  320LDA fpws_1-1, X
  330STA result_mult-1, X
  340DEX
  350BNE transfer_out_loop 
  360 
  370\  Transfer numbers from input_1 and 2 into
  380\  workspace for division
  390 
  400JSR transfer_in
  410 
  420JSR fp_div                   \ Division subroutine
  430 
  440\  Transfer result into 'result_div'
  450 
  460LDX #5
  470 
  480.transfer_out_loop2
  490 
  500LDA fpws_1-1, X
  510STA result_div-1, X
  520DEX
  530BNE transfer_out_loop2
  540 
  550RTS
  560 
  570\  Reservation of workspace.  Note bytes for sign of fp numbers
  580\  and for overflow (oflow) during calculations.
  590\  Also the fpws for each number is 7 bytes, not 5.
  600\  Note also that some workspace has a different name in
  610\  different parts of the program.  This aids conversion from
  620\  the integer routines.
  630 
  640.input_1      OPT FNEQUM(5,0)
  650.input_2      OPT FNEQUM(5,0)
  660.fpws_1_sign  OPT FNEQUB(0)
  670.multiplicand
  680.dividend
  690.fpws_1       OPT FNEQUM(7,0)
  700.fpws_2_sign  OPT FNEQUB(0)
  710.multiplier
  720.divisor
  730.fpws_2       OPT FNEQUM(7,0)
  740.ppws
  750.pdws         OPT FNEQUM(6,0)
  760.diff_ws      OPT FNEQUM(6,0)
  770.result_mult  OPT FNEQUM(5,0)
  780.result_div   OPT FNEQUM(5,0)
  790 
  800.enter_parameters
  810 
  820\  This subroutine takes the two fp numbers from a CALL parameter
  830\  block at &600 and puts them in input_1 and input_2
  840 
  850LDA zp                      \ Preserve zero page workspace on stack
  860PHA
  870LDA zp+1
  880PHA
  890LDA zp+2
  900PHA
  910LDA zp+3
  920PHA
  930 
  940LDA &601                    \ Move addresses from &600 block to zpws
  950STA zp
  960LDA &602
  970STA zp+1
  980LDA &604
  990STA zp+2
 1000LDA &605
 1010STA zp+3
 1020 
 1030LDY #0
 1040 
 1050.enter_paras_loop
 1060 
 1070LDA (zp), Y                 \ First number
 1080STA input_1, Y
 1090LDA (zp+2), Y               \ Second number
 1100STA input_2, Y
 1110 
 1120INY
 1130CPY #5
 1140BNE enter_paras_loop
 1150 
 1160PLA                         \ Restore zpws from stack
 1170STA zp+3
 1180PLA
 1190STA zp+2
 1200PLA
 1210STA zp+1
 1220PLA
 1230STA zp
 1240RTS
 1250 
 1260.transfer_in
 1270 
 1280\  This subroutine takes the numbers in input_1 and
 1290\  input_2 and puts them in fpws_1 and fpws_2
 1300 
 1310LDX #5
 1320 
 1330.transfer_in_loop
 1340 
 1350LDA input_1-1, X
 1360STA fpws_1-1, X
 1370LDA input_2-1, X
 1380STA fpws_2-1, X
 1390DEX
 1400BNE transfer_in_loop 
 1410 
 1420RTS
 1430 
 1440.fp_mult
 1450  
 1460\  Multiplies the numbers in fpws_1 by the number
 1470\  in fpws_1 and puts the result in fpws_1
 1480 
 1490\  First allow for zeros in the workspace
 1500 
 1510LDA fpws_1+1
 1520ORA fpws_1                  \ Zero if exponent & top mantissa byte zero
 1530BEQ make_zero               \ If 1st no is zero then result = 0
 1540  
 1550LDA fpws_2+1
 1560ORA fpws_2                  \ Zero if exponent & top mantissa byte zero
 1570BEQ make_zero               \ If 2nd no is zero then result = 0
 1580 
 1590\  If result is not zero
 1600 
 1610JSR move_sign_bit           \ Move sign and restore top bit
 1620 
 1630JSR mult_denormalise
 1640 
 1650JSR mult_mantissae
 1660 
 1670JSR renormalise_muldiv
 1680 
 1690JSR replace_sign_bit
 1700 
 1710RTS
 1720 
 1730.fp_div
 1740  
 1750\  Divides the number in fpws_1 by the one in fpws_2
 1760\  and puts the result in fpws_1
 1770 
 1780\  First allow for zeros in the workspace
 1790  
 1800LDA fpws_2+1
 1810ORA fpws_2                  \ Zero if exponent & top mantissa byte zero
 1820BEQ div_by_zero             \ If 2nd no is 0 we have an error
 1830 
 1840LDA fpws_1+1
 1850ORA fpws_1                  \ Zero if exponent & top mantissa byte zero
 1860BEQ make_zero               \ If 1st no is zero then result = 0
 1870 
 1880JSR move_sign_bit           \ Move sign and restore top bit
 1890 
 1900JSR div_denormalise
 1910 
 1920JSR div_mantissae
 1930 
 1940JSR renormalise_muldiv
 1950 
 1960JSR replace_sign_bit
 1970 
 1980RTS
 1990 
 2000.make_zero
 2010 
 2020\  This routine makes fpws_1 zero
 2030 
 2040LDA #0
 2050LDX #5
 2060 
 2070.make_zero_loop
 2080 
 2090STA fpws_1-1, X
 2100DEX
 2110BNE make_zero_loop
 2120 
 2130RTS
 2140 
 2150.div_by_zero
 2160 
 2170\  This is an error condition, number 18
 2180 
 2190BRK
 2200OPT FNEQUB(18)
 2210OPT FNEQUS("Attempt to divide by zero")
 2220OPT FNEQUB(0)
 2230 
 2240.move_sign_bit
 2250 
 2260\  This routine transfers the sign bit from the top of the mantissae
 2270\  and puts it into a sign byte - ANDing to leave top bit only
 2280\  and then restores the top bit of the mantissae
 2290  
 2300LDA fpws_1+1
 2310AND #&80
 2320STA fpws_1_sign             \ fpws_1_sign is -ve if number was -ve
 2330LDA #&80
 2340ORA fpws_1+1
 2350STA fpws_1+1                \ Restores the top bit of the number
 2360 
 2370LDA fpws_2+1
 2380AND #&80
 2390STA fpws_2_sign             \ fpws_2_sign is -ve if number was -ve
 2400LDA #&80
 2410ORA fpws_2+1
 2420STA fpws_2+1                \ Restores the top bit of the number
 2430 
 2440RTS
 2450 
 2460.mult_denormalise
 2470 
 2480\  First, both numbers must be shifted down by 2 bytes
 2490\  and exponents both increased by 16.  This ensures that
 2500\  the final number does not overflow.
 2510 
 2520LDX #16
 2530 
 2540.mult_denormalise_rotate_loop
 2550 
 2560LSR fpws_1+1                \ Rotate mantissa right
 2570ROR fpws_1+2
 2580ROR fpws_1+3
 2590ROR fpws_1+4
 2600 
 2610LSR fpws_2+1
 2620ROR fpws_2+2
 2630ROR fpws_2+3
 2640ROR fpws_2+4
 2650 
 2660DEX
 2670BNE mult_denormalise_rotate_loop
 2680 
 2690\ Calculate exponent of result
 2700 
 2710SEC
 2720LDA fpws_1
 2730SBC #&80                    \ Subtract &80 factor from exponent
 2740STA fpws_1
 2750 
 2760SEC
 2770LDA fpws_2
 2780SBC #&80                    \ This is part of BBC BASIC format
 2790CLC
 2800ADC fpws_1
 2810BVS mult_oflow              \ Overflow flag set if result sign wrong
 2820CLC
 2830ADC #&80                    \ Convert back to BBC BASIC format
 2840STA fpws_1
 2850 
 2860RTS
 2870 
 2880.mult_oflow
 2890 
 2900BPL very_small
 2910BRK                         \ An error condition, number 20
 2920OPT  FNEQUB(20)
 2930OPT  FNEQUS("Number overflow during multiplication")
 2940OPT  FNEQUB(0)
 2950 
 2960.very_small
 2970 
 2980JMP make_zero               \ Answer is so small it is zero (ish)
 2990 
 3000.div_denormalise
 3010 
 3020\  Shift the divisor right by 2 bytes to aid division
 3030 
 3040LDX #16
 3050 
 3060.div_den_loop
 3070 
 3080LSR divisor+1
 3090ROR divisor+2 
 3100ROR divisor+3
 3110ROR divisor+4
 3120ROR divisor+5
 3130ROR divisor+6
 3140 
 3150DEX
 3160BNE div_den_loop
 3170 
 3180\  Calculate initial exponent of result
 3190 
 3200SEC
 3210LDA fpws_2
 3220SBC #&80                    \ Subtract &80 factor from exponent
 3230STA fpws_2
 3240 
 3250SEC
 3260LDA fpws_1
 3270SBC #&80                    \ This is part of BBC BASIC format
 3280SEC
 3290SBC fpws_2
 3300BVS div_oflow               \ Overflow flag set if result sign wrong
 3310CLC
 3320ADC #&80                    \ Convert back to BBC BASIC format
 3330CLC
 3340ADC #&20                    \ Add 32 to compensate for denormalising
 3350STA fpws_1
 3360 
 3370RTS
 3380 
 3390.div_oflow
 3400 
 3410BMI too_big_div
 3420JMP make_zero
 3430 
 3440.too_big_div
 3450 
 3460BRK
 3470OPT  FNEQUB(20)             \ A BASIC error condition, number 20
 3480OPT  FNEQUS("Number overflow during division")
 3490OPT  FNEQUB(0)
 3500 
 3510.mult_mantissae
 3520 
 3530\  Assumes that numbers to be multiplied are put into
 3540\  multiplicand and multiplier.  ppws is used for
 3550\  partial product. Result is put into multiplier
 3560 
 3570LDA #0
 3580STA ppws              \ Clear partial product workspace
 3590STA ppws+1
 3600STA ppws+2
 3610STA ppws+3
 3620 
 3630LDX #32               \ Carry out 32 times for 32 bit arithmetic
 3640 
 3650LSR multiplier+1      \ Rotate multiplier right
 3660ROR multiplier+2
 3670ROR multiplier+3
 3680ROR multiplier+4
 3690 
 3700.mbm_loop
 3710 
 3720BCC no_add_mbm        \ Is next bit of multiplier set?
 3730CLC
 3740LDA multiplicand+4    \ Add multiplicand
 3750ADC ppws+3
 3760STA ppws+3
 3770LDA multiplicand+3
 3780ADC ppws+2
 3790STA ppws+2
 3800LDA multiplicand+2
 3810ADC ppws+1
 3820STA ppws+1
 3830LDA multiplicand+1
 3840ADC ppws
 3850STA ppws
 3860 
 3870.no_add_mbm
 3880 
 3890LSR ppws              \ Rotate ppws & multiplier right
 3900ROR ppws+1
 3910ROR ppws+2
 3920ROR ppws+3
 3930ROR multiplier+1
 3940ROR multiplier+2
 3950ROR multiplier+3
 3960ROR multiplier+4
 3970DEX                   \ Counting down from 32 to zero
 3980BNE mbm_loop
 3990 
 4000\  Put result in multiplicand (fpws_1)
 4010 
 4020LDX #4
 4030 
 4040.swap_mm_loop
 4050 
 4060LDA multiplier, X
 4070STA multiplicand, X
 4080DEX
 4090BNE swap_mm_loop
 4100 
 4110RTS
 4120 
 4130.div_mantissae
 4140 
 4150\  Dividend is in dividend, divisor is in divisor
 4160\  On exit result is in dividend
 4170\  pdws holds partial dividend
 4180\  diff_ws is temp ws to hold pdiv-div for testing
 4190 
 4200LDA #0                     \ Set partial dividend ws to zero
 4210STA pdws
 4220STA pdws+1
 4230STA pdws+2
 4240STA pdws+3
 4250STA pdws+4
 4260STA pdws+5
 4270 
 4280LDX #48                    \ 48 bit dividend
 4290 
 4300.mbd_loop
 4310 
 4320ASL dividend+6             \ Rotate dividend left into partial dividend
 4330ROL dividend+5
 4340ROL dividend+4
 4350ROL dividend+3
 4360ROL dividend+2
 4370ROL dividend+1
 4380ROL pdws+5
 4390ROL pdws+4
 4400ROL pdws+3
 4410ROL pdws+2
 4420ROL pdws+1
 4430ROL pdws
 4440 
 4450SEC
 4460LDA pdws+5                 \ Subtract divisor from partial dividend
 4470SBC divisor+6
 4480STA diff_ws+5
 4490LDA pdws+4
 4500SBC divisor+5
 4510STA diff_ws+4
 4520LDA pdws+3
 4530SBC divisor+4
 4540STA diff_ws+3
 4550LDA pdws+2
 4560SBC divisor+3
 4570STA diff_ws+2
 4580LDA pdws+1
 4590SBC divisor+2
 4600STA diff_ws+1
 4610LDA pdws
 4620SBC divisor+1
 4630STA diff_ws
 4640 
 4650BCC no_subtract_mbd        \ Carry set if diff_ws > divisor
 4660 
 4670INC dividend+6             \ Increase result if we can subtract
 4680LDY #6
 4690 
 4700.diff_w_to_pdws_loop
 4710 
 4720LDA diff_ws-1, Y
 4730STA pdws-1, Y
 4740 
 4750DEY
 4760BNE diff_w_to_pdws_loop
 4770 
 4780.no_subtract_mbd
 4790 
 4800DEX                        \ Next bit
 4810BNE mbd_loop
 4820 
 4830RTS
 4840 
 4850.renormalise_muldiv
 4860 
 4870\ This routine modifies the mantissa and exponent of the result
 4880\ To produce a normalised format number.
 4890 
 4900\  First trap a zero result, or loops will run indefinately
 4910 
 4920LDA fpws_1+1
 4930ORA fpws_1+2
 4940ORA fpws_1+3
 4950ORA fpws_1+4
 4960ORA fpws_1+5
 4970ORA fpws_1+6
 4980 
 4990BEQ zero_norm
 5000 
 5010LDA fpws_1+1                \ Top byte of mantissa is shifted left
 5020BMI normalised              \ until top bit is set (i.e. -ve)
 5030 
 5040.shift_left_loop
 5050 
 5060DEC fpws_1                  \ Decrease the exponent
 5070ASL fpws_1+6                \ Shift mantissa left to compensate
 5080ROL fpws_1+5
 5090ROL fpws_1+4
 5100ROL fpws_1+3
 5110ROL fpws_1+2
 5120ROL fpws_1+1
 5130 
 5140BPL shift_left_loop
 5150 
 5160.normalised
 5170 
 5180RTS                         \ Number renormalised
 5190 
 5200.zero_norm
 5210 
 5220LDA #0
 5230STA fpws_1                  \ Clear exponent of a zero number
 5240 
 5250RTS
 5260 
 5270.replace_sign_bit
 5280 
 5290LDA fpws_1_sign
 5300EOR fpws_2_sign             \ EOR signs together to produce result sign
 5310AND #&80                    \ We're only interested in the top bit
 5320CLC
 5330ADC #&7F                    \ &FF if top bit set - &7F if not
 5340AND fpws_1+1                \ Top bit reflects sign
 5350STA fpws_1+1                \ Replace in workspace
 5360 
 5370RTS
 5380 
 5390]
 5400NEXT
 5410 
 5420REPEAT
 5430 
 5440PRINT '"Floating Point Multiplication and Division"'
 5450INPUT "Enter the first number "fp1
 5460INPUT "Enter the second number "fp2
 5470PRINT
 5480 
 5490CALL code%,fp1,fp2
 5500 
 5510PRINT"Results:"'
 5520PRINT "Product (code) is  ";FNfp(result_mult)
 5530PRINT "Product (BASIC) is ";fp1*fp2
 5540 
 5550PRINT "Quotient (code) is  ";FNfp(result_div)
 5560PRINT "Quotient (BASIC) is ";fp1/fp2
 5570 
 5580UNTIL FALSE
 5590 
 5600END
 5610 
 5620**** EQUate a Byte ****
 5630DEF FNEQUB(N%)
 5640?P%=N% MOD 256
 5650IF (pass% AND 3) = 3 THEN PRINT ~?P%
 5660P%=P%+1
 5670=pass%
 5680 
 5690**** EQUate a String ****
 5700DEF FNEQUS(N$)
 5710LOCAL N%
 5720WIDTH 40
 5730FOR N%=1 TO LEN(N$)
 5740K%=ASC(MID$(N$,N%,1))
 5750P%?(N%-1)=K%
 5760IF (pass% AND 3) = 3 THEN PRINT ~P%?(N%-1);
 5770NEXT
 5780IF (pass% AND 3) = 3 THEN PRINT
 5790P%=P%+LEN(N$)
 5800WIDTH 0
 5810=pass%
 5820 
 5830**** EQUate a section of Memory ****
 5840DEF FNEQUM(number%,byte%)
 5850LOCAL N%
 5860WIDTH 40
 5870FOR N%=0 TO number%-1
 5880P%?N%=byte%
 5890IF (pass% AND 3) = 3 THEN PRINT ~P%?N%;
 5900NEXT
 5910IF (pass% AND 3) = 3 THEN PRINT
 5920P%=P%+number%
 5930WIDTH 0
 5940=pass%
 5950 
 5960**** Reverse FP ****
 5970Puts fp number from memory
 5980into variable `
 5990DEF FNfp(mem%)
 6000LOCAL M%, N%
 6010`=0
 6020M% = 3+(!&4C0 AND &FFFF)
 6030FOR N%=0 TO 4
 6040M%?N%=mem%?N%
 6050NEXT
 6060=`

