Home » Archimedes archive » Zipped Apps » PipeDream » Functions/Complex
Functions/Complex
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » Archimedes archive » Zipped Apps » PipeDream |
Filename: | Functions/Complex |
Read OK: | ✔ |
File size: | 188A bytes |
Load address: | 0000 |
Exec address: | 0000 |
Duplicates
There is 1 duplicate copy of this file in the archive:
- Archimedes archive » Zipped Apps » PipeDream » Functions/Complex
- Archimedes archive » Apps » PipeDream 4 (1991) (Colton Software) (Examples Disc).adf » Functions/Complex
File contents
%OP%VS4.12 Test (Dec 12 1991), Colton Software - Development, R0123 4567 8901 2345 %OP%DP4 %OP%LP* %OP%TM4 %OP%BM4 %OP%LM5 %OP%FX %OP%FY %OP%FS %OP%WC216,1492,460,1200,0,0,0,0 %CO:A,12,100% %C%%H1%Complex Functions Examples %C%Function z w z+w z-w z*w z/w z^w exp(z) ln(z) cos(z) sin(z) tan(z) acos(z) asin(z) atan(z) cosh(z) sinh(z) tanh(z) acosh(z) asinh(z) atanh(z) cosec(z) cot(z) sec(z) acosec(z) acot(z) asec(z) cosech(z) coth(z) sech(z) acosech(z) acoth(z) asech(z) %CO:B,10,0% %R%Real %V%%R%1 %V%%R%2 %V%%R%index(c_add({$B$6,$C$6},{$B$7,$C$7}),1,1) %V%%R%index(c_sub({$B$6,$C$6},{$B$7,$C$7}),1,1) %V%%R%index(c_mul({$B$6,$C$6},{$B$7,$C$7}),1,1) %V%%R%index(c_div({$B$6,$C$6},{$B$7,$C$7}),1,1) %V%%R%index(c_power({$B$6,$C$6},{$B$7,$C$7}),1,1) %V%%R%index(c_exp({$B$6,$C$6}),1,1) %V%%R%index(c_ln({$B$6,$C$6}),1,1) %V%%R%index(c_cos({$B$6,$C$6}),1,1) %V%%R%index(c_sin({$B$6,$C$6}),1,1) %V%%R%index(c_tan({$B$6,$C$6}),1,1) %V%%R%index(c_acos({$B$6,$C$6}),1,1) %V%%R%index(c_asin({$B$6,$C$6}),1,1) %V%%R%index(c_atan({$B$6,$C$6}),1,1) %V%%R%index(c_cosh({$B$6,$C$6}),1,1) %V%%R%index(c_sinh({$B$6,$C$6}),1,1) %V%%R%index(c_tanh({$B$6,$C$6}),1,1) %V%%R%index(c_acosh({$B$6,$C$6}),1,1) %V%%R%index(c_asinh({$B$6,$C$6}),1,1) %V%%R%index(c_atanh({$B$6,$C$6}),1,1) %V%%R%index(c_cosec({$B$6,$C$6}),1,1) %V%%R%index(c_cot({$B$6,$C$6}),1,1) %V%%R%index(c_sec({$B$6,$C$6}),1,1) %V%%R%index(c_acosec({$B$6,$C$6}),1,1) %V%%R%index(c_acot({$B$6,$C$6}),1,1) %V%%R%index(c_asec({$B$6,$C$6}),1,1) %V%%R%index(c_cosech({$B$6,$C$6}),1,1) %V%%R%index(c_coth({$B$6,$C$6}),1,1) %V%%R%index(c_sech({$B$6,$C$6}),1,1) %V%%R%index(c_acosech({$B$6,$C$6}),1,1) %V%%R%index(c_acoth({$B$6,$C$6}),1,1) %V%%R%index(c_asech({$B$6,$C$6}),1,1) %CO:C,10,0% %R%Imaginary %V%%R%1 %V%%R%-1 %V%%R%index(c_add({$B$6,$C$6},{$B$7,$C$7}),2,1) %V%%R%index(c_sub({$B$6,$C$6},{$B$7,$C$7}),2,1) %V%%R%index(c_mul({$B$6,$C$6},{$B$7,$C$7}),2,1) %V%%R%index(c_div({$B$6,$C$6},{$B$7,$C$7}),2,1) %V%%R%index(c_power({$B$6,$C$6},{$B$7,$C$7}),2,1) %V%%R%index(c_exp({$B$6,$C$6}),2,1) %V%%R%index(c_ln({$B$6,$C$6}),2,1) %V%%R%index(c_cos({$B$6,$C$6}),2,1) %V%%R%index(c_sin({$B$6,$C$6}),2,1) %V%%R%index(c_tan({$B$6,$C$6}),2,1) %V%%R%index(c_acos({$B$6,$C$6}),2,1) %V%%R%index(c_atan({$B$6,$C$6}),2,1) %V%%R%index(c_atan({$B$6,$C$6}),2,1) %V%%R%index(c_cosh({$B$6,$C$6}),2,1) %V%%R%index(c_sinh({$B$6,$C$6}),2,1) %V%%R%index(c_tanh({$B$6,$C$6}),2,1) %V%%R%index(c_acosh({$B$6,$C$6}),2,1) %V%%R%index(c_asinh({$B$6,$C$6}),2,1) %V%%R%index(c_atanh({$B$6,$C$6}),2,1) %V%%R%index(c_cosec({$B$6,$C$6}),2,1) %V%%R%index(c_cot({$B$6,$C$6}),2,1) %V%%R%index(c_sec({$B$6,$C$6}),2,1) %V%%R%index(c_acosec({$B$6,$C$6}),2,1) %V%%R%index(c_acot({$B$6,$C$6}),2,1) %V%%R%index(c_asec({$B$6,$C$6}),2,1) %V%%R%index(c_cosech({$B$6,$C$6}),2,1) %V%%R%index(c_coth({$B$6,$C$6}),2,1) %V%%R%index(c_sech({$B$6,$C$6}),2,1) %V%%R%index(c_acosech({$B$6,$C$6}),2,1) %V%%R%index(c_acoth({$B$6,$C$6}),2,1) %V%%R%index(c_asech({$B$6,$C$6}),2,1) %CO:D,10,0% %R%Modulus %V%%R%c_radius({B6,C6}) %V%%R%c_radius({B7,C7}) %V%%R%c_radius({B8,C8}) %V%%R%c_radius({B9,C9}) %V%%R%c_radius({B10,C10}) %V%%R%c_radius({B11,C11}) %V%%R%c_radius({B12,C12}) %V%%R%c_radius({B13,C13}) %V%%R%c_radius({B14,C14}) %V%%R%c_radius({B15,C15}) %V%%R%c_radius({B16,C16}) %V%%R%c_radius({B17,C17}) %V%%R%c_radius({B18,C18}) %V%%R%c_radius({B19,C19}) %V%%R%c_radius({B20,C20}) %V%%R%c_radius({B21,C21}) %V%%R%c_radius({B22,C22}) %V%%R%c_radius({B23,C23}) %V%%R%c_radius({B24,C24}) %V%%R%c_radius({B25,C25}) %V%%R%c_radius({B26,C26}) %V%%R%c_radius({B27,C27}) %V%%R%c_radius({B28,C28}) %V%%R%c_radius({B29,C29}) %V%%R%c_radius({B30,C30}) %V%%R%c_radius({B31,C31}) %V%%R%c_radius({B32,C32}) %V%%R%c_radius({B33,C33}) %V%%R%c_radius({B34,C34}) %V%%R%c_radius({B35,C35}) %V%%R%c_radius({B36,C36}) %V%%R%c_radius({B37,C37}) %V%%R%c_radius({B38,C38}) %CO:E,10,0% %R%Argument %V%%R%c_theta({B6,C6}) %V%%R%c_theta({B7,C7}) %V%%R%c_theta({B8,C8}) %V%%R%c_theta({B9,C9}) %V%%R%c_theta({B10,C10}) %V%%R%c_theta({B11,C11}) %V%%R%c_theta({B12,C12}) %V%%R%c_theta({B13,C13}) %V%%R%c_theta({B14,C14}) %V%%R%c_theta({B15,C15}) %V%%R%c_theta({B16,C16}) %V%%R%c_theta({B17,C17}) %V%%R%c_theta({B18,C18}) %V%%R%c_theta({B19,C19}) %V%%R%c_theta({B20,C20}) %V%%R%c_theta({B21,C21}) %V%%R%c_theta({B22,C22}) %V%%R%c_theta({B23,C23}) %V%%R%c_theta({B24,C24}) %V%%R%c_theta({B25,C25}) %V%%R%c_theta({B26,C26}) %V%%R%c_theta({B27,C27}) %V%%R%c_theta({B28,C28}) %V%%R%c_theta({B29,C29}) %V%%R%c_theta({B30,C30}) %V%%R%c_theta({B31,C31}) %V%%R%c_theta({B32,C32}) %V%%R%c_theta({B33,C33}) %V%%R%c_theta({B34,C34}) %V%%R%c_theta({B35,C35}) %V%%R%c_theta({B36,C36}) %V%%R%c_theta({B37,C37}) %V%%R%c_theta({B38,C38}) %CO:F,1,0%%CO:G,49,56% Summary Defining complex number z. Defining complex number w. Adds two complex numbers. Subtracts two complex numbers. Multiplies two complex numbers. Divides one complex number by another. Raises one complex number to the power of another. Raises e (natural exponent) to the power of a complex number. Returns the natural logarithm of a complex number. Returns the Cosine of a complex number. Returns the Sine of a complex number. Returns the Tangent of a complex number. Returns the inverse Cosine of a complex number. Returns the inverse Sine of a complex number. Returns the inverse Tangent of a complex number. Returns the hyperbolic Cosine of a complex number. Returns the hyperbolic Sine of a complex number. Returns the hyperbolic Tangent of a complex number. Returns the inverse hyperbolic Cosine of a complex number. Returns the inverse hyperbolic Sine of a complex number. Returns the inverse hyperbolic Tangent of a complex number. Returns the Cosecant of a complex number. Returns the Cotangent of a complex number. Returns the Secant of a complex number. Returns the inverse Cosecant of a complex number. Returns the inverse Cotangent of a complex number. Returns the inverse Secant of a complex number. Returns the hyperbolic Cosecant of a complex number. Returns the hyperbolic Cotangent of a complex number. Returns the hyperbolic Secant of a complex number. Returns the inverse hyperbolic Cosecant of a complex number. Returns the inverse hyperbolic Cotangent of a complex number. Returns the inverse hyperbolic Secant of a complex number.