�  Osbits Module B/osb23
>�  Floating Point Arithmetic - Multiplication and Division
�  Version 2.0 30.5.87
( 
2*KEY1MO.3|M|NL.|M
< 
F� code% &350
P@zp=&80          :� Temporary workspace of 4 bytes, preserved
Z 
d� pass%=0 � 2 � 2
nP%=code%
x 
�[OPT pass%
� 
�A\  Transfer the two numbers from the � block to input_1 and 2
� 
�JSR enter_parameters
� 
�/\  Transfer numbers from input_1 and 2 into
�#\  workspace for multiplication
� 
�JSR transfer_in
� 
�<JSR fp_mult                  \ Multiplication subroutine
� 
)\  Transfer result into 'result_mult'
 

LDX #5
" 
,.transfer_out_loop
6 
@LDA fpws_1-1, X
JSTA result_mult-1, X
TDEX
^BNE transfer_out_loop 
h 
r/\  Transfer numbers from input_1 and 2 into
|\  workspace for division
� 
�JSR transfer_in
� 
�6JSR fp_div                   \ Division subroutine
� 
�(\  Transfer result into 'result_div'
� 
�
LDX #5
� 
�.transfer_out_loop2
� 
�LDA fpws_1-1, X
�STA result_div-1, X
DEX
BNE transfer_out_loop2
 
&RTS
0 
:C\  Reservation of workspace.  Note bytes for sign of fp numbers
D4\  and for overflow (oflow) during calculations.
N7\  Also the fpws for each number is 7 bytes, not 5.
X<\  Note also that some workspace has a different name in
bA\  different parts of the program.  This aids conversion from
l\  the integer routines.
v 
� .input_1      OPT �EQUM(5,0)
� .input_2      OPT �EQUM(5,0)
�.fpws_1_sign  OPT �EQUB(0)
�.multiplicand
�
.dividend
� .fpws_1       OPT �EQUM(7,0)
�.fpws_2_sign  OPT �EQUB(0)
�.multiplier
�.divisor
� .fpws_2       OPT �EQUM(7,0)
�	.ppws
� .pdws         OPT �EQUM(6,0)
� .diff_ws      OPT �EQUM(6,0)
 .result_mult  OPT �EQUM(5,0)
 .result_div   OPT �EQUM(5,0)
 
 .enter_parameters
* 
4B\  This subroutine takes the two fp numbers from a � parameter
>9\  block at &600 and puts them in input_1 and input_2
H 
RGLDA zp                      \ Preserve zero page workspace on stack
\PHA
fLDA zp+1
pPHA
zLDA zp+2
�PHA
�LDA zp+3
�PHA
� 
�HLDA &601                    \ Move addresses from &600 block to zpws
�
STA zp
�LDA &602
�STA zp+1
�LDA &604
�STA zp+2
�LDA &605
�STA zp+3
� 

LDY #0
 
.enter_paras_loop
$ 
..LDA (zp), Y                 \ First number
8STA input_1, Y
B/LDA (zp+2), Y               \ Second number
LSTA input_2, Y
V 
`INY
j
CPY #5
tBNE enter_paras_loop
~ 
�9PLA                         \ Restore zpws from stack
�STA zp+3
�PLA
�STA zp+2
�PLA
�STA zp+1
�PLA
�
STA zp
�RTS
� 
�.transfer_in
� 
7\  This subroutine takes the numbers in input_1 and

1\  input_2 and puts them in fpws_1 and fpws_2
 

LDX #5
( 
2.transfer_in_loop
< 
FLDA input_1-1, X
PSTA fpws_1-1, X
ZLDA input_2-1, X
dSTA fpws_2-1, X
nDEX
xBNE transfer_in_loop 
� 
�RTS
� 
�.fp_mult
�  
�5\  Multiplies the numbers in fpws_1 by the number
�.\  in fpws_1 and puts the result in fpws_1
� 
�-\  First allow for zeros in the workspace
� 
�LDA fpws_1+1
�J�A fpws_1                  \ Zero if exponent & top mantissa byte zero
�CBEQ make_zero               \ If 1st no is zero then result = 0
  
LDA fpws_2+1
J�A fpws_2                  \ Zero if exponent & top mantissa byte zero
"CBEQ make_zero               \ If 2nd no is zero then result = 0
, 
6\  If result is not zero
@ 
J?JSR move_sign_bit           \ Move sign and restore top bit
T 
^JSR mult_denormalise
h 
rJSR mult_mantissae
| 
�JSR renormalise_muldiv
� 
�JSR replace_sign_bit
� 
�RTS
� 
�.fp_div
�  
�8\  Divides the number in fpws_1 by the one in fpws_2
�$\  and puts the result in fpws_1
� 
�-\  First allow for zeros in the workspace
�  
LDA fpws_2+1
J�A fpws_2                  \ Zero if exponent & top mantissa byte zero
ABEQ div_by_zero             \ If 2nd no is 0 we have an error
& 
0LDA fpws_1+1
:J�A fpws_1                  \ Zero if exponent & top mantissa byte zero
DCBEQ make_zero               \ If 1st no is zero then result = 0
N 
X?JSR move_sign_bit           \ Move sign and restore top bit
b 
lJSR div_denormalise
v 
�JSR div_mantissae
� 
�JSR renormalise_muldiv
� 
�JSR replace_sign_bit
� 
�RTS
� 
�.make_zero
� 
�%\  This routine makes fpws_1 zero
� 
�
LDA #0

LDX #5
 
.make_zero_loop
  
*STA fpws_1-1, X
4DEX
>BNE make_zero_loop
H 
RRTS
\ 
f.div_by_zero
p 
z,\  This is an error condition, number 18
� 
�BRK
�OPT �EQUB(18)
�*OPT �EQUS("Attempt to divide by zero")
�OPT �EQUB(0)
� 
�.move_sign_bit
� 
�H\  This routine transfers the sign bit from the top of the mantissae
�@\  and puts it into a sign byte - �ing to leave top bit only
�5\  and then restores the top bit of the mantissae
�  
�LDA fpws_1+1
	
� #&80
	FSTA fpws_1_sign             \ fpws_1_sign is -ve if number was -ve
	LDA #&80
	$�A fpws_1+1
	.DSTA fpws_1+1                \ Restores the top bit of the number
	8 
	BLDA fpws_2+1
	L
� #&80
	VFSTA fpws_2_sign             \ fpws_2_sign is -ve if number was -ve
	`LDA #&80
	j�A fpws_2+1
	tDSTA fpws_2+1                \ Restores the top bit of the number
	~ 
	�RTS
	� 
	�.mult_denormalise
	� 
	�:\  First, both numbers must be shifted down by 2 bytes
	�=\  and exponents both increased by 16.  This ensures that
	�*\  the final number does not overflow.
	� 
	�LDX #16
	� 
	�!.mult_denormalise_rotate_loop
	� 
7LSR fpws_1+1                \ Rotate mantissa right

ROR fpws_1+2
ROR fpws_1+3
ROR fpws_1+4
( 
2LSR fpws_2+1
<ROR fpws_2+2
FROR fpws_2+3
PROR fpws_2+4
Z 
dDEX
n$BNE mult_denormalise_rotate_loop
x 
�"\ Calculate exponent of result
� 
�SEC
�LDA fpws_1
�CSBC #&80                    \ Subtract &80 factor from exponent
�STA fpws_1
� 
�SEC
�LDA fpws_2
�BSBC #&80                    \ This is part of BBC BASIC format
�CLC
�ADC fpws_1
�HBVS mult_oflow              \ Overflow flag set if result sign wrong
CLC
BADC #&80                    \ Convert back to BBC BASIC format
STA fpws_1
" 
,RTS
6 
@.mult_oflow
J 
TBPL very_small
^?BRK                         \ An error condition, number 20
hOPT  �EQUB(20)
r7OPT  �EQUS("Number overflow during multiplication")
|OPT  �EQUB(0)
� 
�.very_small
� 
�EJMP make_zero               \ Answer is so small it is zero (ish)
� 
�.div_denormalise
� 
�9\  Shift the divisor right by 2 bytes to aid division
� 
�LDX #16
� 
�.div_den_loop
� 
LSR divisor+1
ROR divisor+2 
ROR divisor+3
&ROR divisor+4
0ROR divisor+5
:ROR divisor+6
D 
NDEX
XBNE div_den_loop
b 
l+\  Calculate initial exponent of result
v 
�SEC
�LDA fpws_2
�CSBC #&80                    \ Subtract &80 factor from exponent
�STA fpws_2
� 
�SEC
�LDA fpws_1
�BSBC #&80                    \ This is part of BBC BASIC format
�SEC
�SBC fpws_2
�HBVS div_oflow               \ Overflow flag set if result sign wrong
�CLC
�BADC #&80                    \ Convert back to BBC BASIC format

CLC

HADC #&20                    \ Add 32 to compensate for denormalising

STA fpws_1

  

*RTS

4 

>.div_oflow

H 

RBMI too_big_div

\JMP make_zero

f 

p.too_big_div

z 

�BRK

�COPT  �EQUB(20)             \ A BASIC error condition, number 20

�1OPT  �EQUS("Number overflow during division")

�OPT  �EQUB(0)

� 

�.mult_mantissae

� 

�9\  Assumes that numbers to be multiplied are put into

�5\  multiplicand and multiplier.  ppws is used for

�5\  partial product. Result is put into multiplier

� 

�
LDA #0

�;STA ppws              \ Clear partial product workspace
STA ppws+1
STA ppws+2
STA ppws+3
$ 
.DLDX #32               \ Carry out 32 times for 32 bit arithmetic
8 
B3LSR multiplier+1      \ Rotate multiplier right
LROR multiplier+2
VROR multiplier+3
`ROR multiplier+4
j 
t
.mbm_loop
~ 
�:BCC no_add_mbm        \ Is next bit of multiplier set?
�CLC
�,LDA multiplicand+4    \ Add multiplicand
�ADC ppws+3
�STA ppws+3
�LDA multiplicand+3
�ADC ppws+2
�STA ppws+2
�LDA multiplicand+2
�ADC ppws+1
�STA ppws+1
�LDA multiplicand+1
ADC ppws

STA ppws
 
.no_add_mbm
( 
2:LSR ppws              \ Rotate ppws & multiplier right
<ROR ppws+1
FROR ppws+2
PROR ppws+3
ZROR multiplier+1
dROR multiplier+2
nROR multiplier+3
xROR multiplier+4
�9DEX                   \ Counting down from 32 to zero
�BNE mbm_loop
� 
�*\  Put result in multiplicand (fpws_1)
� 
�
LDX #4
� 
�.swap_mm_loop
� 
�LDA multiplier, X
�STA multiplicand, X
�DEX
�BNE swap_mm_loop
 
RTS
 
".div_mantissae
, 
65\  Dividend is in dividend, divisor is in divisor
@$\  On exit result is in dividend
J"\  pdws holds partial dividend
T6\  diff_ws is temp ws to hold pdiv-div for testing
^ 
h@LDA #0                     \ Set partial dividend ws to zero
rSTA pdws
|STA pdws+1
�STA pdws+2
�STA pdws+3
�STA pdws+4
�STA pdws+5
� 
�0LDX #48                    \ 48 bit dividend
� 
�
.mbd_loop
� 
�KASL dividend+6             \ Rotate dividend left into partial dividend
�ROL dividend+5
�ROL dividend+4
�ROL dividend+3
ROL dividend+2
ROL dividend+1
ROL pdws+5
&ROL pdws+4
0ROL pdws+3
:ROL pdws+2
DROL pdws+1
NROL pdws
X 
bSEC
lGLDA pdws+5                 \ Subtract divisor from partial dividend
vSBC divisor+6
�STA diff_ws+5
�LDA pdws+4
�SBC divisor+5
�STA diff_ws+4
�LDA pdws+3
�SBC divisor+4
�STA diff_ws+3
�LDA pdws+2
�SBC divisor+3
�STA diff_ws+2
�LDA pdws+1
�SBC divisor+2
�STA diff_ws+1
LDA pdws
SBC divisor+1
STA diff_ws
  
*?BCC no_subtract_mbd        \ Carry set if diff_ws > divisor
4 
>CINC dividend+6             \ Increase result if we can subtract
H
LDY #6
R 
\.diff_w_to_pdws_loop
f 
pLDA diff_ws-1, Y
zSTA pdws-1, Y
� 
�DEY
�BNE diff_w_to_pdws_loop
� 
�.no_subtract_mbd
� 
�)DEX                        \ Next bit
�BNE mbd_loop
� 
�RTS
� 
�.renormalise_muldiv
� 
C\ This routine modifies the mantissa and exponent of the result
,\ To produce a normalised format number.
 
$?\  First trap a zero result, or loops will run indefinately
. 
8LDA fpws_1+1
B�A fpws_1+2
L�A fpws_1+3
V�A fpws_1+4
`�A fpws_1+5
j�A fpws_1+6
t 
~BEQ zero_norm
� 
�FLDA fpws_1+1                \ Top byte of mantissa is shifted left
�ABMI normalised              \ until top bit is set (i.e. -ve)
� 
�.shift_left_loop
� 
�7DEC fpws_1                  \ Decrease the exponent
�CASL fpws_1+6                \ Shift mantissa left to compensate
�ROL fpws_1+5
�ROL fpws_1+4
�ROL fpws_1+3
�ROL fpws_1+2
ROL fpws_1+1

 
BPL shift_left_loop
 
(.normalised
2 
<5RTS                         \ Number renormalised
F 
P.zero_norm
Z 
d
LDA #0
nASTA fpws_1                  \ Clear exponent of a zero number
x 
�RTS
� 
�.replace_sign_bit
� 
�LDA fpws_1_sign
�G� fpws_2_sign             \ � signs together to produce result sign
�D� #&80                    \ We're only interested in the top bit
�CLC
�AADC #&7F                    \ &FF if top bit set - &7F if not
�5� fpws_1+1                \ Top bit reflects sign
�6STA fpws_1+1                \ Replace in workspace
� 
�RTS
 