00000000 25 4f 50 25 56 53 34 2e 31 32 20 54 65 73 74 20 |%OP%VS4.12 Test | 00000010 28 44 65 63 20 31 32 20 31 39 39 31 29 2c 20 43 |(Dec 12 1991), C| 00000020 6f 6c 74 6f 6e 20 53 6f 66 74 77 61 72 65 20 2d |olton Software -| 00000030 20 44 65 76 65 6c 6f 70 6d 65 6e 74 2c 20 52 30 | Development, R0| 00000040 31 32 33 20 34 35 36 37 20 38 39 30 31 20 32 33 |123 4567 8901 23| 00000050 34 35 0a 25 4f 50 25 44 50 34 0a 25 4f 50 25 4c |45.%OP%DP4.%OP%L| 00000060 50 2a 0a 25 4f 50 25 54 4d 34 0a 25 4f 50 25 42 |P*.%OP%TM4.%OP%B| 00000070 4d 34 0a 25 4f 50 25 4c 4d 35 0a 25 4f 50 25 46 |M4.%OP%LM5.%OP%F| 00000080 58 0a 25 4f 50 25 46 59 0a 25 4f 50 25 46 53 0a |X.%OP%FY.%OP%FS.| 00000090 25 4f 50 25 57 43 32 31 36 2c 31 34 39 32 2c 34 |%OP%WC216,1492,4| 000000a0 36 30 2c 31 32 30 30 2c 30 2c 30 2c 30 2c 30 0a |60,1200,0,0,0,0.| 000000b0 25 43 4f 3a 41 2c 31 32 2c 31 30 30 25 0a 25 43 |%CO:A,12,100%.%C| 000000c0 25 25 48 31 25 43 6f 6d 70 6c 65 78 20 46 75 6e |%%H1%Complex Fun| 000000d0 63 74 69 6f 6e 73 20 45 78 61 6d 70 6c 65 73 0a |ctions Examples.| 000000e0 0a 25 43 25 46 75 6e 63 74 69 6f 6e 0a 0a 20 7a |.%C%Function.. z| 000000f0 0a 77 0a 7a 2b 77 0a 7a 2d 77 0a 7a 2a 77 0a 7a |.w.z+w.z-w.z*w.z| 00000100 2f 77 0a 7a 5e 77 0a 65 78 70 28 7a 29 0a 6c 6e |/w.z^w.exp(z).ln| 00000110 28 7a 29 0a 63 6f 73 28 7a 29 0a 73 69 6e 28 7a |(z).cos(z).sin(z| 00000120 29 0a 74 61 6e 28 7a 29 0a 61 63 6f 73 28 7a 29 |).tan(z).acos(z)| 00000130 0a 61 73 69 6e 28 7a 29 0a 61 74 61 6e 28 7a 29 |.asin(z).atan(z)| 00000140 0a 63 6f 73 68 28 7a 29 0a 73 69 6e 68 28 7a 29 |.cosh(z).sinh(z)| 00000150 0a 74 61 6e 68 28 7a 29 0a 61 63 6f 73 68 28 7a |.tanh(z).acosh(z| 00000160 29 0a 61 73 69 6e 68 28 7a 29 0a 61 74 61 6e 68 |).asinh(z).atanh| 00000170 28 7a 29 0a 63 6f 73 65 63 28 7a 29 0a 63 6f 74 |(z).cosec(z).cot| 00000180 28 7a 29 0a 73 65 63 28 7a 29 0a 61 63 6f 73 65 |(z).sec(z).acose| 00000190 63 28 7a 29 0a 61 63 6f 74 28 7a 29 0a 61 73 65 |c(z).acot(z).ase| 000001a0 63 28 7a 29 0a 63 6f 73 65 63 68 28 7a 29 0a 63 |c(z).cosech(z).c| 000001b0 6f 74 68 28 7a 29 0a 73 65 63 68 28 7a 29 0a 61 |oth(z).sech(z).a| 000001c0 63 6f 73 65 63 68 28 7a 29 0a 61 63 6f 74 68 28 |cosech(z).acoth(| 000001d0 7a 29 0a 61 73 65 63 68 28 7a 29 0a 25 43 4f 3a |z).asech(z).%CO:| 000001e0 42 2c 31 30 2c 30 25 0a 0a 0a 25 52 25 52 65 61 |B,10,0%...%R%Rea| 000001f0 6c 0a 0a 25 56 25 25 52 25 31 0a 25 56 25 25 52 |l..%V%%R%1.%V%%R| 00000200 25 32 0a 25 56 25 25 52 25 69 6e 64 65 78 28 63 |%2.%V%%R%index(c| 00000210 5f 61 64 64 28 7b 24 42 24 36 2c 24 43 24 36 7d |_add({$B$6,$C$6}| 00000220 2c 7b 24 42 24 37 2c 24 43 24 37 7d 29 2c 31 2c |,{$B$7,$C$7}),1,| 00000230 31 29 0a 25 56 25 25 52 25 69 6e 64 65 78 28 63 |1).%V%%R%index(c| 00000240 5f 73 75 62 28 7b 24 42 24 36 2c 24 43 24 36 7d |_sub({$B$6,$C$6}| 00000250 2c 7b 24 42 24 37 2c 24 43 24 37 7d 29 2c 31 2c |,{$B$7,$C$7}),1,| 00000260 31 29 0a 25 56 25 25 52 25 69 6e 64 65 78 28 63 |1).%V%%R%index(c| 00000270 5f 6d 75 6c 28 7b 24 42 24 36 2c 24 43 24 36 7d |_mul({$B$6,$C$6}| 00000280 2c 7b 24 42 24 37 2c 24 43 24 37 7d 29 2c 31 2c |,{$B$7,$C$7}),1,| 00000290 31 29 0a 25 56 25 25 52 25 69 6e 64 65 78 28 63 |1).%V%%R%index(c| 000002a0 5f 64 69 76 28 7b 24 42 24 36 2c 24 43 24 36 7d |_div({$B$6,$C$6}| 000002b0 2c 7b 24 42 24 37 2c 24 43 24 37 7d 29 2c 31 2c |,{$B$7,$C$7}),1,| 000002c0 31 29 0a 25 56 25 25 52 25 69 6e 64 65 78 28 63 |1).%V%%R%index(c| 000002d0 5f 70 6f 77 65 72 28 7b 24 42 24 36 2c 24 43 24 |_power({$B$6,$C$| 000002e0 36 7d 2c 7b 24 42 24 37 2c 24 43 24 37 7d 29 2c |6},{$B$7,$C$7}),| 000002f0 31 2c 31 29 0a 25 56 25 25 52 25 69 6e 64 65 78 |1,1).