]
�
" 
,�
6 
@4� '"Floating Point Multiplication and Division"'
J"� "Enter the first number "fp1
T#� "Enter the second number "fp2
^�
h 
r� code%,fp1,fp2
| 
��"Results:"'
�,� "Product (code) is  ";�fp(result_mult)
�#� "Product (BASIC) is ";fp1*fp2
� 
�,� "Quotient (code) is  ";�fp(result_div)
�$� "Quotient (BASIC) is ";fp1/fp2
� 
�� �
� 
��
� 
�**** EQUate a Byte ****
�� �EQUB(N%)
?P%=N% � 256
� (pass% � 3) = 3 � � ~?P%
P%=P%+1
&
=pass%
0 
:**** EQUate a String ****
D� �EQUS(N$)
N� N%
X� 40
b� N%=1 � �(N$)
lK%=�(�N$,N%,1))
vP%?(N%-1)=K%
�%� (pass% � 3) = 3 � � ~P%?(N%-1);
��
�� (pass% � 3) = 3 � �
�P%=P%+�(N$)
�� 0
�
=pass%
� 
�(**** EQUate a section of Memory ****
�� �EQUM(number%,byte%)
�� N%
�� 40
�� N%=0 � number%-1
�P%?N%=byte%
!� (pass% � 3) = 3 � � ~P%?N%;
�
� (pass% � 3) = 3 � �
 P%=P%+number%
*� 0
4
=pass%
> 
H**** Reverse FP ****
RPuts fp number from memory
\into variable `
f� �fp(mem%)
p� M%, N%
z`=0
�M% = 3+(!&4C0 � &FFFF)
�� N%=0 � 4
�M%?N%=mem%?N%
��
�=`
�
00000000  0d 00 0a 1c f4 20 20 4f  73 62 69 74 73 20 4d 6f  |.....  Osbits Mo|
00000010  64 75 6c 65 20 42 2f 6f  73 62 32 33 0d 00 14 3e  |dule B/osb23...>|
00000020  f4 20 20 46 6c 6f 61 74  69 6e 67 20 50 6f 69 6e  |.  Floating Poin|
00000030  74 20 41 72 69 74 68 6d  65 74 69 63 20 2d 20 4d  |t Arithmetic - M|
00000040  75 6c 74 69 70 6c 69 63  61 74 69 6f 6e 20 61 6e  |ultiplication an|
00000050  64 20 44 69 76 69 73 69  6f 6e 0d 00 1e 1a f4 20  |d Division..... |
00000060  20 56 65 72 73 69 6f 6e  20 32 2e 30 20 33 30 2e  | Version 2.0 30.|
00000070  35 2e 38 37 0d 00 28 05  20 0d 00 32 15 2a 4b 45  |5.87..(. ..2.*KE|
00000080  59 31 4d 4f 2e 33 7c 4d  7c 4e 4c 2e 7c 4d 0d 00  |Y1MO.3|M|NL.|M..|
00000090  3c 05 20 0d 00 46 10 de  20 63 6f 64 65 25 20 26  |<. ..F.. code% &|
000000a0  33 35 30 0d 00 50 40 7a  70 3d 26 38 30 20 20 20  |350..P@zp=&80   |
000000b0  20 20 20 20 20 20 20 3a  f4 20 54 65 6d 70 6f 72  |       :. Tempor|
000000c0  61 72 79 20 77 6f 72 6b  73 70 61 63 65 20 6f 66  |ary workspace of|
000000d0  20 34 20 62 79 74 65 73  2c 20 70 72 65 73 65 72  | 4 bytes, preser|
000000e0  76 65 64 0d 00 5a 05 20  0d 00 64 15 e3 20 70 61  |ved..Z. ..d.. pa|
000000f0  73 73 25 3d 30 20 b8 20  32 20 88 20 32 0d 00 6e  |ss%=0 . 2 . 2..n|
00000100  0c 50 25 3d 63 6f 64 65  25 0d 00 78 05 20 0d 00  |.P%=code%..x. ..|
00000110  82 0e 5b 4f 50 54 20 70  61 73 73 25 0d 00 8c 05  |..[OPT pass%....|
00000120  20 0d 00 96 41 5c 20 20  54 72 61 6e 73 66 65 72  | ...A\  Transfer|
00000130  20 74 68 65 20 74 77 6f  20 6e 75 6d 62 65 72 73  | the two numbers|
00000140  20 66 72 6f 6d 20 74 68  65 20 d6 20 62 6c 6f 63  | from the . bloc|
00000150  6b 20 74 6f 20 69 6e 70  75 74 5f 31 20 61 6e 64  |k to input_1 and|
00000160  20 32 0d 00 a0 05 20 0d  00 aa 18 4a 53 52 20 65  | 2.... ....JSR e|
00000170  6e 74 65 72 5f 70 61 72  61 6d 65 74 65 72 73 0d  |nter_parameters.|
00000180  00 b4 05 20 0d 00 be 2f  5c 20 20 54 72 61 6e 73  |... .../\  Trans|
00000190  66 65 72 20 6e 75 6d 62  65 72 73 20 66 72 6f 6d  |fer numbers from|
000001a0  20 69 6e 70 75 74 5f 31  20 61 6e 64 20 32 20 69  | input_1 and 2 i|
000001b0  6e 74 6f 0d 00 c8 23 5c  20 20 77 6f 72 6b 73 70  |nto...#\  worksp|
000001c0  61 63 65 20 66 6f 72 20  6d 75 6c 74 69 70 6c 69  |ace for multipli|
000001d0  63 61 74 69 6f 6e 0d 00  d2 05 20 0d 00 dc 13 4a  |cation.... ....J|
000001e0  53 52 20 74 72 61 6e 73  66 65 72 5f 69 6e 0d 00  |SR transfer_in..|
000001f0  e6 05 20 0d 00 f0 3c 4a  53 52 20 66 70 5f 6d 75  |.. ...<JSR fp_mu|
00000200  6c 74 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |lt              |
00000210  20 20 20 20 5c 20 4d 75  6c 74 69 70 6c 69 63 61  |    \ Multiplica|
00000220  74 69 6f 6e 20 73 75 62  72 6f 75 74 69 6e 65 0d  |tion subroutine.|
00000230  00 fa 05 20 0d 01 04 29  5c 20 20 54 72 61 6e 73  |... ...)\  Trans|
00000240  66 65 72 20 72 65 73 75  6c 74 20 69 6e 74 6f 20  |fer result into |
00000250  27 72 65 73 75 6c 74 5f  6d 75 6c 74 27 0d 01 0e  |'result_mult'...|
00000260  05 20 0d 01 18 0a 4c 44  58 20 23 35 0d 01 22 05  |. ....LDX #5..".|
00000270  20 0d 01 2c 16 2e 74 72  61 6e 73 66 65 72 5f 6f  | ..,..transfer_o|
00000280  75 74 5f 6c 6f 6f 70 0d  01 36 05 20 0d 01 40 13  |ut_loop..6. ..@.|
00000290  4c 44 41 20 66 70 77 73  5f 31 2d 31 2c 20 58 0d  |LDA fpws_1-1, X.|
000002a0  01 4a 18 53 54 41 20 72  65 73 75 6c 74 5f 6d 75  |.J.STA result_mu|
000002b0  6c 74 2d 31 2c 20 58 0d  01 54 07 44 45 58 0d 01  |lt-1, X..T.DEX..|
000002c0  5e 1a 42 4e 45 20 74 72  61 6e 73 66 65 72 5f 6f  |^.BNE transfer_o|
000002d0  75 74 5f 6c 6f 6f 70 20  0d 01 68 05 20 0d 01 72  |ut_loop ..h. ..r|
000002e0  2f 5c 20 20 54 72 61 6e  73 66 65 72 20 6e 75 6d  |/\  Transfer num|
000002f0  62 65 72 73 20 66 72 6f  6d 20 69 6e 70 75 74 5f  |bers from input_|
00000300  31 20 61 6e 64 20 32 20  69 6e 74 6f 0d 01 7c 1d  |1 and 2 into..|.|
00000310  5c 20 20 77 6f 72 6b 73  70 61 63 65 20 66 6f 72  |\  workspace for|
00000320  20 64 69 76 69 73 69 6f  6e 0d 01 86 05 20 0d 01  | division.... ..|
00000330  90 13 4a 53 52 20 74 72  61 6e 73 66 65 72 5f 69  |..JSR transfer_i|
00000340  6e 0d 01 9a 05 20 0d 01  a4 36 4a 53 52 20 66 70  |n.... ...6JSR fp|
00000350  5f 64 69 76 20 20 20 20  20 20 20 20 20 20 20 20  |_div            |
00000360  20 20 20 20 20 20 20 5c  20 44 69 76 69 73 69 6f  |       \ Divisio|
00000370  6e 20 73 75 62 72 6f 75  74 69 6e 65 0d 01 ae 05  |n subroutine....|
00000380  20 0d 01 b8 28 5c 20 20  54 72 61 6e 73 66 65 72  | ...(\  Transfer|
00000390  20 72 65 73 75 6c 74 20  69 6e 74 6f 20 27 72 65  | result into 're|
000003a0  73 75 6c 74 5f 64 69 76  27 0d 01 c2 05 20 0d 01  |sult_div'.... ..|
000003b0  cc 0a 4c 44 58 20 23 35  0d 01 d6 05 20 0d 01 e0  |..LDX #5.... ...|
000003c0  17 2e 74 72 61 6e 73 66  65 72 5f 6f 75 74 5f 6c  |..transfer_out_l|
000003d0  6f 6f 70 32 0d 01 ea 05  20 0d 01 f4 13 4c 44 41  |oop2.... ....LDA|
000003e0  20 66 70 77 73 5f 31 2d  31 2c 20 58 0d 01 fe 17  | fpws_1-1, X....|
000003f0  53 54 41 20 72 65 73 75  6c 74 5f 64 69 76 2d 31  |STA result_div-1|
00000400  2c 20 58 0d 02 08 07 44  45 58 0d 02 12 1a 42 4e  |, X....DEX....BN|
00000410  45 20 74 72 61 6e 73 66  65 72 5f 6f 75 74 5f 6c  |E transfer_out_l|
00000420  6f 6f 70 32 0d 02 1c 05  20 0d 02 26 07 52 54 53  |oop2.... ..&.RTS|
00000430  0d 02 30 05 20 0d 02 3a  43 5c 20 20 52 65 73 65  |..0. ..:C\  Rese|
00000440  72 76 61 74 69 6f 6e 20  6f 66 20 77 6f 72 6b 73  |rvation of works|
00000450  70 61 63 65 2e 20 20 4e  6f 74 65 20 62 79 74 65  |pace.  Note byte|
00000460  73 20 66 6f 72 20 73 69  67 6e 20 6f 66 20 66 70  |s for sign of fp|
00000470  20 6e 75 6d 62 65 72 73  0d 02 44 34 5c 20 20 61  | numbers..D4\  a|
00000480  6e 64 20 66 6f 72 20 6f  76 65 72 66 6c 6f 77 20  |nd for overflow |
00000490  28 6f 66 6c 6f 77 29 20  64 75 72 69 6e 67 20 63  |(oflow) during c|
000004a0  61 6c 63 75 6c 61 74 69  6f 6e 73 2e 0d 02 4e 37  |alculations...N7|
000004b0  5c 20 20 41 6c 73 6f 20  74 68 65 20 66 70 77 73  |\  Also the fpws|
000004c0  20 66 6f 72 20 65 61 63  68 20 6e 75 6d 62 65 72  | for each number|
000004d0  20 69 73 20 37 20 62 79  74 65 73 2c 20 6e 6f 74  | is 7 bytes, not|
000004e0  20 35 2e 0d 02 58 3c 5c  20 20 4e 6f 74 65 20 61  | 5...X<\  Note a|
000004f0  6c 73 6f 20 74 68 61 74  20 73 6f 6d 65 20 77 6f  |lso that some wo|
00000500  72 6b 73 70 61 63 65 20  68 61 73 20 61 20 64 69  |rkspace has a di|
00000510  66 66 65 72 65 6e 74 20  6e 61 6d 65 20 69 6e 0d  |fferent name in.|
00000520  02 62 41 5c 20 20 64 69  66 66 65 72 65 6e 74 20  |.bA\  different |
00000530  70 61 72 74 73 20 6f 66  20 74 68 65 20 70 72 6f  |parts of the pro|
00000540  67 72 61 6d 2e 20 20 54  68 69 73 20 61 69 64 73  |gram.  This aids|
00000550  20 63 6f 6e 76 65 72 73  69 6f 6e 20 66 72 6f 6d  | conversion from|
00000560  0d 02 6c 1c 5c 20 20 74  68 65 20 69 6e 74 65 67  |..l.\  the integ|
00000570  65 72 20 72 6f 75 74 69  6e 65 73 2e 0d 02 76 05  |er routines...v.|
00000580  20 0d 02 80 20 2e 69 6e  70 75 74 5f 31 20 20 20  | ... .input_1   |
00000590  20 20 20 4f 50 54 20 a4  45 51 55 4d 28 35 2c 30  |   OPT .EQUM(5,0|
000005a0  29 0d 02 8a 20 2e 69 6e  70 75 74 5f 32 20 20 20  |)... .input_2   |
000005b0  20 20 20 4f 50 54 20 a4  45 51 55 4d 28 35 2c 30  |   OPT .EQUM(5,0|
000005c0  29 0d 02 94 1e 2e 66 70  77 73 5f 31 5f 73 69 67  |).....fpws_1_sig|
000005d0  6e 20 20 4f 50 54 20 a4  45 51 55 42 28 30 29 0d  |n  OPT .EQUB(0).|
000005e0  02 9e 11 2e 6d 75 6c 74  69 70 6c 69 63 61 6e 64  |....multiplicand|
000005f0  0d 02 a8 0d 2e 64 69 76  69 64 65 6e 64 0d 02 b2  |.....dividend...|
00000600  20 2e 66 70 77 73 5f 31  20 20 20 20 20 20 20 4f  | .fpws_1       O|
00000610  50 54 20 a4 45 51 55 4d  28 37 2c 30 29 0d 02 bc  |PT .EQUM(7,0)...|
00000620  1e 2e 66 70 77 73 5f 32  5f 73 69 67 6e 20 20 4f  |..fpws_2_sign  O|
00000630  50 54 20 a4 45 51 55 42  28 30 29 0d 02 c6 0f 2e  |PT .EQUB(0).....|
00000640  6d 75 6c 74 69 70 6c 69  65 72 0d 02 d0 0c 2e 64  |multiplier.....d|
00000650  69 76 69 73 6f 72 0d 02  da 20 2e 66 70 77 73 5f  |ivisor... .fpws_|
00000660  32 20 20 20 20 20 20 20  4f 50 54 20 a4 45 51 55  |2       OPT .EQU|
00000670  4d 28 37 2c 30 29 0d 02  e4 09 2e 70 70 77 73 0d  |M(7,0).....ppws.|
00000680  02 ee 20 2e 70 64 77 73  20 20 20 20 20 20 20 20  |.. .pdws        |
00000690  20 4f 50 54 20 a4 45 51  55 4d 28 36 2c 30 29 0d  | OPT .EQUM(6,0).|
000006a0  02 f8 20 2e 64 69 66 66  5f 77 73 20 20 20 20 20  |.. .diff_ws     |
000006b0  20 4f 50 54 20 a4 45 51  55 4d 28 36 2c 30 29 0d  | OPT .EQUM(6,0).|
000006c0  03 02 20 2e 72 65 73 75  6c 74 5f 6d 75 6c 74 20  |.. .result_mult |
000006d0  20 4f 50 54 20 a4 45 51  55 4d 28 35 2c 30 29 0d  | OPT .EQUM(5,0).|
000006e0  03 0c 20 2e 72 65 73 75  6c 74 5f 64 69 76 20 20  |.. .result_div  |
000006f0  20 4f 50 54 20 a4 45 51  55 4d 28 35 2c 30 29 0d  | OPT .EQUM(5,0).|
00000700  03 16 05 20 0d 03 20 15  2e 65 6e 74 65 72 5f 70  |... .. ..enter_p|
00000710  61 72 61 6d 65 74 65 72  73 0d 03 2a 05 20 0d 03  |arameters..*. ..|
00000720  34 42 5c 20 20 54 68 69  73 20 73 75 62 72 6f 75  |4B\  This subrou|
00000730  74 69 6e 65 20 74 61 6b  65 73 20 74 68 65 20 74  |tine takes the t|
00000740  77 6f 20 66 70 20 6e 75  6d 62 65 72 73 20 66 72  |wo fp numbers fr|
00000750  6f 6d 20 61 20 d6 20 70  61 72 61 6d 65 74 65 72  |om a . parameter|
00000760  0d 03 3e 39 5c 20 20 62  6c 6f 63 6b 20 61 74 20  |..>9\  block at |
00000770  26 36 30 30 20 61 6e 64  20 70 75 74 73 20 74 68  |&600 and puts th|