%V%%R%index| 00000300 28 63 5f 65 78 70 28 7b 24 42 24 36 2c 24 43 24 |(c_exp({$B$6,$C$| 00000310 36 7d 29 2c 31 2c 31 29 0a 25 56 25 25 52 25 69 |6}),1,1).%V%%R%i| 00000320 6e 64 65 78 28 63 5f 6c 6e 28 7b 24 42 24 36 2c |ndex(c_ln({$B$6,| 00000330 24 43 24 36 7d 29 2c 31 2c 31 29 0a 25 56 25 25 |$C$6}),1,1).%V%%| 00000340 52 25 69 6e 64 65 78 28 63 5f 63 6f 73 28 7b 24 |R%index(c_cos({$| 00000350 42 24 36 2c 24 43 24 36 7d 29 2c 31 2c 31 29 0a |B$6,$C$6}),1,1).| 00000360 25 56 25 25 52 25 69 6e 64 65 78 28 63 5f 73 69 |%V%%R%index(c_si| 00000370 6e 28 7b 24 42 24 36 2c 24 43 24 36 7d 29 2c 31 |n({$B$6,$C$6}),1| 00000380 2c 31 29 0a 25 56 25 25 52 25 69 6e 64 65 78 28 |,1).%V%%R%index(| 00000390 63 5f 74 61 6e 28 7b 24 42 24 36 2c 24 43 24 36 |c_tan({$B$6,$C$6| 000003a0 7d 29 2c 31 2c 31 29 0a 25 56 25 25 52 25 69 6e |}),1,1).%V%%R%in| 000003b0 64 65 78 28 63 5f 61 63 6f 73 28 7b 24 42 24 36 |dex(c_acos({$B$6| 000003c0 2c 24 43 24 36 7d 29 2c 31 2c 31 29 0a 25 56 25 |,$C$6}),1,1).%V%| 000003d0 25 52 25 69 6e 64 65 78 28 63 5f 61 73 69 6e 28 |%R%index(c_asin(| 000003e0 7b 24 42 24 36 2c 24 43 24 36 7d 29 2c 31 2c 31 |{$B$6,$C$6}),1,1| 000003f0 29 0a 25 56 25 25 52 25 69 6e 64 65 78 28 63 5f |).%V%%R%index(c_| 00000400 61 74 61 6e 28 7b 24 42 24 36 2c 24 43 24 36 7d |atan({$B$6,$C$6}| 00000410 29 2c 31 2c 31 29 0a 25 56 25 25 52 25 69 6e 64 |),1,1).%V%%R%ind| 00000420 65 78 28 63 5f 63 6f 73 68 28 7b 24 42 24 36 2c |ex(c_cosh({$B$6,| 00000430 24 43 24 36 7d 29 2c 31 2c 31 29 0a 25 56 25 25 |$C$6}),1,1).%V%%| 00000440 52 25 69 6e 64 65 78 28 63 5f 73 69 6e 68 28 7b |R%index(c_sinh({| 00000450 24 42 24 36 2c 24 43 24 36 7d 29 2c 31 2c 31 29 |$B$6,$C$6}),1,1)| 00000460 0a 25 56 25 25 52 25 69 6e 64 65 78 28 63 5f 74 |.%V%%R%index(c_t| 00000470 61 6e 68 28 7b 24 42 24 36 2c 24 43 24 36 7d 29 |anh({$B$6,$C$6})| 00000480 2c 31 2c 31 29 0a 25 56 25 25 52 25 69 6e 64 65 |,1,1).%V%%R%inde| 00000490 78 28 63 5f 61 63 6f 73 68 28 7b 24 42 24 36 2c |x(c_acosh({$B$6,| 000004a0 24 43 24 36 7d 29 2c 31 2c 31 29 0a 25 56 25 25 |$C$6}),1,1).%V%%| 000004b0 52 25 69 6e 64 65 78 28 63 5f 61 73 69 6e 68 28 |R%index(c_asinh(| 000004c0 7b 24 42 24 36 2c 24 43 24 36 7d 29 2c 31 2c 31 |{$B$6,$C$6}),1,1| 000004d0 29 0a 25 56 25 25 52 25 69 6e 64 65 78 28 63 5f |).%V%%R%index(c_| 000004e0 61 74 61 6e 68 28 7b 24 42 24 36 2c 24 43 24 36 |atanh({$B$6,$C$6| 000004f0 7d 29 2c 31 2c 31 29 0a 25 56 25 25 52 25 69 6e |}),1,1).%V%%R%in| 00000500 64 65 78 28 63 5f 63 6f 73 65 63 28 7b 24 42 24 |dex(c_cosec({$B$| 00000510 36 2c 24 43 24 36 7d 29 2c 31 2c 31 29 0a 25 56 |6,$C$6}),1,1).%V| 00000520 25 25 52 25 69 6e 64 65 78 28 63 5f 63 6f 74 28 |%%R%index(c_cot(| 00000530 7b 24 42 24 36 2c 24 43 24 36 7d 29 2c 31 2c 31 |{$B$6,$C$6}),1,1| 00000540 29 0a 25 56 25 25 52 25 69 6e 64 65 78 28 63 5f |).%V%%R%index(c_| 00000550 73 65 63 28 7b 24 42 24 36 2c 24 43 24 36 7d 29 |sec({$B$6,$C$6})| 00000560 2c 31 2c 31 29 0a 25 56 25 25 52 25 69 6e 64 65 |,1,1).%V%%R%inde| 00000570 78 28 63 5f 61 63 6f 73 65 63 28 7b 24 42 24 36 |x(c_acosec({$B$6| 00000580 2c 24 43 24 36 7d 29 2c 31 2c 31 29 0a 25 56 25 |,$C$6}),1,1).%V%| 00000590 25 52 25 69 6e 64 65 78 28 63 5f 61 63 6f 74 28 |%R%index(c_acot(| 000005a0 7b 24 42 24 36 2c 24 43 24 36 7d 29 2c 31 2c 31 |{$B$6,$C$6}),1,1| 000005b0 29 0a 25 56 25 25 52 25 69 6e 64 65 78 28 63 5f |).%V%%R%index(c_| 000005c0 61 73 65 63 28 7b 24 42 24 36 2c 24 43 24 36 7d |asec({$B$6,$C$6}| 000005d0 29 2c 31 2c 31 29 0a 25 56 25 25 52 25 69 6e 64 |),1,1).