00000780  65 6d 20 69 6e 20 69 6e  70 75 74 5f 31 20 61 6e  |em in input_1 an|
00000790  64 20 69 6e 70 75 74 5f  32 0d 03 48 05 20 0d 03  |d input_2..H. ..|
000007a0  52 47 4c 44 41 20 7a 70  20 20 20 20 20 20 20 20  |RGLDA zp        |
000007b0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 5c 20  |              \ |
000007c0  50 72 65 73 65 72 76 65  20 7a 65 72 6f 20 70 61  |Preserve zero pa|
000007d0  67 65 20 77 6f 72 6b 73  70 61 63 65 20 6f 6e 20  |ge workspace on |
000007e0  73 74 61 63 6b 0d 03 5c  07 50 48 41 0d 03 66 0c  |stack..\.PHA..f.|
000007f0  4c 44 41 20 7a 70 2b 31  0d 03 70 07 50 48 41 0d  |LDA zp+1..p.PHA.|
00000800  03 7a 0c 4c 44 41 20 7a  70 2b 32 0d 03 84 07 50  |.z.LDA zp+2....P|
00000810  48 41 0d 03 8e 0c 4c 44  41 20 7a 70 2b 33 0d 03  |HA....LDA zp+3..|
00000820  98 07 50 48 41 0d 03 a2  05 20 0d 03 ac 48 4c 44  |..PHA.... ...HLD|
00000830  41 20 26 36 30 31 20 20  20 20 20 20 20 20 20 20  |A &601          |
00000840  20 20 20 20 20 20 20 20  20 20 5c 20 4d 6f 76 65  |          \ Move|
00000850  20 61 64 64 72 65 73 73  65 73 20 66 72 6f 6d 20  | addresses from |
00000860  26 36 30 30 20 62 6c 6f  63 6b 20 74 6f 20 7a 70  |&600 block to zp|
00000870  77 73 0d 03 b6 0a 53 54  41 20 7a 70 0d 03 c0 0c  |ws....STA zp....|
00000880  4c 44 41 20 26 36 30 32  0d 03 ca 0c 53 54 41 20  |LDA &602....STA |
00000890  7a 70 2b 31 0d 03 d4 0c  4c 44 41 20 26 36 30 34  |zp+1....LDA &604|
000008a0  0d 03 de 0c 53 54 41 20  7a 70 2b 32 0d 03 e8 0c  |....STA zp+2....|
000008b0  4c 44 41 20 26 36 30 35  0d 03 f2 0c 53 54 41 20  |LDA &605....STA |
000008c0  7a 70 2b 33 0d 03 fc 05  20 0d 04 06 0a 4c 44 59  |zp+3.... ....LDY|
000008d0  20 23 30 0d 04 10 05 20  0d 04 1a 15 2e 65 6e 74  | #0.... .....ent|
000008e0  65 72 5f 70 61 72 61 73  5f 6c 6f 6f 70 0d 04 24  |er_paras_loop..$|
000008f0  05 20 0d 04 2e 2e 4c 44  41 20 28 7a 70 29 2c 20  |. ....LDA (zp), |
00000900  59 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |Y               |
00000910  20 20 5c 20 46 69 72 73  74 20 6e 75 6d 62 65 72  |  \ First number|
00000920  0d 04 38 12 53 54 41 20  69 6e 70 75 74 5f 31 2c  |..8.STA input_1,|
00000930  20 59 0d 04 42 2f 4c 44  41 20 28 7a 70 2b 32 29  | Y..B/LDA (zp+2)|
00000940  2c 20 59 20 20 20 20 20  20 20 20 20 20 20 20 20  |, Y             |
00000950  20 20 5c 20 53 65 63 6f  6e 64 20 6e 75 6d 62 65  |  \ Second numbe|
00000960  72 0d 04 4c 12 53 54 41  20 69 6e 70 75 74 5f 32  |r..L.STA input_2|
00000970  2c 20 59 0d 04 56 05 20  0d 04 60 07 49 4e 59 0d  |, Y..V. ..`.INY.|
00000980  04 6a 0a 43 50 59 20 23  35 0d 04 74 18 42 4e 45  |.j.CPY #5..t.BNE|
00000990  20 65 6e 74 65 72 5f 70  61 72 61 73 5f 6c 6f 6f  | enter_paras_loo|
000009a0  70 0d 04 7e 05 20 0d 04  88 39 50 4c 41 20 20 20  |p..~. ...9PLA   |
000009b0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
000009c0  20 20 20 20 20 20 5c 20  52 65 73 74 6f 72 65 20  |      \ Restore |
000009d0  7a 70 77 73 20 66 72 6f  6d 20 73 74 61 63 6b 0d  |zpws from stack.|
000009e0  04 92 0c 53 54 41 20 7a  70 2b 33 0d 04 9c 07 50  |...STA zp+3....P|
000009f0  4c 41 0d 04 a6 0c 53 54  41 20 7a 70 2b 32 0d 04  |LA....STA zp+2..|
00000a00  b0 07 50 4c 41 0d 04 ba  0c 53 54 41 20 7a 70 2b  |..PLA....STA zp+|
00000a10  31 0d 04 c4 07 50 4c 41  0d 04 ce 0a 53 54 41 20  |1....PLA....STA |
00000a20  7a 70 0d 04 d8 07 52 54  53 0d 04 e2 05 20 0d 04  |zp....RTS.... ..|
00000a30  ec 10 2e 74 72 61 6e 73  66 65 72 5f 69 6e 0d 04  |...transfer_in..|
00000a40  f6 05 20 0d 05 00 37 5c  20 20 54 68 69 73 20 73  |.. ...7\  This s|
00000a50  75 62 72 6f 75 74 69 6e  65 20 74 61 6b 65 73 20  |ubroutine takes |
00000a60  74 68 65 20 6e 75 6d 62  65 72 73 20 69 6e 20 69  |the numbers in i|
00000a70  6e 70 75 74 5f 31 20 61  6e 64 0d 05 0a 31 5c 20  |nput_1 and...1\ |
00000a80  20 69 6e 70 75 74 5f 32  20 61 6e 64 20 70 75 74  | input_2 and put|
00000a90  73 20 74 68 65 6d 20 69  6e 20 66 70 77 73 5f 31  |s them in fpws_1|
00000aa0  20 61 6e 64 20 66 70 77  73 5f 32 0d 05 14 05 20  | and fpws_2.... |
00000ab0  0d 05 1e 0a 4c 44 58 20  23 35 0d 05 28 05 20 0d  |....LDX #5..(. .|
00000ac0  05 32 15 2e 74 72 61 6e  73 66 65 72 5f 69 6e 5f  |.2..transfer_in_|
00000ad0  6c 6f 6f 70 0d 05 3c 05  20 0d 05 46 14 4c 44 41  |loop..<. ..F.LDA|
00000ae0  20 69 6e 70 75 74 5f 31  2d 31 2c 20 58 0d 05 50  | input_1-1, X..P|
00000af0  13 53 54 41 20 66 70 77  73 5f 31 2d 31 2c 20 58  |.STA fpws_1-1, X|
00000b00  0d 05 5a 14 4c 44 41 20  69 6e 70 75 74 5f 32 2d  |..Z.LDA input_2-|
00000b10  31 2c 20 58 0d 05 64 13  53 54 41 20 66 70 77 73  |1, X..d.STA fpws|
00000b20  5f 32 2d 31 2c 20 58 0d  05 6e 07 44 45 58 0d 05  |_2-1, X..n.DEX..|
00000b30  78 19 42 4e 45 20 74 72  61 6e 73 66 65 72 5f 69  |x.BNE transfer_i|
00000b40  6e 5f 6c 6f 6f 70 20 0d  05 82 05 20 0d 05 8c 07  |n_loop .... ....|
00000b50  52 54 53 0d 05 96 05 20  0d 05 a0 0c 2e 66 70 5f  |RTS.... .....fp_|
00000b60  6d 75 6c 74 0d 05 aa 06  20 20 0d 05 b4 35 5c 20  |mult....  ...5\ |
00000b70  20 4d 75 6c 74 69 70 6c  69 65 73 20 74 68 65 20  | Multiplies the |
00000b80  6e 75 6d 62 65 72 73 20  69 6e 20 66 70 77 73 5f  |numbers in fpws_|
00000b90  31 20 62 79 20 74 68 65  20 6e 75 6d 62 65 72 0d  |1 by the number.|
00000ba0  05 be 2e 5c 20 20 69 6e  20 66 70 77 73 5f 31 20  |...\  in fpws_1 |
00000bb0  61 6e 64 20 70 75 74 73  20 74 68 65 20 72 65 73  |and puts the res|
00000bc0  75 6c 74 20 69 6e 20 66  70 77 73 5f 31 0d 05 c8  |ult in fpws_1...|
00000bd0  05 20 0d 05 d2 2d 5c 20  20 46 69 72 73 74 20 61  |. ...-\  First a|
00000be0  6c 6c 6f 77 20 66 6f 72  20 7a 65 72 6f 73 20 69  |llow for zeros i|
00000bf0  6e 20 74 68 65 20 77 6f  72 6b 73 70 61 63 65 0d  |n the workspace.|
00000c00  05 dc 05 20 0d 05 e6 10  4c 44 41 20 66 70 77 73  |... ....LDA fpws|
00000c10  5f 31 2b 31 0d 05 f0 4a  84 41 20 66 70 77 73 5f  |_1+1...J.A fpws_|
00000c20  31 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |1               |
00000c30  20 20 20 5c 20 5a 65 72  6f 20 69 66 20 65 78 70  |   \ Zero if exp|
00000c40  6f 6e 65 6e 74 20 26 20  74 6f 70 20 6d 61 6e 74  |onent & top mant|
00000c50  69 73 73 61 20 62 79 74  65 20 7a 65 72 6f 0d 05  |issa byte zero..|
00000c60  fa 43 42 45 51 20 6d 61  6b 65 5f 7a 65 72 6f 20  |.CBEQ make_zero |
00000c70  20 20 20 20 20 20 20 20  20 20 20 20 20 20 5c 20  |              \ |
00000c80  49 66 20 31 73 74 20 6e  6f 20 69 73 20 7a 65 72  |If 1st no is zer|
00000c90  6f 20 74 68 65 6e 20 72  65 73 75 6c 74 20 3d 20  |o then result = |
00000ca0  30 0d 06 04 06 20 20 0d  06 0e 10 4c 44 41 20 66  |0....  ....LDA f|
00000cb0  70 77 73 5f 32 2b 31 0d  06 18 4a 84 41 20 66 70  |pws_2+1...J.A fp|
00000cc0  77 73 5f 32 20 20 20 20  20 20 20 20 20 20 20 20  |ws_2            |
00000cd0  20 20 20 20 20 20 5c 20  5a 65 72 6f 20 69 66 20  |      \ Zero if |
00000ce0  65 78 70 6f 6e 65 6e 74  20 26 20 74 6f 70 20 6d  |exponent & top m|
00000cf0  61 6e 74 69 73 73 61 20  62 79 74 65 20 7a 65 72  |antissa byte zer|
00000d00  6f 0d 06 22 43 42 45 51  20 6d 61 6b 65 5f 7a 65  |o.."CBEQ make_ze|
00000d10  72 6f 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |ro              |
00000d20  20 5c 20 49 66 20 32 6e  64 20 6e 6f 20 69 73 20  | \ If 2nd no is |
00000d30  7a 65 72 6f 20 74 68 65  6e 20 72 65 73 75 6c 74  |zero then result|
00000d40  20 3d 20 30 0d 06 2c 05  20 0d 06 36 1c 5c 20 20  | = 0..,. ..6.\  |
00000d50  49 66 20 72 65 73 75 6c  74 20 69 73 20 6e 6f 74  |If result is not|
00000d60  20 7a 65 72 6f 0d 06 40  05 20 0d 06 4a 3f 4a 53  | zero..@. ..J?JS|
00000d70  52 20 6d 6f 76 65 5f 73  69 67 6e 5f 62 69 74 20  |R move_sign_bit |
00000d80  20 20 20 20 20 20 20 20  20 20 5c 20 4d 6f 76 65  |          \ Move|
00000d90  20 73 69 67 6e 20 61 6e  64 20 72 65 73 74 6f 72  | sign and restor|
00000da0  65 20 74 6f 70 20 62 69  74 0d 06 54 05 20 0d 06  |e top bit..T. ..|
00000db0  5e 18 4a 53 52 20 6d 75  6c 74 5f 64 65 6e 6f 72  |^.JSR mult_denor|
00000dc0  6d 61 6c 69 73 65 0d 06  68 05 20 0d 06 72 16 4a  |malise..h. ..r.J|
00000dd0  53 52 20 6d 75 6c 74 5f  6d 61 6e 74 69 73 73 61  |SR mult_mantissa|
00000de0  65 0d 06 7c 05 20 0d 06  86 1a 4a 53 52 20 72 65  |e..|. ....JSR re|
00000df0  6e 6f 72 6d 61 6c 69 73  65 5f 6d 75 6c 64 69 76  |normalise_muldiv|
00000e00  0d 06 90 05 20 0d 06 9a  18 4a 53 52 20 72 65 70  |.... ....JSR rep|
00000e10  6c 61 63 65 5f 73 69 67  6e 5f 62 69 74 0d 06 a4  |lace_sign_bit...|
00000e20  05 20 0d 06 ae 07 52 54  53 0d 06 b8 05 20 0d 06  |. ....RTS.... ..|
00000e30  c2 0b 2e 66 70 5f 64 69  76 0d 06 cc 06 20 20 0d  |...fp_div....  .|
00000e40  06 d6 38 5c 20 20 44 69  76 69 64 65 73 20 74 68  |..8\  Divides th|
00000e50  65 20 6e 75 6d 62 65 72  20 69 6e 20 66 70 77 73  |e number in fpws|
00000e60  5f 31 20 62 79 20 74 68  65 20 6f 6e 65 20 69 6e  |_1 by the one in|
00000e70  20 66 70 77 73 5f 32 0d  06 e0 24 5c 20 20 61 6e  | fpws_2...$\  an|
00000e80  64 20 70 75 74 73 20 74  68 65 20 72 65 73 75 6c  |d puts the resul|
00000e90  74 20 69 6e 20 66 70 77  73 5f 31 0d 06 ea 05 20  |t in fpws_1.... |
00000ea0  0d 06 f4 2d 5c 20 20 46  69 72 73 74 20 61 6c 6c  |...-\  First all|
00000eb0  6f 77 20 66 6f 72 20 7a  65 72 6f 73 20 69 6e 20  |ow for zeros in |
00000ec0  74 68 65 20 77 6f 72 6b  73 70 61 63 65 0d 06 fe  |the workspace...|
00000ed0  06 20 20 0d 07 08 10 4c  44 41 20 66 70 77 73 5f  |.  ....LDA fpws_|
00000ee0  32 2b 31 0d 07 12 4a 84  41 20 66 70 77 73 5f 32  |2+1...J.A fpws_2|
00000ef0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00000f00  20 20 5c 20 5a 65 72 6f  20 69 66 20 65 78 70 6f  |  \ Zero if expo|
00000f10  6e 65 6e 74 20 26 20 74  6f 70 20 6d 61 6e 74 69  |nent & top manti|
00000f20  73 73 61 20 62 79 74 65  20 7a 65 72 6f 0d 07 1c  |ssa byte zero...|
00000f30  41 42 45 51 20 64 69 76  5f 62 79 5f 7a 65 72 6f  |ABEQ div_by_zero|
00000f40  20 20 20 20 20 20 20 20  20 20 20 20 20 5c 20 49  |             \ I|
00000f50  66 20 32 6e 64 20 6e 6f  20 69 73 20 30 20 77 65  |f 2nd no is 0 we|
00000f60  20 68 61 76 65 20 61 6e  20 65 72 72 6f 72 0d 07  | have an error..|
00000f70  26 05 20 0d 07 30 10 4c  44 41 20 66 70 77 73 5f  |&. ..0.LDA fpws_|
00000f80  31 2b 31 0d 07 3a 4a 84  41 20 66 70 77 73 5f 31  |1+1..:J.A fpws_1|
00000f90  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00000fa0  20 20 5c 20 5a 65 72 6f  20 69 66 20 65 78 70 6f  |  \ Zero if expo|
00000fb0  6e 65 6e 74 20 26 20 74  6f 70 20 6d 61 6e 74 69  |nent & top manti|
00000fc0  73 73 61 20 62 79 74 65  20 7a 65 72 6f 0d 07 44  |ssa byte zero..D|
00000fd0  43 42 45 51 20 6d 61 6b  65 5f 7a 65 72 6f 20 20  |CBEQ make_zero  |
00000fe0  20 20 20 20 20 20 20 20  20 20 20 20 20 5c 20 49  |             \ I|
00000ff0  66 20 31 73 74 20 6e 6f  20 69 73 20 7a 65 72 6f  |f 1st no is zero|
00001000  20 74 68 65 6e 20 72 65  73 75 6c 74 20 3d 20 30  | then result = 0|
00001010  0d 07 4e 05 20 0d 07 58  3f 4a 53 52 20 6d 6f 76  |..N. ..X?JSR mov|
00001020  65 5f 73 69 67 6e 5f 62  69 74 20 20 20 20 20 20  |e_sign_bit      |
00001030  20 20 20 20 20 5c 20 4d  6f 76 65 20 73 69 67 6e  |     \ Move sign|
00001040  20 61 6e 64 20 72 65 73  74 6f 72 65 20 74 6f 70  | and restore top|
00001050  20 62 69 74 0d 07 62 05  20 0d 07 6c 17 4a 53 52  | bit..b. ..l.JSR|
00001060  20 64 69 76 5f 64 65 6e  6f 72 6d 61 6c 69 73 65  | div_denormalise|
00001070  0d 07 76 05 20 0d 07 80  15 4a 53 52 20 64 69 76  |..v. ....JSR div|
00001080  5f 6d 61 6e 74 69 73 73  61 65 0d 07 8a 05 20 0d  |_mantissae.... .|
00001090  07 94 1a 4a 53 52 20 72  65 6e 6f 72 6d 61 6c 69  |...JSR renormali|
000010a0  73 65 5f 6d 75 6c 64 69  76 0d 07 9e 05 20 0d 07  |se_muldiv.... ..|
000010b0  a8 18 4a 53 52 20 72 65  70 6c 61 63 65 5f 73 69  |..JSR replace_si|
000010c0  67 6e 5f 62 69 74 0d 07  b2 05 20 0d 07 bc 07 52  |gn_bit.... ....R|
000010d0  54 53 0d 07 c6 05 20 0d  07 d0 0e 2e 6d 61 6b 65  |TS.... .....make|
000010e0  5f 7a 65 72 6f 0d 07 da  05 20 0d 07 e4 25 5c 20  |_zero.... ...%\ |
000010f0  20 54 68 69 73 20 72 6f  75 74 69 6e 65 20 6d 61  | This routine ma|
00001100  6b 65 73 20 66 70 77 73  5f 31 20 7a 65 72 6f 0d  |kes fpws_1 zero.|
00001110  07 ee 05 20 0d 07 f8 0a  4c 44 41 20 23 30 0d 08  |... ....LDA #0..|
00001120  02 0a 4c 44 58 20 23 35  0d 08 0c 05 20 0d 08 16  |..LDX #5.... ...|
00001130  13 2e 6d 61 6b 65 5f 7a  65 72 6f 5f 6c 6f 6f 70  |..make_zero_loop|
00001140  0d 08 20 05 20 0d 08 2a  13 53 54 41 20 66 70 77  |.. . ..*.STA fpw|
00001150  73 5f 31 2d 31 2c 20 58  0d 08 34 07 44 45 58 0d  |s_1-1, X..4.DEX.|
00001160  08 3e 16 42 4e 45 20 6d  61 6b 65 5f 7a 65 72 6f  |.>.BNE make_zero|
00001170  5f 6c 6f 6f 70 0d 08 48  05 20 0d 08 52 07 52 54  |_loop..H. ..R.RT|
00001180  53 0d 08 5c 05 20 0d 08  66 10 2e 64 69 76 5f 62  |S..\. ..f..div_b|
00001190  79 5f 7a 65 72 6f 0d 08  70 05 20 0d 08 7a 2c 5c  |y_zero..p. ..z,\|
000011a0  20 20 54 68 69 73 20 69  73 20 61 6e 20 65 72 72  |  This is an err|
000011b0  6f 72 20 63 6f 6e 64 69  74 69 6f 6e 2c 20 6e 75  |or condition, nu|
000011c0  6d 62 65 72 20 31 38 0d  08 84 05 20 0d 08 8e 07  |mber 18.... ....|
000011d0  42 52 4b 0d 08 98 11 4f  50 54 20 a4 45 51 55 42  |BRK....OPT .EQUB|
000011e0  28 31 38 29 0d 08 a2 2a  4f 50 54 20 a4 45 51 55  |(18)...*OPT .EQU|
000011f0  53 28 22 41 74 74 65 6d  70 74 20 74 6f 20 64 69  |S("Attempt to di|
00001200  76 69 64 65 20 62 79 20  7a 65 72 6f 22 29 0d 08  |vide by zero")..|
00001210  ac 10 4f 50 54 20 a4 45  51 55 42 28 30 29 0d 08  |..OPT .EQUB(0)..|
00001220  b6 05 20 0d 08 c0 12 2e  6d 6f 76 65 5f 73 69 67  |.. .....move_sig|
00001230  6e 5f 62 69 74 0d 08 ca  05 20 0d 08 d4 48 5c 20  |n_bit.... ...H\ |
00001240  20 54 68 69 73 20 72 6f  75 74 69 6e 65 20 74 72  | This routine tr|
00001250  61 6e 73 66 65 72 73 20  74 68 65 20 73 69 67 6e  |ansfers the sign|
00001260  20 62 69 74 20 66 72 6f  6d 20 74 68 65 20 74 6f  | bit from the to|
00001270  70 20 6f 66 20 74 68 65  20 6d 61 6e 74 69 73 73  |p of the mantiss|
00001280  61 65 0d 08 de 40 5c 20  20 61 6e 64 20 70 75 74  |ae...@\  and put|
00001290  73 20 69 74 20 69 6e 74  6f 20 61 20 73 69 67 6e  |s it into a sign|
000012a0  20 62 79 74 65 20 2d 20  80 69 6e 67 20 74 6f 20  | byte - .ing to |
000012b0  6c 65 61 76 65 20 74 6f  70 20 62 69 74 20 6f 6e  |leave top bit on|
000012c0  6c 79 0d 08 e8 35 5c 20  20 61 6e 64 20 74 68 65  |ly...5\  and the|
000012d0  6e 20 72 65 73 74 6f 72  65 73 20 74 68 65 20 74  |n restores the t|
000012e0  6f 70 20 62 69 74 20 6f  66 20 74 68 65 20 6d 61  |op bit of the ma|
000012f0  6e 74 69 73 73 61 65 0d  08 f2 06 20 20 0d 08 fc  |ntissae....  ...|
00001300  10 4c 44 41 20 66 70 77  73 5f 31 2b 31 0d 09 06  |.LDA fpws_1+1...|
00001310  0a 80 20 23 26 38 30 0d  09 10 46 53 54 41 20 66  |.. #&80...FSTA f|
00001320  70 77 73 5f 31 5f 73 69  67 6e 20 20 20 20 20 20  |pws_1_sign      |
00001330  20 20 20 20 20 20 20 5c  20 66 70 77 73 5f 31 5f  |       \ fpws_1_|
00001340  73 69 67 6e 20 69 73 20  2d 76 65 20 69 66 20 6e  |sign is -ve if n|
00001350  75 6d 62 65 72 20 77 61  73 20 2d 76 65 0d 09 1a  |umber was -ve...|
00001360  0c 4c 44 41 20 23 26 38  30 0d 09 24 0f 84 41 20  |.LDA #&80..$..A |
00001370  66 70 77 73 5f 31 2b 31  0d 09 2e 44 53 54 41 20  |fpws_1+1...DSTA |
00001380  66 70 77 73 5f 31 2b 31  20 20 20 20 20 20 20 20  |fpws_1+1        |
00001390  20 20 20 20 20 20 20 20  5c 20 52 65 73 74 6f 72  |        \ Restor|
000013a0  65 73 20 74 68 65 20 74  6f 70 20 62 69 74 20 6f  |es the top bit o|
000013b0  66 20 74 68 65 20 6e 75  6d 62 65 72 0d 09 38 05  |f the number..8.|
000013c0  20 0d 09 42 10 4c 44 41  20 66 70 77 73 5f 32 2b  | ..B.LDA fpws_2+|
000013d0  31 0d 09 4c 0a 80 20 23  26 38 30 0d 09 56 46 53  |1..L.. #&80..VFS|
000013e0  54 41 20 66 70 77 73 5f  32 5f 73 69 67 6e 20 20  |TA fpws_2_sign  |
000013f0  20 20 20 20 20 20 20 20  20 20 20 5c 20 66 70 77  |           \ fpw|
00001400  73 5f 32 5f 73 69 67 6e  20 69 73 20 2d 76 65 20  |s_2_sign is -ve |
00001410  69 66 20 6e 75 6d 62 65  72 20 77 61 73 20 2d 76  |if number was -v|
00001420  65 0d 09 60 0c 4c 44 41  20 23 26 38 30 0d 09 6a  |e..`.LDA #&80..j|
00001430  0f 84 41 20 66 70 77 73  5f 32 2b 31 0d 09 74 44  |..A fpws_2+1..tD|
00001440  53 54 41 20 66 70 77 73  5f 32 2b 31 20 20 20 20  |STA fpws_2+1    |
00001450  20 20 20 20 20 20 20 20  20 20 20 20 5c 20 52 65  |            \ Re|
00001460  73 74 6f 72 65 73 20 74  68 65 20 74 6f 70 20 62  |stores the top b|
00001470  69 74 20 6f 66 20 74 68  65 20 6e 75 6d 62 65 72  |it of the number|
00001480  0d 09 7e 05 20 0d 09 88  07 52 54 53 0d 09 92 05  |..~. ....RTS....|
00001490  20 0d 09 9c 15 2e 6d 75  6c 74 5f 64 65 6e 6f 72  | .....mult_denor|
000014a0  6d 61 6c 69 73 65 0d 09  a6 05 20 0d 09 b0 3a 5c  |malise.... ...:\|
000014b0  20 20 46 69 72 73 74 2c  20 62 6f 74 68 20 6e 75  |  First, both nu|
000014c0  6d 62 65 72 73 20 6d 75  73 74 20 62 65 20 73 68  |mbers must be sh|
000014d0  69 66 74 65 64 20 64 6f  77 6e 20 62 79 20 32 20  |ifted down by 2 |
000014e0  62 79 74 65 73 0d 09 ba  3d 5c 20 20 61 6e 64 20  |bytes...=\  and |
000014f0  65 78 70 6f 6e 65 6e 74  73 20 62 6f 74 68 20 69  |exponents both i|
00001500  6e 63 72 65 61 73 65 64  20 62 79 20 31 36 2e 20  |ncreased by 16. |
00001510  20 54 68 69 73 20 65 6e  73 75 72 65 73 20 74 68  | This ensures th|
00001520  61 74 0d 09 c4 2a 5c 20  20 74 68 65 20 66 69 6e  |at...*\  the fin|
00001530  61 6c 20 6e 75 6d 62 65  72 20 64 6f 65 73 20 6e  |al number does n|
00001540  6f 74 20 6f 76 65 72 66  6c 6f 77 2e 0d 09 ce 05  |ot overflow.....|
00001550  20 0d 09 d8 0b 4c 44 58  20 23 31 36 0d 09 e2 05  | ....LDX #16....|
00001560  20 0d 09 ec 21 2e 6d 75  6c 74 5f 64 65 6e 6f 72  | ...!.mult_denor|
00001570  6d 61 6c 69 73 65 5f 72  6f 74 61 74 65 5f 6c 6f  |malise_rotate_lo|
00001580  6f 70 0d 09 f6 05 20 0d  0a 00 37 4c 53 52 20 66  |op.... ...7LSR f|
00001590  70 77 73 5f 31 2b 31 20  20 20 20 20 20 20 20 20  |pws_1+1         |
000015a0  20 20 20 20 20 20 20 5c  20 52 6f 74 61 74 65 20  |       \ Rotate |
000015b0  6d 61 6e 74 69 73 73 61  20 72 69 67 68 74 0d 0a  |mantissa right..|
000015c0  0a 10 52 4f 52 20 66 70  77 73 5f 31 2b 32 0d 0a  |..ROR fpws_1+2..|
000015d0  14 10 52 4f 52 20 66 70  77 73 5f 31 2b 33 0d 0a  |..ROR fpws_1+3..|
000015e0  1e 10 52 4f 52 20 66 70  77 73 5f 31 2b 34 0d 0a  |..ROR fpws_1+4..|
000015f0  28 05 20 0d 0a 32 10 4c  53 52 20 66 70 77 73 5f  |(. ..2.LSR fpws_|
00001600  32 2b 31 0d 0a 3c 10 52  4f 52 20 66 70 77 73 5f  |2+1..<.ROR fpws_|
00001610  32 2b 32 0d 0a 46 10 52  4f 52 20 66 70 77 73 5f  |2+2..F.ROR fpws_|
00001620  32 2b 33 0d 0a 50 10 52  4f 52 20 66 70 77 73 5f  |2+3..P.ROR fpws_|
00001630  32 2b 34 0d 0a 5a 05 20  0d 0a 64 07 44 45 58 0d  |2+4..Z. ..d.DEX.|
00001640  0a 6e 24 42 4e 45 20 6d  75 6c 74 5f 64 65 6e 6f  |.n$BNE mult_deno|
00001650  72 6d 61 6c 69 73 65 5f  72 6f 74 61 74 65 5f 6c  |rmalise_rotate_l|
00001660  6f 6f 70 0d 0a 78 05 20  0d 0a 82 22 5c 20 43 61  |oop..x. ..."\ Ca|
00001670  6c 63 75 6c 61 74 65 20  65 78 70 6f 6e 65 6e 74  |lculate exponent|
00001680  20 6f 66 20 72 65 73 75  6c 74 0d 0a 8c 05 20 0d  | of result.... .|
00001690  0a 96 07 53 45 43 0d 0a  a0 0e 4c 44 41 20 66 70  |...SEC....LDA fp|
000016a0  77 73 5f 31 0d 0a aa 43  53 42 43 20 23 26 38 30  |ws_1...CSBC #&80|
000016b0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
000016c0  20 20 20 20 5c 20 53 75  62 74 72 61 63 74 20 26  |    \ Subtract &|
000016d0  38 30 20 66 61 63 74 6f  72 20 66 72 6f 6d 20 65  |80 factor from e|
000016e0  78 70 6f 6e 65 6e 74 0d  0a b4 0e 53 54 41 20 66  |xponent....STA f|
000016f0  70 77 73 5f 31 0d 0a be  05 20 0d 0a c8 07 53 45  |pws_1.... ....SE|
00001700  43 0d 0a d2 0e 4c 44 41  20 66 70 77 73 5f 32 0d  |C....LDA fpws_2.|
00001710  0a dc 42 53 42 43 20 23  26 38 30 20 20 20 20 20  |..BSBC #&80     |
00001720  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 5c  |               \|
00001730  20 54 68 69 73 20 69 73  20 70 61 72 74 20 6f 66  | This is part of|
00001740  20 42 42 43 20 42 41 53  49 43 20 66 6f 72 6d 61  | BBC BASIC forma|
00001750  74 0d 0a e6 07 43 4c 43  0d 0a f0 0e 41 44 43 20  |t....CLC....ADC |
00001760  66 70 77 73 5f 31 0d 0a  fa 48 42 56 53 20 6d 75  |fpws_1...HBVS mu|
00001770  6c 74 5f 6f 66 6c 6f 77  20 20 20 20 20 20 20 20  |lt_oflow        |
00001780  20 20 20 20 20 20 5c 20  4f 76 65 72 66 6c 6f 77  |      \ Overflow|
00001790  20 66 6c 61 67 20 73 65  74 20 69 66 20 72 65 73  | flag set if res|
000017a0  75 6c 74 20 73 69 67 6e  20 77 72 6f 6e 67 0d 0b  |ult sign wrong..|
000017b0  04 07 43 4c 43 0d 0b 0e  42 41 44 43 20 23 26 38  |..CLC...BADC #&8|
000017c0  30 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |0               |
000017d0  20 20 20 20 20 5c 20 43  6f 6e 76 65 72 74 20 62  |     \ Convert b|
000017e0  61 63 6b 20 74 6f 20 42  42 43 20 42 41 53 49 43  |ack to BBC BASIC|
000017f0  20 66 6f 72 6d 61 74 0d  0b 18 0e 53 54 41 20 66  | format....STA f|
00001800  70 77 73 5f 31 0d 0b 22  05 20 0d 0b 2c 07 52 54  |pws_1..". ..,.RT|
00001810  53 0d 0b 36 05 20 0d 0b  40 0f 2e 6d 75 6c 74 5f  |S..6. ..@..mult_|