%V%%R%ind| 000005e0 65 78 28 63 5f 63 6f 73 65 63 68 28 7b 24 42 24 |ex(c_cosech({$B$| 000005f0 36 2c 24 43 24 36 7d 29 2c 31 2c 31 29 0a 25 56 |6,$C$6}),1,1).%V| 00000600 25 25 52 25 69 6e 64 65 78 28 63 5f 63 6f 74 68 |%%R%index(c_coth| 00000610 28 7b 24 42 24 36 2c 24 43 24 36 7d 29 2c 31 2c |({$B$6,$C$6}),1,| 00000620 31 29 0a 25 56 25 25 52 25 69 6e 64 65 78 28 63 |1).%V%%R%index(c| 00000630 5f 73 65 63 68 28 7b 24 42 24 36 2c 24 43 24 36 |_sech({$B$6,$C$6| 00000640 7d 29 2c 31 2c 31 29 0a 25 56 25 25 52 25 69 6e |}),1,1).%V%%R%in| 00000650 64 65 78 28 63 5f 61 63 6f 73 65 63 68 28 7b 24 |dex(c_acosech({$| 00000660 42 24 36 2c 24 43 24 36 7d 29 2c 31 2c 31 29 0a |B$6,$C$6}),1,1).| 00000670 25 56 25 25 52 25 69 6e 64 65 78 28 63 5f 61 63 |%V%%R%index(c_ac| 00000680 6f 74 68 28 7b 24 42 24 36 2c 24 43 24 36 7d 29 |oth({$B$6,$C$6})| 00000690 2c 31 2c 31 29 0a 25 56 25 25 52 25 69 6e 64 65 |,1,1).%V%%R%inde| 000006a0 78 28 63 5f 61 73 65 63 68 28 7b 24 42 24 36 2c |x(c_asech({$B$6,| 000006b0 24 43 24 36 7d 29 2c 31 2c 31 29 0a 25 43 4f 3a |$C$6}),1,1).%CO:| 000006c0 43 2c 31 30 2c 30 25 0a 0a 0a 25 52 25 49 6d 61 |C,10,0%...%R%Ima| 000006d0 67 69 6e 61 72 79 0a 0a 25 56 25 25 52 25 31 0a |ginary..%V%%R%1.| 000006e0 25 56 25 25 52 25 2d 31 0a 25 56 25 25 52 25 69 |%V%%R%-1.%V%%R%i| 000006f0 6e 64 65 78 28 63 5f 61 64 64 28 7b 24 42 24 36 |ndex(c_add({$B$6| 00000700 2c 24 43 24 36 7d 2c 7b 24 42 24 37 2c 24 43 24 |,$C$6},{$B$7,$C$| 00000710 37 7d 29 2c 32 2c 31 29 0a 25 56 25 25 52 25 69 |7}),2,1).%V%%R%i| 00000720 6e 64 65 78 28 63 5f 73 75 62 28 7b 24 42 24 36 |ndex(c_sub({$B$6| 00000730 2c 24 43 24 36 7d 2c 7b 24 42 24 37 2c 24 43 24 |,$C$6},{$B$7,$C$| 00000740 37 7d 29 2c 32 2c 31 29 0a 25 56 25 25 52 25 69 |7}),2,1).%V%%R%i| 00000750 6e 64 65 78 28 63 5f 6d 75 6c 28 7b 24 42 24 36 |ndex(c_mul({$B$6| 00000760 2c 24 43 24 36 7d 2c 7b 24 42 24 37 2c 24 43 24 |,$C$6},{$B$7,$C$| 00000770 37 7d 29 2c 32 2c 31 29 0a 25 56 25 25 52 25 69 |7}),2,1).%V%%R%i| 00000780 6e 64 65 78 28 63 5f 64 69 76 28 7b 24 42 24 36 |ndex(c_div({$B$6| 00000790 2c 24 43 24 36 7d 2c 7b 24 42 24 37 2c 24 43 24 |,$C$6},{$B$7,$C$| 000007a0 37 7d 29 2c 32 2c 31 29 0a 25 56 25 25 52 25 69 |7}),2,1).%V%%R%i| 000007b0 6e 64 65 78 28 63 5f 70 6f 77 65 72 28 7b 24 42 |ndex(c_power({$B| 000007c0 24 36 2c 24 43 24 36 7d 2c 7b 24 42 24 37 2c 24 |$6,$C$6},{$B$7,$| 000007d0 43 24 37 7d 29 2c 32 2c 31 29 0a 25 56 25 25 52 |C$7}),2,1).%V%%R| 000007e0 25 69 6e 64 65 78 28 63 5f 65 78 70 28 7b 24 42 |%index(c_exp({$B| 000007f0 24 36 2c 24 43 24 36 7d 29 2c 32 2c 31 29 0a 25 |$6,$C$6}),2,1).%| 00000800 56 25 25 52 25 69 6e 64 65 78 28 63 5f 6c 6e 28 |V%%R%index(c_ln(| 00000810 7b 24 42 24 36 2c 24 43 24 36 7d 29 2c 32 2c 31 |{$B$6,$C$6}),2,1| 00000820 29 0a 25 56 25 25 52 25 69 6e 64 65 78 28 63 5f |).%V%%R%index(c_| 00000830 63 6f 73 28 7b 24 42 24 36 2c 24 43 24 36 7d 29 |cos({$B$6,$C$6})| 00000840 2c 32 2c 31 29 0a 25 56 25 25 52 25 69 6e 64 65 |,2,1).%V%%R%inde| 00000850 78 28 63 5f 73 69 6e 28 7b 24 42 24 36 2c 24 43 |x(c_sin({$B$6,$C| 00000860 24 36 7d 29 2c 32 2c 31 29 0a 25 56 25 25 52 25 |$6}),2,1).%V%%R%| 00000870 69 6e 64 65 78 28 63 5f 74 61 6e 28 7b 24 42 24 |index(c_tan({$B$| 00000880 36 2c 24 43 24 36 7d 29 2c 32 2c 31 29 0a 25 56 |6,$C$6}),2,1).%V| 00000890 25 25 52 25 69 6e 64 65 78 28 63 5f 61 63 6f 73 |%%R%index(c_acos| 000008a0 28 7b 24 42 24 36 2c 24 43 24 36 7d 29 2c 32 2c |({$B$6,$C$6}),2,| 000008b0 31 29 0a 25 56 25 25 52 25 69 6e 64 65 78 28 63 |1).%V%%R%index(c| 000008c0 5f 61 74 61 6e 28 7b 24 42 24 36 2c 24 43 24 36 |_atan({$B$6,$C$6| 000008d0 7d 29 2c 32 2c 31 29 0a 25 56 25 25 52 25 69 6e |}),2,1).%V%%R%in| 000008e0 64 65 78 28 63 5f 61 74 61 6e 28 7b 24 42 24 36 |dex(c_atan({$B$6| 000008f0 2c 24 43 24 36 7d 29 2c 32 2c 31 29 0a 25 56 25 |,$C$6}),2,1).%V%| 00000900 25 52 25 69 6e 64 65 78 28 63 5f 63 6f 73 68 28 |%R%index(c_cosh(| 00000910 7b 24 42 24 36 2c 24 43 24 36 7d 29 2c 32 2c 31 |{$B$6,$C$6}),2,1| 00000920 29 0a 25 56 25 25 52 25 69 6e 64 65 78 28 63 5f |).%V%%R%index(c_| 00000930 73 69 6e 68 28 7b 24 42 24 36 2c 24 43 24 36 7d |sinh({$B$6,$C$6}| 00000940 29 2c 32 2c 31 29 0a 25 56 25 25 52 25 69 6e 64 |),2,1).%V%%R%ind| 00000950 65 78 28 63 5f 74 61 6e 68 28 7b 24 42 24 36 2c |ex(c_tanh({$B$6,| 00000960 24 43 24 36 7d 29 2c 32 2c 31 29 0a 25 56 25 25 |$C$6}),2,1).%V%%| 00000970 52 25 69 6e 64 65 78 28 63 5f 61 63 6f 73 68 28 |R%index(c_acosh(| 00000980 7b 24 42 24 36 2c 24 43 24 36 7d 29 2c 32 2c 31 |{$B$6,$C$6}),2,1| 00000990 29 0a 25 56 25 25 52 25 69 6e 64 65 78 28 63 5f |).%V%%R%index(c_| 000009a0 61 73 69 6e 68 28 7b 24 42 24 36 2c 24 43 24 36 |asinh({$B$6,$C$6| 000009b0 7d 29 2c 32 2c 31 29 0a 25 56 25 25 52 25 69 6e |}),2,1).%V%%R%in| 000009c0 64 65 78 28 63 5f 61 74 61 6e 68 28 7b 24 42 24 |dex(c_atanh({$B$| 000009d0 36 2c 24 43 24 36 7d 29 2c 32 2c 31 29 0a 25 56 |6,$C$6}),2,1).%V| 000009e0 25 25 52 25 69 6e 64 65 78 28 63 5f 63 6f 73 65 |%%R%index(c_cose| 000009f0 63 28 7b 24 42 24 36 2c 24 43 24 36 7d 29 2c 32 |c({$B$6,$C$6}),2| 00000a00 2c 31 29 0a 25 56 25 25 52 25 69 6e 64 65 78 28 |,1).%V%%R%index(| 00000a10 63 5f 63 6f 74 28 7b 24 42 24 36 2c 24 43 24 36 |c_cot({$B$6,$C$6| 00000a20 7d 29 2c 32 2c 31 29 0a 25 56 25 25 52 25 69 6e |}),2,1).%V%%R%in| 00000a30 64 65 78 28 63 5f 73 65 63 28 7b 24 42 24 36 2c |dex(c_sec({$B$6,| 00000a40 24 43 24 36 7d 29 2c 32 2c 31 29 0a 25 56 25 25 |$C$6}),2,1).%V%%| 00000a50 52 25 69 6e 64 65 78 28 63 5f 61 63 6f 73 65 63 |R%index(c_acosec| 00000a60 28 7b 24 42 24 36 2c 24 43 24 36 7d 29 2c 32 2c |({$B$6,$C$6}),2,| 00000a70 31 29 0a 25 56 25 25 52 25 69 6e 64 65 78 28 63 |1).%V%%R%index(c| 00000a80 5f 61 63 6f 74 28 7b 24 42 24 36 2c 24 43 24 36 |_acot({$B$6,$C$6| 00000a90 7d 29 2c 32 2c 31 29 0a 25 56 25 25 52 25 69 6e |}),2,1).%V%%R%in| 00000aa0 64 65 78 28 63 5f 61 73 65 63 28 7b 24 42 24 36 |dex(c_asec({$B$6| 00000ab0 2c 24 43 24 36 7d 29 2c 32 2c 31 29 0a 25 56 25 |,$C$6}),2,1).%V%| 00000ac0 25 52 25 69 6e 64 65 78 28 63 5f 63 6f 73 65 63 |%R%index(c_cosec| 00000ad0 68 28 7b 24 42 24 36 2c 24 43 24 36 7d 29 2c 32 |h({$B$6,$C$6}),2| 00000ae0 2c 31 29 0a 25 56 25 25 52 25 69 6e 64 65 78 28 |,1).%V%%R%index(| 00000af0 63 5f 63 6f 74 68 28 7b 24 42 24 36 2c 24 43 24 |c_coth({$B$6,$C$| 00000b00 36 7d 29 2c 32 2c 31 29 0a 25 56 25 25 52 25 69 |6}),2,1).%V%%R%i| 00000b10 6e 64 65 78 28 63 5f 73 65 63 68 28 7b 24 42 24 |ndex(c_sech({$B$| 00000b20 36 2c 24 43 24 36 7d 29 2c 32 2c 31 29 0a 25 56 |6,$C$6}),2,1).%V| 00000b30 25 25 52 25 69 6e 64 65 78 28 63 5f 61 63 6f 73 |%%R%index(c_acos| 00000b40 65 63 68 28 7b 24 42 24 36 2c 24 43 24 36 7d 29 |ech({$B$6,$C$6})| 00000b50 2c 32 2c 31 29 0a 25 56 25 25 52 25 69 6e 64 65 |,2,1).%V%%R%inde| 00000b60 78 28 63 5f 61 63 6f 74 68 28 7b 24 42 24 36 2c |x(c_acoth({$B$6,| 00000b70 24 43 24 36 7d 29 2c 32 2c 31 29 0a 25 56 25 25 |$C$6}),2,1).%V%%| 00000b80 52 25 69 6e 64 65 78 28 63 5f 61 73 65 63 68 28 |R%index(c_asech(| 00000b90 7b 24 42 24 36 2c 24 43 24 36 7d 29 2c 32 2c 31 |{$B$6,$C$6}),2,1| 00000ba0 29 0a 25 43 4f 3a 44 2c 31 30 2c 30 25 0a 0a 0a |).%CO:D,10,0%...