00001820  6f 66 6c 6f 77 0d 0b 4a  05 20 0d 0b 54 12 42 50  |oflow..J. ..T.BP|
00001830  4c 20 76 65 72 79 5f 73  6d 61 6c 6c 0d 0b 5e 3f  |L very_small..^?|
00001840  42 52 4b 20 20 20 20 20  20 20 20 20 20 20 20 20  |BRK             |
00001850  20 20 20 20 20 20 20 20  20 20 20 20 5c 20 41 6e  |            \ An|
00001860  20 65 72 72 6f 72 20 63  6f 6e 64 69 74 69 6f 6e  | error condition|
00001870  2c 20 6e 75 6d 62 65 72  20 32 30 0d 0b 68 12 4f  |, number 20..h.O|
00001880  50 54 20 20 a4 45 51 55  42 28 32 30 29 0d 0b 72  |PT  .EQUB(20)..r|
00001890  37 4f 50 54 20 20 a4 45  51 55 53 28 22 4e 75 6d  |7OPT  .EQUS("Num|
000018a0  62 65 72 20 6f 76 65 72  66 6c 6f 77 20 64 75 72  |ber overflow dur|
000018b0  69 6e 67 20 6d 75 6c 74  69 70 6c 69 63 61 74 69  |ing multiplicati|
000018c0  6f 6e 22 29 0d 0b 7c 11  4f 50 54 20 20 a4 45 51  |on")..|.OPT  .EQ|
000018d0  55 42 28 30 29 0d 0b 86  05 20 0d 0b 90 0f 2e 76  |UB(0).... .....v|
000018e0  65 72 79 5f 73 6d 61 6c  6c 0d 0b 9a 05 20 0d 0b  |ery_small.... ..|
000018f0  a4 45 4a 4d 50 20 6d 61  6b 65 5f 7a 65 72 6f 20  |.EJMP make_zero |
00001900  20 20 20 20 20 20 20 20  20 20 20 20 20 20 5c 20  |              \ |
00001910  41 6e 73 77 65 72 20 69  73 20 73 6f 20 73 6d 61  |Answer is so sma|
00001920  6c 6c 20 69 74 20 69 73  20 7a 65 72 6f 20 28 69  |ll it is zero (i|
00001930  73 68 29 0d 0b ae 05 20  0d 0b b8 14 2e 64 69 76  |sh).... .....div|
00001940  5f 64 65 6e 6f 72 6d 61  6c 69 73 65 0d 0b c2 05  |_denormalise....|
00001950  20 0d 0b cc 39 5c 20 20  53 68 69 66 74 20 74 68  | ...9\  Shift th|
00001960  65 20 64 69 76 69 73 6f  72 20 72 69 67 68 74 20  |e divisor right |
00001970  62 79 20 32 20 62 79 74  65 73 20 74 6f 20 61 69  |by 2 bytes to ai|
00001980  64 20 64 69 76 69 73 69  6f 6e 0d 0b d6 05 20 0d  |d division.... .|
00001990  0b e0 0b 4c 44 58 20 23  31 36 0d 0b ea 05 20 0d  |...LDX #16.... .|
000019a0  0b f4 11 2e 64 69 76 5f  64 65 6e 5f 6c 6f 6f 70  |....div_den_loop|
000019b0  0d 0b fe 05 20 0d 0c 08  11 4c 53 52 20 64 69 76  |.... ....LSR div|
000019c0  69 73 6f 72 2b 31 0d 0c  12 12 52 4f 52 20 64 69  |isor+1....ROR di|
000019d0  76 69 73 6f 72 2b 32 20  0d 0c 1c 11 52 4f 52 20  |visor+2 ....ROR |
000019e0  64 69 76 69 73 6f 72 2b  33 0d 0c 26 11 52 4f 52  |divisor+3..&.ROR|
000019f0  20 64 69 76 69 73 6f 72  2b 34 0d 0c 30 11 52 4f  | divisor+4..0.RO|
00001a00  52 20 64 69 76 69 73 6f  72 2b 35 0d 0c 3a 11 52  |R divisor+5..:.R|
00001a10  4f 52 20 64 69 76 69 73  6f 72 2b 36 0d 0c 44 05  |OR divisor+6..D.|
00001a20  20 0d 0c 4e 07 44 45 58  0d 0c 58 14 42 4e 45 20  | ..N.DEX..X.BNE |
00001a30  64 69 76 5f 64 65 6e 5f  6c 6f 6f 70 0d 0c 62 05  |div_den_loop..b.|
00001a40  20 0d 0c 6c 2b 5c 20 20  43 61 6c 63 75 6c 61 74  | ..l+\  Calculat|
00001a50  65 20 69 6e 69 74 69 61  6c 20 65 78 70 6f 6e 65  |e initial expone|
00001a60  6e 74 20 6f 66 20 72 65  73 75 6c 74 0d 0c 76 05  |nt of result..v.|
00001a70  20 0d 0c 80 07 53 45 43  0d 0c 8a 0e 4c 44 41 20  | ....SEC....LDA |
00001a80  66 70 77 73 5f 32 0d 0c  94 43 53 42 43 20 23 26  |fpws_2...CSBC #&|
00001a90  38 30 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |80              |
00001aa0  20 20 20 20 20 20 5c 20  53 75 62 74 72 61 63 74  |      \ Subtract|
00001ab0  20 26 38 30 20 66 61 63  74 6f 72 20 66 72 6f 6d  | &80 factor from|
00001ac0  20 65 78 70 6f 6e 65 6e  74 0d 0c 9e 0e 53 54 41  | exponent....STA|
00001ad0  20 66 70 77 73 5f 32 0d  0c a8 05 20 0d 0c b2 07  | fpws_2.... ....|
00001ae0  53 45 43 0d 0c bc 0e 4c  44 41 20 66 70 77 73 5f  |SEC....LDA fpws_|
00001af0  31 0d 0c c6 42 53 42 43  20 23 26 38 30 20 20 20  |1...BSBC #&80   |
00001b00  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00001b10  20 5c 20 54 68 69 73 20  69 73 20 70 61 72 74 20  | \ This is part |
00001b20  6f 66 20 42 42 43 20 42  41 53 49 43 20 66 6f 72  |of BBC BASIC for|
00001b30  6d 61 74 0d 0c d0 07 53  45 43 0d 0c da 0e 53 42  |mat....SEC....SB|
00001b40  43 20 66 70 77 73 5f 32  0d 0c e4 48 42 56 53 20  |C fpws_2...HBVS |
00001b50  64 69 76 5f 6f 66 6c 6f  77 20 20 20 20 20 20 20  |div_oflow       |
00001b60  20 20 20 20 20 20 20 20  5c 20 4f 76 65 72 66 6c  |        \ Overfl|
00001b70  6f 77 20 66 6c 61 67 20  73 65 74 20 69 66 20 72  |ow flag set if r|
00001b80  65 73 75 6c 74 20 73 69  67 6e 20 77 72 6f 6e 67  |esult sign wrong|
00001b90  0d 0c ee 07 43 4c 43 0d  0c f8 42 41 44 43 20 23  |....CLC...BADC #|
00001ba0  26 38 30 20 20 20 20 20  20 20 20 20 20 20 20 20  |&80             |
00001bb0  20 20 20 20 20 20 20 5c  20 43 6f 6e 76 65 72 74  |       \ Convert|
00001bc0  20 62 61 63 6b 20 74 6f  20 42 42 43 20 42 41 53  | back to BBC BAS|
00001bd0  49 43 20 66 6f 72 6d 61  74 0d 0d 02 07 43 4c 43  |IC format....CLC|
00001be0  0d 0d 0c 48 41 44 43 20  23 26 32 30 20 20 20 20  |...HADC #&20    |
00001bf0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00001c00  5c 20 41 64 64 20 33 32  20 74 6f 20 63 6f 6d 70  |\ Add 32 to comp|
00001c10  65 6e 73 61 74 65 20 66  6f 72 20 64 65 6e 6f 72  |ensate for denor|
00001c20  6d 61 6c 69 73 69 6e 67  0d 0d 16 0e 53 54 41 20  |malising....STA |
00001c30  66 70 77 73 5f 31 0d 0d  20 05 20 0d 0d 2a 07 52  |fpws_1.. . ..*.R|
00001c40  54 53 0d 0d 34 05 20 0d  0d 3e 0e 2e 64 69 76 5f  |TS..4. ..>..div_|
00001c50  6f 66 6c 6f 77 0d 0d 48  05 20 0d 0d 52 13 42 4d  |oflow..H. ..R.BM|
00001c60  49 20 74 6f 6f 5f 62 69  67 5f 64 69 76 0d 0d 5c  |I too_big_div..\|
00001c70  11 4a 4d 50 20 6d 61 6b  65 5f 7a 65 72 6f 0d 0d  |.JMP make_zero..|
00001c80  66 05 20 0d 0d 70 10 2e  74 6f 6f 5f 62 69 67 5f  |f. ..p..too_big_|
00001c90  64 69 76 0d 0d 7a 05 20  0d 0d 84 07 42 52 4b 0d  |div..z. ....BRK.|
00001ca0  0d 8e 43 4f 50 54 20 20  a4 45 51 55 42 28 32 30  |..COPT  .EQUB(20|
00001cb0  29 20 20 20 20 20 20 20  20 20 20 20 20 20 5c 20  |)             \ |
00001cc0  41 20 42 41 53 49 43 20  65 72 72 6f 72 20 63 6f  |A BASIC error co|
00001cd0  6e 64 69 74 69 6f 6e 2c  20 6e 75 6d 62 65 72 20  |ndition, number |
00001ce0  32 30 0d 0d 98 31 4f 50  54 20 20 a4 45 51 55 53  |20...1OPT  .EQUS|
00001cf0  28 22 4e 75 6d 62 65 72  20 6f 76 65 72 66 6c 6f  |("Number overflo|
00001d00  77 20 64 75 72 69 6e 67  20 64 69 76 69 73 69 6f  |w during divisio|
00001d10  6e 22 29 0d 0d a2 11 4f  50 54 20 20 a4 45 51 55  |n")....OPT  .EQU|
00001d20  42 28 30 29 0d 0d ac 05  20 0d 0d b6 13 2e 6d 75  |B(0).... .....mu|
00001d30  6c 74 5f 6d 61 6e 74 69  73 73 61 65 0d 0d c0 05  |lt_mantissae....|
00001d40  20 0d 0d ca 39 5c 20 20  41 73 73 75 6d 65 73 20  | ...9\  Assumes |
00001d50  74 68 61 74 20 6e 75 6d  62 65 72 73 20 74 6f 20  |that numbers to |
00001d60  62 65 20 6d 75 6c 74 69  70 6c 69 65 64 20 61 72  |be multiplied ar|
00001d70  65 20 70 75 74 20 69 6e  74 6f 0d 0d d4 35 5c 20  |e put into...5\ |
00001d80  20 6d 75 6c 74 69 70 6c  69 63 61 6e 64 20 61 6e  | multiplicand an|
00001d90  64 20 6d 75 6c 74 69 70  6c 69 65 72 2e 20 20 70  |d multiplier.  p|
00001da0  70 77 73 20 69 73 20 75  73 65 64 20 66 6f 72 0d  |pws is used for.|
00001db0  0d de 35 5c 20 20 70 61  72 74 69 61 6c 20 70 72  |..5\  partial pr|
00001dc0  6f 64 75 63 74 2e 20 52  65 73 75 6c 74 20 69 73  |oduct. Result is|
00001dd0  20 70 75 74 20 69 6e 74  6f 20 6d 75 6c 74 69 70  | put into multip|
00001de0  6c 69 65 72 0d 0d e8 05  20 0d 0d f2 0a 4c 44 41  |lier.... ....LDA|
00001df0  20 23 30 0d 0d fc 3b 53  54 41 20 70 70 77 73 20  | #0...;STA ppws |
00001e00  20 20 20 20 20 20 20 20  20 20 20 20 20 5c 20 43  |             \ C|
00001e10  6c 65 61 72 20 70 61 72  74 69 61 6c 20 70 72 6f  |lear partial pro|
00001e20  64 75 63 74 20 77 6f 72  6b 73 70 61 63 65 0d 0e  |duct workspace..|
00001e30  06 0e 53 54 41 20 70 70  77 73 2b 31 0d 0e 10 0e  |..STA ppws+1....|
00001e40  53 54 41 20 70 70 77 73  2b 32 0d 0e 1a 0e 53 54  |STA ppws+2....ST|
00001e50  41 20 70 70 77 73 2b 33  0d 0e 24 05 20 0d 0e 2e  |A ppws+3..$. ...|
00001e60  44 4c 44 58 20 23 33 32  20 20 20 20 20 20 20 20  |DLDX #32        |
00001e70  20 20 20 20 20 20 20 5c  20 43 61 72 72 79 20 6f  |       \ Carry o|
00001e80  75 74 20 33 32 20 74 69  6d 65 73 20 66 6f 72 20  |ut 32 times for |
00001e90  33 32 20 62 69 74 20 61  72 69 74 68 6d 65 74 69  |32 bit arithmeti|
00001ea0  63 0d 0e 38 05 20 0d 0e  42 33 4c 53 52 20 6d 75  |c..8. ..B3LSR mu|
00001eb0  6c 74 69 70 6c 69 65 72  2b 31 20 20 20 20 20 20  |ltiplier+1      |
00001ec0  5c 20 52 6f 74 61 74 65  20 6d 75 6c 74 69 70 6c  |\ Rotate multipl|
00001ed0  69 65 72 20 72 69 67 68  74 0d 0e 4c 14 52 4f 52  |ier right..L.ROR|
00001ee0  20 6d 75 6c 74 69 70 6c  69 65 72 2b 32 0d 0e 56  | multiplier+2..V|
00001ef0  14 52 4f 52 20 6d 75 6c  74 69 70 6c 69 65 72 2b  |.ROR multiplier+|
00001f00  33 0d 0e 60 14 52 4f 52  20 6d 75 6c 74 69 70 6c  |3..`.ROR multipl|
00001f10  69 65 72 2b 34 0d 0e 6a  05 20 0d 0e 74 0d 2e 6d  |ier+4..j. ..t..m|
00001f20  62 6d 5f 6c 6f 6f 70 0d  0e 7e 05 20 0d 0e 88 3a  |bm_loop..~. ...:|
00001f30  42 43 43 20 6e 6f 5f 61  64 64 5f 6d 62 6d 20 20  |BCC no_add_mbm  |
00001f40  20 20 20 20 20 20 5c 20  49 73 20 6e 65 78 74 20  |      \ Is next |
00001f50  62 69 74 20 6f 66 20 6d  75 6c 74 69 70 6c 69 65  |bit of multiplie|
00001f60  72 20 73 65 74 3f 0d 0e  92 07 43 4c 43 0d 0e 9c  |r set?....CLC...|
00001f70  2c 4c 44 41 20 6d 75 6c  74 69 70 6c 69 63 61 6e  |,LDA multiplican|
00001f80  64 2b 34 20 20 20 20 5c  20 41 64 64 20 6d 75 6c  |d+4    \ Add mul|
00001f90  74 69 70 6c 69 63 61 6e  64 0d 0e a6 0e 41 44 43  |tiplicand....ADC|
00001fa0  20 70 70 77 73 2b 33 0d  0e b0 0e 53 54 41 20 70  | ppws+3....STA p|
00001fb0  70 77 73 2b 33 0d 0e ba  16 4c 44 41 20 6d 75 6c  |pws+3....LDA mul|
00001fc0  74 69 70 6c 69 63 61 6e  64 2b 33 0d 0e c4 0e 41  |tiplicand+3....A|
00001fd0  44 43 20 70 70 77 73 2b  32 0d 0e ce 0e 53 54 41  |DC ppws+2....STA|
00001fe0  20 70 70 77 73 2b 32 0d  0e d8 16 4c 44 41 20 6d  | ppws+2....LDA m|
00001ff0  75 6c 74 69 70 6c 69 63  61 6e 64 2b 32 0d 0e e2  |ultiplicand+2...|
00002000  0e 41 44 43 20 70 70 77  73 2b 31 0d 0e ec 0e 53  |.ADC ppws+1....S|
00002010  54 41 20 70 70 77 73 2b  31 0d 0e f6 16 4c 44 41  |TA ppws+1....LDA|
00002020  20 6d 75 6c 74 69 70 6c  69 63 61 6e 64 2b 31 0d  | multiplicand+1.|
00002030  0f 00 0c 41 44 43 20 70  70 77 73 0d 0f 0a 0c 53  |...ADC ppws....S|
00002040  54 41 20 70 70 77 73 0d  0f 14 05 20 0d 0f 1e 0f  |TA ppws.... ....|
00002050  2e 6e 6f 5f 61 64 64 5f  6d 62 6d 0d 0f 28 05 20  |.no_add_mbm..(. |
00002060  0d 0f 32 3a 4c 53 52 20  70 70 77 73 20 20 20 20  |..2:LSR ppws    |