| 00000bb0 25 52 25 4d 6f 64 75 6c 75 73 0a 0a 25 56 25 25 |%R%Modulus..%V%%| 00000bc0 52 25 63 5f 72 61 64 69 75 73 28 7b 42 36 2c 43 |R%c_radius({B6,C| 00000bd0 36 7d 29 0a 25 56 25 25 52 25 63 5f 72 61 64 69 |6}).%V%%R%c_radi| 00000be0 75 73 28 7b 42 37 2c 43 37 7d 29 0a 25 56 25 25 |us({B7,C7}).%V%%| 00000bf0 52 25 63 5f 72 61 64 69 75 73 28 7b 42 38 2c 43 |R%c_radius({B8,C| 00000c00 38 7d 29 0a 25 56 25 25 52 25 63 5f 72 61 64 69 |8}).%V%%R%c_radi| 00000c10 75 73 28 7b 42 39 2c 43 39 7d 29 0a 25 56 25 25 |us({B9,C9}).%V%%| 00000c20 52 25 63 5f 72 61 64 69 75 73 28 7b 42 31 30 2c |R%c_radius({B10,| 00000c30 43 31 30 7d 29 0a 25 56 25 25 52 25 63 5f 72 61 |C10}).%V%%R%c_ra| 00000c40 64 69 75 73 28 7b 42 31 31 2c 43 31 31 7d 29 0a |dius({B11,C11}).| 00000c50 25 56 25 25 52 25 63 5f 72 61 64 69 75 73 28 7b |%V%%R%c_radius({| 00000c60 42 31 32 2c 43 31 32 7d 29 0a 25 56 25 25 52 25 |B12,C12}).%V%%R%| 00000c70 63 5f 72 61 64 69 75 73 28 7b 42 31 33 2c 43 31 |c_radius({B13,C1| 00000c80 33 7d 29 0a 25 56 25 25 52 25 63 5f 72 61 64 69 |3}).%V%%R%c_radi| 00000c90 75 73 28 7b 42 31 34 2c 43 31 34 7d 29 0a 25 56 |us({B14,C14}).%V| 00000ca0 25 25 52 25 63 5f 72 61 64 69 75 73 28 7b 42 31 |%%R%c_radius({B1| 00000cb0 35 2c 43 31 35 7d 29 0a 25 56 25 25 52 25 63 5f |5,C15}).%V%%R%c_| 00000cc0 72 61 64 69 75 73 28 7b 42 31 36 2c 43 31 36 7d |radius({B16,C16}| 00000cd0 29 0a 25 56 25 25 52 25 63 5f 72 61 64 69 75 73 |).%V%%R%c_radius| 00000ce0 28 7b 42 31 37 2c 43 31 37 7d 29 0a 25 56 25 25 |({B17,C17}).%V%%| 00000cf0 52 25 63 5f 72 61 64 69 75 73 28 7b 42 31 38 2c |R%c_radius({B18,| 00000d00 43 31 38 7d 29 0a 25 56 25 25 52 25 63 5f 72 61 |C18}).%V%%R%c_ra| 00000d10 64 69 75 73 28 7b 42 31 39 2c 43 31 39 7d 29 0a |dius({B19,C19}).| 00000d20 25 56 25 25 52 25 63 5f 72 61 64 69 75 73 28 7b |%V%%R%c_radius({| 00000d30 42 32 30 2c 43 32 30 7d 29 0a 25 56 25 25 52 25 |B20,C20}).%V%%R%| 00000d40 63 5f 72 61 64 69 75 73 28 7b 42 32 31 2c 43 32 |c_radius({B21,C2| 00000d50 31 7d 29 0a 25 56 25 25 52 25 63 5f 72 61 64 69 |1}).%V%%R%c_radi| 00000d60 75 73 28 7b 42 32 32 2c 43 32 32 7d 29 0a 25 56 |us({B22,C22}).%V| 00000d70 25 25 52 25 63 5f 72 61 64 69 75 73 28 7b 42 32 |%%R%c_radius({B2| 00000d80 33 2c 43 32 33 7d 29 0a 25 56 25 25 52 25 63 5f |3,C23}).%V%%R%c_| 00000d90 72 61 64 69 75 73 28 7b 42 32 34 2c 43 32 34 7d |radius({B24,C24}| 00000da0 29 0a 25 56 25 25 52 25 63 5f 72 61 64 69 75 73 |).%V%%R%c_radius| 00000db0 28 7b 42 32 35 2c 43 32 35 7d 29 0a 25 56 25 25 |({B25,C25}).%V%%| 00000dc0 52 25 63 5f 72 61 64 69 75 73 28 7b 42 32 36 2c |R%c_radius({B26,| 00000dd0 43 32 36 7d 29 0a 25 56 25 25 52 25 63 5f 72 61 |C26}).%V%%R%c_ra| 00000de0 64 69 75 73 28 7b 42 32 37 2c 43 32 37 7d 29 0a |dius({B27,C27}).| 00000df0 25 56 25 25 52 25 63 5f 72 61 64 69 75 73 28 7b |%V%%R%c_radius({| 00000e00 42 32 38 2c 43 32 38 7d 29 0a 25 56 25 25 52 25 |B28,C28}).%V%%R%| 00000e10 63 5f 72 61 64 69 75 73 28 7b 42 32 39 2c 43 32 |c_radius({B29,C2| 00000e20 39 7d 29 0a 25 56 25 25 52 25 63 5f 72 61 64 69 |9}).%V%%R%c_radi| 00000e30 75 73 28 7b 42 33 30 2c 43 33 30 7d 29 0a 25 56 |us({B30,C30}).%V| 00000e40 25 25 52 25 63 5f 72 61 64 69 75 73 28 7b 42 33 |%%R%c_radius({B3| 00000e50 31 2c 43 33 31 7d 29 0a 25 56 25 25 52 25 63 5f |1,C31}).%V%%R%c_| 00000e60 72 61 64 69 75 73 28 7b 42 33 32 2c 43 33 32 7d |radius({B32,C32}| 00000e70 29 0a 25 56 25 25 52 25 63 5f 72 61 64 69 75 73 |).%V%%R%c_radius| 00000e80 28 7b 42 33 33 2c 43 33 33 7d 29 0a 25 56 25 25 |({B33,C33}).%V%%| 00000e90 52 25 63 5f 72 61 64 69 75 73 28 7b 42 33 34 2c |R%c_radius({B34,| 00000ea0 43 33 34 7d 29 0a 25 56 25 25 52 25 63 5f 72 61 |C34}).