00002070  20 20 20 20 20 20 20 20  20 20 5c 20 52 6f 74 61  |          \ Rota|
00002080  74 65 20 70 70 77 73 20  26 20 6d 75 6c 74 69 70  |te ppws & multip|
00002090  6c 69 65 72 20 72 69 67  68 74 0d 0f 3c 0e 52 4f  |lier right..<.RO|
000020a0  52 20 70 70 77 73 2b 31  0d 0f 46 0e 52 4f 52 20  |R ppws+1..F.ROR |
000020b0  70 70 77 73 2b 32 0d 0f  50 0e 52 4f 52 20 70 70  |ppws+2..P.ROR pp|
000020c0  77 73 2b 33 0d 0f 5a 14  52 4f 52 20 6d 75 6c 74  |ws+3..Z.ROR mult|
000020d0  69 70 6c 69 65 72 2b 31  0d 0f 64 14 52 4f 52 20  |iplier+1..d.ROR |
000020e0  6d 75 6c 74 69 70 6c 69  65 72 2b 32 0d 0f 6e 14  |multiplier+2..n.|
000020f0  52 4f 52 20 6d 75 6c 74  69 70 6c 69 65 72 2b 33  |ROR multiplier+3|
00002100  0d 0f 78 14 52 4f 52 20  6d 75 6c 74 69 70 6c 69  |..x.ROR multipli|
00002110  65 72 2b 34 0d 0f 82 39  44 45 58 20 20 20 20 20  |er+4...9DEX     |
00002120  20 20 20 20 20 20 20 20  20 20 20 20 20 20 5c 20  |              \ |
00002130  43 6f 75 6e 74 69 6e 67  20 64 6f 77 6e 20 66 72  |Counting down fr|
00002140  6f 6d 20 33 32 20 74 6f  20 7a 65 72 6f 0d 0f 8c  |om 32 to zero...|
00002150  10 42 4e 45 20 6d 62 6d  5f 6c 6f 6f 70 0d 0f 96  |.BNE mbm_loop...|
00002160  05 20 0d 0f a0 2a 5c 20  20 50 75 74 20 72 65 73  |. ...*\  Put res|
00002170  75 6c 74 20 69 6e 20 6d  75 6c 74 69 70 6c 69 63  |ult in multiplic|
00002180  61 6e 64 20 28 66 70 77  73 5f 31 29 0d 0f aa 05  |and (fpws_1)....|
00002190  20 0d 0f b4 0a 4c 44 58  20 23 34 0d 0f be 05 20  | ....LDX #4.... |
000021a0  0d 0f c8 11 2e 73 77 61  70 5f 6d 6d 5f 6c 6f 6f  |.....swap_mm_loo|
000021b0  70 0d 0f d2 05 20 0d 0f  dc 15 4c 44 41 20 6d 75  |p.... ....LDA mu|
000021c0  6c 74 69 70 6c 69 65 72  2c 20 58 0d 0f e6 17 53  |ltiplier, X....S|
000021d0  54 41 20 6d 75 6c 74 69  70 6c 69 63 61 6e 64 2c  |TA multiplicand,|
000021e0  20 58 0d 0f f0 07 44 45  58 0d 0f fa 14 42 4e 45  | X....DEX....BNE|
000021f0  20 73 77 61 70 5f 6d 6d  5f 6c 6f 6f 70 0d 10 04  | swap_mm_loop...|
00002200  05 20 0d 10 0e 07 52 54  53 0d 10 18 05 20 0d 10  |. ....RTS.... ..|
00002210  22 12 2e 64 69 76 5f 6d  61 6e 74 69 73 73 61 65  |"..div_mantissae|
00002220  0d 10 2c 05 20 0d 10 36  35 5c 20 20 44 69 76 69  |..,. ..65\  Divi|
00002230  64 65 6e 64 20 69 73 20  69 6e 20 64 69 76 69 64  |dend is in divid|
00002240  65 6e 64 2c 20 64 69 76  69 73 6f 72 20 69 73 20  |end, divisor is |
00002250  69 6e 20 64 69 76 69 73  6f 72 0d 10 40 24 5c 20  |in divisor..@$\ |
00002260  20 4f 6e 20 65 78 69 74  20 72 65 73 75 6c 74 20  | On exit result |
00002270  69 73 20 69 6e 20 64 69  76 69 64 65 6e 64 0d 10  |is in dividend..|
00002280  4a 22 5c 20 20 70 64 77  73 20 68 6f 6c 64 73 20  |J"\  pdws holds |
00002290  70 61 72 74 69 61 6c 20  64 69 76 69 64 65 6e 64  |partial dividend|
000022a0  0d 10 54 36 5c 20 20 64  69 66 66 5f 77 73 20 69  |..T6\  diff_ws i|
000022b0  73 20 74 65 6d 70 20 77  73 20 74 6f 20 68 6f 6c  |s temp ws to hol|
000022c0  64 20 70 64 69 76 2d 64  69 76 20 66 6f 72 20 74  |d pdiv-div for t|
000022d0  65 73 74 69 6e 67 0d 10  5e 05 20 0d 10 68 40 4c  |esting..^. ..h@L|
000022e0  44 41 20 23 30 20 20 20  20 20 20 20 20 20 20 20  |DA #0           |
000022f0  20 20 20 20 20 20 20 20  20 20 5c 20 53 65 74 20  |          \ Set |
00002300  70 61 72 74 69 61 6c 20  64 69 76 69 64 65 6e 64  |partial dividend|
00002310  20 77 73 20 74 6f 20 7a  65 72 6f 0d 10 72 0c 53  | ws to zero..r.S|
00002320  54 41 20 70 64 77 73 0d  10 7c 0e 53 54 41 20 70  |TA pdws..|.STA p|
00002330  64 77 73 2b 31 0d 10 86  0e 53 54 41 20 70 64 77  |dws+1....STA pdw|
00002340  73 2b 32 0d 10 90 0e 53  54 41 20 70 64 77 73 2b  |s+2....STA pdws+|
00002350  33 0d 10 9a 0e 53 54 41  20 70 64 77 73 2b 34 0d  |3....STA pdws+4.|
00002360  10 a4 0e 53 54 41 20 70  64 77 73 2b 35 0d 10 ae  |...STA pdws+5...|
00002370  05 20 0d 10 b8 30 4c 44  58 20 23 34 38 20 20 20  |. ...0LDX #48   |
00002380  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00002390  20 5c 20 34 38 20 62 69  74 20 64 69 76 69 64 65  | \ 48 bit divide|
000023a0  6e 64 0d 10 c2 05 20 0d  10 cc 0d 2e 6d 62 64 5f  |nd.... .....mbd_|
000023b0  6c 6f 6f 70 0d 10 d6 05  20 0d 10 e0 4b 41 53 4c  |loop.... ...KASL|
000023c0  20 64 69 76 69 64 65 6e  64 2b 36 20 20 20 20 20  | dividend+6     |
000023d0  20 20 20 20 20 20 20 20  5c 20 52 6f 74 61 74 65  |        \ Rotate|
000023e0  20 64 69 76 69 64 65 6e  64 20 6c 65 66 74 20 69  | dividend left i|
000023f0  6e 74 6f 20 70 61 72 74  69 61 6c 20 64 69 76 69  |nto partial divi|
00002400  64 65 6e 64 0d 10 ea 12  52 4f 4c 20 64 69 76 69  |dend....ROL divi|
00002410  64 65 6e 64 2b 35 0d 10  f4 12 52 4f 4c 20 64 69  |dend+5....ROL di|
00002420  76 69 64 65 6e 64 2b 34  0d 10 fe 12 52 4f 4c 20  |vidend+4....ROL |
00002430  64 69 76 69 64 65 6e 64  2b 33 0d 11 08 12 52 4f  |dividend+3....RO|
00002440  4c 20 64 69 76 69 64 65  6e 64 2b 32 0d 11 12 12  |L dividend+2....|
00002450  52 4f 4c 20 64 69 76 69  64 65 6e 64 2b 31 0d 11  |ROL dividend+1..|
00002460  1c 0e 52 4f 4c 20 70 64  77 73 2b 35 0d 11 26 0e  |..ROL pdws+5..&.|
00002470  52 4f 4c 20 70 64 77 73  2b 34 0d 11 30 0e 52 4f  |ROL pdws+4..0.RO|
00002480  4c 20 70 64 77 73 2b 33  0d 11 3a 0e 52 4f 4c 20  |L pdws+3..:.ROL |
00002490  70 64 77 73 2b 32 0d 11  44 0e 52 4f 4c 20 70 64  |pdws+2..D.ROL pd|
000024a0  77 73 2b 31 0d 11 4e 0c  52 4f 4c 20 70 64 77 73  |ws+1..N.ROL pdws|
000024b0  0d 11 58 05 20 0d 11 62  07 53 45 43 0d 11 6c 47  |..X. ..b.SEC..lG|
000024c0  4c 44 41 20 70 64 77 73  2b 35 20 20 20 20 20 20  |LDA pdws+5      |
000024d0  20 20 20 20 20 20 20 20  20 20 20 5c 20 53 75 62  |           \ Sub|
000024e0  74 72 61 63 74 20 64 69  76 69 73 6f 72 20 66 72  |tract divisor fr|
000024f0  6f 6d 20 70 61 72 74 69  61 6c 20 64 69 76 69 64  |om partial divid|
00002500  65 6e 64 0d 11 76 11 53  42 43 20 64 69 76 69 73  |end..v.SBC divis|
00002510  6f 72 2b 36 0d 11 80 11  53 54 41 20 64 69 66 66  |or+6....STA diff|
00002520  5f 77 73 2b 35 0d 11 8a  0e 4c 44 41 20 70 64 77  |_ws+5....LDA pdw|
00002530  73 2b 34 0d 11 94 11 53  42 43 20 64 69 76 69 73  |s+4....SBC divis|
00002540  6f 72 2b 35 0d 11 9e 11  53 54 41 20 64 69 66 66  |or+5....STA diff|
00002550  5f 77 73 2b 34 0d 11 a8  0e 4c 44 41 20 70 64 77  |_ws+4....LDA pdw|
00002560  73 2b 33 0d 11 b2 11 53  42 43 20 64 69 76 69 73  |s+3....SBC divis|
00002570  6f 72 2b 34 0d 11 bc 11  53 54 41 20 64 69 66 66  |or+4....STA diff|
00002580  5f 77 73 2b 33 0d 11 c6  0e 4c 44 41 20 70 64 77  |_ws+3....LDA pdw|
00002590  73 2b 32 0d 11 d0 11 53  42 43 20 64 69 76 69 73  |s+2....SBC divis|
000025a0  6f 72 2b 33 0d 11 da 11  53 54 41 20 64 69 66 66  |or+3....STA diff|
000025b0  5f 77 73 2b 32 0d 11 e4  0e 4c 44 41 20 70 64 77  |_ws+2....LDA pdw|
000025c0  73 2b 31 0d 11 ee 11 53  42 43 20 64 69 76 69 73  |s+1....SBC divis|
000025d0  6f 72 2b 32 0d 11 f8 11  53 54 41 20 64 69 66 66  |or+2....STA diff|
000025e0  5f 77 73 2b 31 0d 12 02  0c 4c 44 41 20 70 64 77  |_ws+1....LDA pdw|
000025f0  73 0d 12 0c 11 53 42 43  20 64 69 76 69 73 6f 72  |s....SBC divisor|
00002600  2b 31 0d 12 16 0f 53 54  41 20 64 69 66 66 5f 77  |+1....STA diff_w|
00002610  73 0d 12 20 05 20 0d 12  2a 3f 42 43 43 20 6e 6f  |s.. . ..*?BCC no|
00002620  5f 73 75 62 74 72 61 63  74 5f 6d 62 64 20 20 20  |_subtract_mbd   |
00002630  20 20 20 20 20 5c 20 43  61 72 72 79 20 73 65 74  |     \ Carry set|
00002640  20 69 66 20 64 69 66 66  5f 77 73 20 3e 20 64 69  | if diff_ws > di|
00002650  76 69 73 6f 72 0d 12 34  05 20 0d 12 3e 43 49 4e  |visor..4. ..>CIN|
00002660  43 20 64 69 76 69 64 65  6e 64 2b 36 20 20 20 20  |C dividend+6    |
00002670  20 20 20 20 20 20 20 20  20 5c 20 49 6e 63 72 65  |         \ Incre|
00002680  61 73 65 20 72 65 73 75  6c 74 20 69 66 20 77 65  |ase result if we|
00002690  20 63 61 6e 20 73 75 62  74 72 61 63 74 0d 12 48  | can subtract..H|
000026a0  0a 4c 44 59 20 23 36 0d  12 52 05 20 0d 12 5c 18  |.LDY #6..R. ..\.|
000026b0  2e 64 69 66 66 5f 77 5f  74 6f 5f 70 64 77 73 5f  |.diff_w_to_pdws_|
000026c0  6c 6f 6f 70 0d 12 66 05  20 0d 12 70 14 4c 44 41  |loop..f. ..p.LDA|
000026d0  20 64 69 66 66 5f 77 73  2d 31 2c 20 59 0d 12 7a  | diff_ws-1, Y..z|
000026e0  11 53 54 41 20 70 64 77  73 2d 31 2c 20 59 0d 12  |.STA pdws-1, Y..|
000026f0  84 05 20 0d 12 8e 07 44  45 59 0d 12 98 1b 42 4e  |.. ....DEY....BN|
00002700  45 20 64 69 66 66 5f 77  5f 74 6f 5f 70 64 77 73  |E diff_w_to_pdws|
00002710  5f 6c 6f 6f 70 0d 12 a2  05 20 0d 12 ac 14 2e 6e  |_loop.... .....n|
00002720  6f 5f 73 75 62 74 72 61  63 74 5f 6d 62 64 0d 12  |o_subtract_mbd..|
00002730  b6 05 20 0d 12 c0 29 44  45 58 20 20 20 20 20 20  |.. ...)DEX      |
00002740  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00002750  20 20 5c 20 4e 65 78 74  20 62 69 74 0d 12 ca 10  |  \ Next bit....|
00002760  42 4e 45 20 6d 62 64 5f  6c 6f 6f 70 0d 12 d4 05  |BNE mbd_loop....|
00002770  20 0d 12 de 07 52 54 53  0d 12 e8 05 20 0d 12 f2  | ....RTS.... ...|
00002780  17 2e 72 65 6e 6f 72 6d  61 6c 69 73 65 5f 6d 75  |..renormalise_mu|
00002790  6c 64 69 76 0d 12 fc 05  20 0d 13 06 43 5c 20 54  |ldiv.... ...C\ T|
000027a0  68 69 73 20 72 6f 75 74  69 6e 65 20 6d 6f 64 69  |his routine modi|
000027b0  66 69 65 73 20 74 68 65  20 6d 61 6e 74 69 73 73  |fies the mantiss|
000027c0  61 20 61 6e 64 20 65 78  70 6f 6e 65 6e 74 20 6f  |a and exponent o|
000027d0  66 20 74 68 65 20 72 65  73 75 6c 74 0d 13 10 2c  |f the result...,|
000027e0  5c 20 54 6f 20 70 72 6f  64 75 63 65 20 61 20 6e  |\ To produce a n|
000027f0  6f 72 6d 61 6c 69 73 65  64 20 66 6f 72 6d 61 74  |ormalised format|
00002800  20 6e 75 6d 62 65 72 2e  0d 13 1a 05 20 0d 13 24  | number..... ..$|
00002810  3f 5c 20 20 46 69 72 73  74 20 74 72 61 70 20 61  |?\  First trap a|
00002820  20 7a 65 72 6f 20 72 65  73 75 6c 74 2c 20 6f 72  | zero result, or|
00002830  20 6c 6f 6f 70 73 20 77  69 6c 6c 20 72 75 6e 20  | loops will run |
00002840  69 6e 64 65 66 69 6e 61  74 65 6c 79 0d 13 2e 05  |indefinately....|
00002850  20 0d 13 38 10 4c 44 41  20 66 70 77 73 5f 31 2b  | ..8.LDA fpws_1+|
00002860  31 0d 13 42 0f 84 41 20  66 70 77 73 5f 31 2b 32  |1..B..A fpws_1+2|
00002870  0d 13 4c 0f 84 41 20 66  70 77 73 5f 31 2b 33 0d  |..L..A fpws_1+3.|
00002880  13 56 0f 84 41 20 66 70  77 73 5f 31 2b 34 0d 13  |.V..A fpws_1+4..|
00002890  60 0f 84 41 20 66 70 77  73 5f 31 2b 35 0d 13 6a  |`..A fpws_1+5..j|
000028a0  0f 84 41 20 66 70 77 73  5f 31 2b 36 0d 13 74 05  |..A fpws_1+6..t.|
000028b0  20 0d 13 7e 11 42 45 51  20 7a 65 72 6f 5f 6e 6f  | ..~.BEQ zero_no|
000028c0  72 6d 0d 13 88 05 20 0d  13 92 46 4c 44 41 20 66  |rm.... ...FLDA f|
000028d0  70 77 73 5f 31 2b 31 20  20 20 20 20 20 20 20 20  |pws_1+1         |
000028e0  20 20 20 20 20 20 20 5c  20 54 6f 70 20 62 79 74  |       \ Top byt|
000028f0  65 20 6f 66 20 6d 61 6e  74 69 73 73 61 20 69 73  |e of mantissa is|
00002900  20 73 68 69 66 74 65 64  20 6c 65 66 74 0d 13 9c  | shifted left...|
00002910  41 42 4d 49 20 6e 6f 72  6d 61 6c 69 73 65 64 20  |ABMI normalised |
00002920  20 20 20 20 20 20 20 20  20 20 20 20 20 5c 20 75  |             \ u|
00002930  6e 74 69 6c 20 74 6f 70  20 62 69 74 20 69 73 20  |ntil top bit is |
00002940  73 65 74 20 28 69 2e 65  2e 20 2d 76 65 29 0d 13  |set (i.e. -ve)..|
00002950  a6 05 20 0d 13 b0 14 2e  73 68 69 66 74 5f 6c 65  |.. .....shift_le|
00002960  66 74 5f 6c 6f 6f 70 0d  13 ba 05 20 0d 13 c4 37  |ft_loop.... ...7|
00002970  44 45 43 20 66 70 77 73  5f 31 20 20 20 20 20 20  |DEC fpws_1      |
00002980  20 20 20 20 20 20 20 20  20 20 20 20 5c 20 44 65  |            \ De|
00002990  63 72 65 61 73 65 20 74  68 65 20 65 78 70 6f 6e  |crease the expon|
000029a0  65 6e 74 0d 13 ce 43 41  53 4c 20 66 70 77 73 5f  |ent...CASL fpws_|
000029b0  31 2b 36 20 20 20 20 20  20 20 20 20 20 20 20 20  |1+6             |
000029c0  20 20 20 5c 20 53 68 69  66 74 20 6d 61 6e 74 69  |   \ Shift manti|
000029d0  73 73 61 20 6c 65 66 74  20 74 6f 20 63 6f 6d 70  |ssa left to comp|
000029e0  65 6e 73 61 74 65 0d 13  d8 10 52 4f 4c 20 66 70  |ensate....ROL fp|
000029f0  77 73 5f 31 2b 35 0d 13  e2 10 52 4f 4c 20 66 70  |ws_1+5....ROL fp|
00002a00  77 73 5f 31 2b 34 0d 13  ec 10 52 4f 4c 20 66 70  |ws_1+4....ROL fp|
00002a10  77 73 5f 31 2b 33 0d 13  f6 10 52 4f 4c 20 66 70  |ws_1+3....ROL fp|
00002a20  77 73 5f 31 2b 32 0d 14  00 10 52 4f 4c 20 66 70  |ws_1+2....ROL fp|
00002a30  77 73 5f 31 2b 31 0d 14  0a 05 20 0d 14 14 17 42  |ws_1+1.... ....B|
00002a40  50 4c 20 73 68 69 66 74  5f 6c 65 66 74 5f 6c 6f  |PL shift_left_lo|
00002a50  6f 70 0d 14 1e 05 20 0d  14 28 0f 2e 6e 6f 72 6d  |op.... ..(..norm|
00002a60  61 6c 69 73 65 64 0d 14  32 05 20 0d 14 3c 35 52  |alised..2. ..<5R|
00002a70  54 53 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |TS              |
00002a80  20 20 20 20 20 20 20 20  20 20 20 5c 20 4e 75 6d  |           \ Num|
00002a90  62 65 72 20 72 65 6e 6f  72 6d 61 6c 69 73 65 64  |ber renormalised|
00002aa0  0d 14 46 05 20 0d 14 50  0e 2e 7a 65 72 6f 5f 6e  |..F. ..P..zero_n|
00002ab0  6f 72 6d 0d 14 5a 05 20  0d 14 64 0a 4c 44 41 20  |orm..Z. ..d.LDA |
00002ac0  23 30 0d 14 6e 41 53 54  41 20 66 70 77 73 5f 31  |#0..nASTA fpws_1|
00002ad0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00002ae0  20 20 5c 20 43 6c 65 61  72 20 65 78 70 6f 6e 65  |  \ Clear expone|
00002af0  6e 74 20 6f 66 20 61 20  7a 65 72 6f 20 6e 75 6d  |nt of a zero num|
00002b00  62 65 72 0d 14 78 05 20  0d 14 82 07 52 54 53 0d  |ber..x. ....RTS.|
00002b10  14 8c 05 20 0d 14 96 15  2e 72 65 70 6c 61 63 65  |... .....replace|
00002b20  5f 73 69 67 6e 5f 62 69  74 0d 14 a0 05 20 0d 14  |_sign_bit.... ..|
00002b30  aa 13 4c 44 41 20 66 70  77 73 5f 31 5f 73 69 67  |..LDA fpws_1_sig|
00002b40  6e 0d 14 b4 47 82 20 66  70 77 73 5f 32 5f 73 69  |n...G. fpws_2_si|
00002b50  67 6e 20 20 20 20 20 20  20 20 20 20 20 20 20 5c  |gn             \|
00002b60  20 82 20 73 69 67 6e 73  20 74 6f 67 65 74 68 65  | . signs togethe|
00002b70  72 20 74 6f 20 70 72 6f  64 75 63 65 20 72 65 73  |r to produce res|
00002b80  75 6c 74 20 73 69 67 6e  0d 14 be 44 80 20 23 26  |ult sign...D. #&|
00002b90  38 30 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |80              |
00002ba0  20 20 20 20 20 20 5c 20  57 65 27 72 65 20 6f 6e  |      \ We're on|
00002bb0  6c 79 20 69 6e 74 65 72  65 73 74 65 64 20 69 6e  |ly interested in|
00002bc0  20 74 68 65 20 74 6f 70  20 62 69 74 0d 14 c8 07  | the top bit....|
00002bd0  43 4c 43 0d 14 d2 41 41  44 43 20 23 26 37 46 20  |CLC...AADC #&7F |
00002be0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00002bf0  20 20 20 5c 20 26 46 46  20 69 66 20 74 6f 70 20  |   \ &FF if top |
00002c00  62 69 74 20 73 65 74 20  2d 20 26 37 46 20 69 66  |bit set - &7F if|
00002c10  20 6e 6f 74 0d 14 dc 35  80 20 66 70 77 73 5f 31  | not...5. fpws_1|
00002c20  2b 31 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |+1              |
00002c30  20 20 5c 20 54 6f 70 20  62 69 74 20 72 65 66 6c  |  \ Top bit refl|
00002c40  65 63 74 73 20 73 69 67  6e 0d 14 e6 36 53 54 41  |ects sign...6STA|
00002c50  20 66 70 77 73 5f 31 2b  31 20 20 20 20 20 20 20  | fpws_1+1       |
00002c60  20 20 20 20 20 20 20 20  20 5c 20 52 65 70 6c 61  |         \ Repla|
00002c70  63 65 20 69 6e 20 77 6f  72 6b 73 70 61 63 65 0d  |ce in workspace.|
00002c80  14 f0 05 20 0d 14 fa 07  52 54 53 0d 15 04 05 20  |... ....RTS.... |
00002c90  0d 15 0e 05 5d 0d 15 18  05 ed 0d 15 22 05 20 0d  |....].......". .|
00002ca0  15 2c 05 f5 0d 15 36 05  20 0d 15 40 34 f1 20 27  |.,....6. ..@4. '|
00002cb0  22 46 6c 6f 61 74 69 6e  67 20 50 6f 69 6e 74 20  |"Floating Point |
00002cc0  4d 75 6c 74 69 70 6c 69  63 61 74 69 6f 6e 20 61  |Multiplication a|
00002cd0  6e 64 20 44 69 76 69 73  69 6f 6e 22 27 0d 15 4a  |nd Division"'..J|
00002ce0  22 e8 20 22 45 6e 74 65  72 20 74 68 65 20 66 69  |". "Enter the fi|
00002cf0  72 73 74 20 6e 75 6d 62  65 72 20 22 66 70 31 0d  |rst number "fp1.|
00002d00  15 54 23 e8 20 22 45 6e  74 65 72 20 74 68 65 20  |.T#. "Enter the |
00002d10  73 65 63 6f 6e 64 20 6e  75 6d 62 65 72 20 22 66  |second number "f|
00002d20  70 32 0d 15 5e 05 f1 0d  15 68 05 20 0d 15 72 13  |p2..^....h. ..r.|
00002d30  d6 20 63 6f 64 65 25 2c  66 70 31 2c 66 70 32 0d  |. code%,fp1,fp2.|
00002d40  15 7c 05 20 0d 15 86 10  f1 22 52 65 73 75 6c 74  |.|. ....."Result|
00002d50  73 3a 22 27 0d 15 90 2c  f1 20 22 50 72 6f 64 75  |s:"'...,. "Produ|
00002d60  63 74 20 28 63 6f 64 65  29 20 69 73 20 20 22 3b  |ct (code) is  ";|
00002d70  a4 66 70 28 72 65 73 75  6c 74 5f 6d 75 6c 74 29  |.fp(result_mult)|
00002d80  0d 15 9a 23 f1 20 22 50  72 6f 64 75 63 74 20 28  |...#. "Product (|
00002d90  42 41 53 49 43 29 20 69  73 20 22 3b 66 70 31 2a  |BASIC) is ";fp1*|
00002da0  66 70 32 0d 15 a4 05 20  0d 15 ae 2c f1 20 22 51  |fp2.... ...,. "Q|
00002db0  75 6f 74 69 65 6e 74 20  28 63 6f 64 65 29 20 69  |uotient (code) i|
00002dc0  73 20 20 22 3b a4 66 70  28 72 65 73 75 6c 74 5f  |s  ";.fp(result_|
00002dd0  64 69 76 29 0d 15 b8 24  f1 20 22 51 75 6f 74 69  |div)...$. "Quoti|
00002de0  65 6e 74 20 28 42 41 53  49 43 29 20 69 73 20 22  |ent (BASIC) is "|
00002df0  3b 66 70 31 2f 66 70 32  0d 15 c2 05 20 0d 15 cc  |;fp1/fp2.... ...|
00002e00  07 fd 20 a3 0d 15 d6 05  20 0d 15 e0 05 e0 0d 15  |.. ..... .......|
00002e10  ea 05 20 0d 15 f4 1b 2a  2a 2a 2a 20 45 51 55 61  |.. ....**** EQUa|
00002e20  74 65 20 61 20 42 79 74  65 20 2a 2a 2a 2a 0d 15  |te a Byte ****..|
00002e30  fe 0f dd 20 a4 45 51 55  42 28 4e 25 29 0d 16 08  |... .EQUB(N%)...|
00002e40  10 3f 50 25 3d 4e 25 20  83 20 32 35 36 0d 16 12  |.?P%=N% . 256...|
00002e50  1e e7 20 28 70 61 73 73  25 20 80 20 33 29 20 3d  |.. (pass% . 3) =|
00002e60  20 33 20 8c 20 f1 20 7e  3f 50 25 0d 16 1c 0b 50  | 3 . . ~?P%....P|
00002e70  25 3d 50 25 2b 31 0d 16  26 0a 3d 70 61 73 73 25  |%=P%+1..&.=pass%|
00002e80  0d 16 30 05 20 0d 16 3a  1d 2a 2a 2a 2a 20 45 51  |..0. ..:.**** EQ|
00002e90  55 61 74 65 20 61 20 53  74 72 69 6e 67 20 2a 2a  |Uate a String **|
00002ea0  2a 2a 0d 16 44 0f dd 20  a4 45 51 55 53 28 4e 24  |**..D.. .EQUS(N$|
00002eb0  29 0d 16 4e 08 ea 20 4e  25 0d 16 58 08 fe 20 34  |)..N.. N%..X.. 4|
00002ec0  30 0d 16 62 12 e3 20 4e  25 3d 31 20 b8 20 a9 28  |0..b.. N%=1 . .(|
00002ed0  4e 24 29 0d 16 6c 13 4b  25 3d 97 28 c1 4e 24 2c  |N$)..l.K%=.(.N$,|
00002ee0  4e 25 2c 31 29 29 0d 16  76 10 50 25 3f 28 4e 25  |N%,1))..v.P%?(N%|
00002ef0  2d 31 29 3d 4b 25 0d 16  80 25 e7 20 28 70 61 73  |-1)=K%...%. (pas|
00002f00  73 25 20 80 20 33 29 20  3d 20 33 20 8c 20 f1 20  |s% . 3) = 3 . . |
00002f10  7e 50 25 3f 28 4e 25 2d  31 29 3b 0d 16 8a 05 ed  |~P%?(N%-1);.....|
00002f20  0d 16 94 19 e7 20 28 70  61 73 73 25 20 80 20 33  |..... (pass% . 3|
00002f30  29 20 3d 20 33 20 8c 20  f1 0d 16 9e 0f 50 25 3d  |) = 3 . .....P%=|
00002f40  50 25 2b a9 28 4e 24 29  0d 16 a8 07 fe 20 30 0d  |P%+.(N$)..... 0.|
00002f50  16 b2 0a 3d 70 61 73 73  25 0d 16 bc 05 20 0d 16  |...=pass%.... ..|
00002f60  c6 28 2a 2a 2a 2a 20 45  51 55 61 74 65 20 61 20  |.(**** EQUate a |
00002f70  73 65 63 74 69 6f 6e 20  6f 66 20 4d 65 6d 6f 72  |section of Memor|
00002f80  79 20 2a 2a 2a 2a 0d 16  d0 1a dd 20 a4 45 51 55  |y ****..... .EQU|
00002f90  4d 28 6e 75 6d 62 65 72  25 2c 62 79 74 65 25 29  |M(number%,byte%)|
00002fa0  0d 16 da 08 ea 20 4e 25  0d 16 e4 08 fe 20 34 30  |..... N%..... 40|
00002fb0  0d 16 ee 16 e3 20 4e 25  3d 30 20 b8 20 6e 75 6d  |..... N%=0 . num|
00002fc0  62 65 72 25 2d 31 0d 16  f8 0f 50 25 3f 4e 25 3d  |ber%-1....P%?N%=|
00002fd0  62 79 74 65 25 0d 17 02  21 e7 20 28 70 61 73 73  |byte%...!. (pass|
00002fe0  25 20 80 20 33 29 20 3d  20 33 20 8c 20 f1 20 7e  |% . 3) = 3 . . ~|
00002ff0  50 25 3f 4e 25 3b 0d 17  0c 05 ed 0d 17 16 19 e7  |P%?N%;..........|
00003000  20 28 70 61 73 73 25 20  80 20 33 29 20 3d 20 33  | (pass% . 3) = 3|
00003010  20 8c 20 f1 0d 17 20 11  50 25 3d 50 25 2b 6e 75  | . ... .P%=P%+nu|
00003020  6d 62 65 72 25 0d 17 2a  07 fe 20 30 0d 17 34 0a  |mber%..*.. 0..4.|
00003030  3d 70 61 73 73 25 0d 17  3e 05 20 0d 17 48 18 2a  |=pass%..>. ..H.*|
00003040  2a 2a 2a 20 52 65 76 65  72 73 65 20 46 50 20 2a  |*** Reverse FP *|
00003050  2a 2a 2a 0d 17 52 1e 50  75 74 73 20 66 70 20 6e  |***..R.Puts fp n|
00003060  75 6d 62 65 72 20 66 72  6f 6d 20 6d 65 6d 6f 72  |umber from memor|
00003070  79 0d 17 5c 13 69 6e 74  6f 20 76 61 72 69 61 62  |y..\.into variab|
00003080  6c 65 20 60 0d 17 66 0f  dd 20 a4 66 70 28 6d 65  |le `..f.. .fp(me|
00003090  6d 25 29 0d 17 70 0c ea  20 4d 25 2c 20 4e 25 0d  |m%)..p.. M%, N%.|
000030a0  17 7a 07 60 3d 30 0d 17  84 1a 4d 25 20 3d 20 33  |.z.`=0....M% = 3|
000030b0  2b 28 21 26 34 43 30 20  80 20 26 46 46 46 46 29  |+(!&4C0 . &FFFF)|
000030c0  0d 17 8e 0e e3 20 4e 25  3d 30 20 b8 20 34 0d 17  |..... N%=0 . 4..|
000030d0  98 11 4d 25 3f 4e 25 3d  6d 65 6d 25 3f 4e 25 0d  |..M%?N%=mem%?N%.|
000030e0  17 a2 05 ed 0d 17 ac 06  3d 60 0d ff              |........=`..|
000030ec
OS\BITS/B\OSB23.m0
OS\BITS/B\OSB23.m1
OS\BITS/B\OSB23.m2
OS\BITS/B\OSB23.m4
OS\BITS/B\OSB23.m5