%V%%R%c_ra| 00000eb0 64 69 75 73 28 7b 42 33 35 2c 43 33 35 7d 29 0a |dius({B35,C35}).| 00000ec0 25 56 25 25 52 25 63 5f 72 61 64 69 75 73 28 7b |%V%%R%c_radius({| 00000ed0 42 33 36 2c 43 33 36 7d 29 0a 25 56 25 25 52 25 |B36,C36}).%V%%R%| 00000ee0 63 5f 72 61 64 69 75 73 28 7b 42 33 37 2c 43 33 |c_radius({B37,C3| 00000ef0 37 7d 29 0a 25 56 25 25 52 25 63 5f 72 61 64 69 |7}).%V%%R%c_radi| 00000f00 75 73 28 7b 42 33 38 2c 43 33 38 7d 29 0a 25 43 |us({B38,C38}).%C| 00000f10 4f 3a 45 2c 31 30 2c 30 25 0a 0a 0a 25 52 25 41 |O:E,10,0%...%R%A| 00000f20 72 67 75 6d 65 6e 74 0a 0a 25 56 25 25 52 25 63 |rgument..%V%%R%c| 00000f30 5f 74 68 65 74 61 28 7b 42 36 2c 43 36 7d 29 0a |_theta({B6,C6}).| 00000f40 25 56 25 25 52 25 63 5f 74 68 65 74 61 28 7b 42 |%V%%R%c_theta({B| 00000f50 37 2c 43 37 7d 29 0a 25 56 25 25 52 25 63 5f 74 |7,C7}).%V%%R%c_t| 00000f60 68 65 74 61 28 7b 42 38 2c 43 38 7d 29 0a 25 56 |heta({B8,C8}).%V| 00000f70 25 25 52 25 63 5f 74 68 65 74 61 28 7b 42 39 2c |%%R%c_theta({B9,| 00000f80 43 39 7d 29 0a 25 56 25 25 52 25 63 5f 74 68 65 |C9}).%V%%R%c_the| 00000f90 74 61 28 7b 42 31 30 2c 43 31 30 7d 29 0a 25 56 |ta({B10,C10}).%V| 00000fa0 25 25 52 25 63 5f 74 68 65 74 61 28 7b 42 31 31 |%%R%c_theta({B11| 00000fb0 2c 43 31 31 7d 29 0a 25 56 25 25 52 25 63 5f 74 |,C11}).%V%%R%c_t| 00000fc0 68 65 74 61 28 7b 42 31 32 2c 43 31 32 7d 29 0a |heta({B12,C12}).| 00000fd0 25 56 25 25 52 25 63 5f 74 68 65 74 61 28 7b 42 |%V%%R%c_theta({B| 00000fe0 31 33 2c 43 31 33 7d 29 0a 25 56 25 25 52 25 63 |13,C13}).%V%%R%c| 00000ff0 5f 74 68 65 74 61 28 7b 42 31 34 2c 43 31 34 7d |_theta({B14,C14}| 00001000 29 0a 25 56 25 25 52 25 63 5f 74 68 65 74 61 28 |).%V%%R%c_theta(| 00001010 7b 42 31 35 2c 43 31 35 7d 29 0a 25 56 25 25 52 |{B15,C15}).%V%%R| 00001020 25 63 5f 74 68 65 74 61 28 7b 42 31 36 2c 43 31 |%c_theta({B16,C1| 00001030 36 7d 29 0a 25 56 25 25 52 25 63 5f 74 68 65 74 |6}).%V%%R%c_thet| 00001040 61 28 7b 42 31 37 2c 43 31 37 7d 29 0a 25 56 25 |a({B17,C17}).%V%| 00001050 25 52 25 63 5f 74 68 65 74 61 28 7b 42 31 38 2c |%R%c_theta({B18,| 00001060 43 31 38 7d 29 0a 25 56 25 25 52 25 63 5f 74 68 |C18}).%V%%R%c_th| 00001070 65 74 61 28 7b 42 31 39 2c 43 31 39 7d 29 0a 25 |eta({B19,C19}).%| 00001080 56 25 25 52 25 63 5f 74 68 65 74 61 28 7b 42 32 |V%%R%c_theta({B2| 00001090 30 2c 43 32 30 7d 29 0a 25 56 25 25 52 25 63 5f |0,C20}).%V%%R%c_| 000010a0 74 68 65 74 61 28 7b 42 32 31 2c 43 32 31 7d 29 |theta({B21,C21})| 000010b0 0a 25 56 25 25 52 25 63 5f 74 68 65 74 61 28 7b |.%V%%R%c_theta({| 000010c0 42 32 32 2c 43 32 32 7d 29 0a 25 56 25 25 52 25 |B22,C22}).%V%%R%| 000010d0 63 5f 74 68 65 74 61 28 7b 42 32 33 2c 43 32 33 |c_theta({B23,C23| 000010e0 7d 29 0a 25 56 25 25 52 25 63 5f 74 68 65 74 61 |}).%V%%R%c_theta| 000010f0 28 7b 42 32 34 2c 43 32 34 7d 29 0a 25 56 25 25 |({B24,C24}).%V%%| 00001100 52 25 63 5f 74 68 65 74 61 28 7b 42 32 35 2c 43 |R%c_theta({B25,C| 00001110 32 35 7d 29 0a 25 56 25 25 52 25 63 5f 74 68 65 |25}).%V%%R%c_the| 00001120 74 61 28 7b 42 32 36 2c 43 32 36 7d 29 0a 25 56 |ta({B26,C26}).%V| 00001130 25 25 52 25 63 5f 74 68 65 74 61 28 7b 42 32 37 |%%R%c_theta({B27| 00001140 2c 43 32 37 7d 29 0a 25 56 25 25 52 25 63 5f 74 |,C27}).%V%%R%c_t| 00001150 68 65 74 61 28 7b 42 32 38 2c 43 32 38 7d 29 0a |heta({B28,C28}).| 00001160 25 56 25 25 52 25 63 5f 74 68 65 74 61 28 7b 42 |%V%%R%c_theta({B| 00001170 32 39 2c 43 32 39 7d 29 0a 25 56 25 25 52 25 63 |29,C29}).%V%%R%c| 00001180 5f 74 68 65 74 61 28 7b 42 33 30 2c 43 33 30 7d |_theta({B30,C30}| 00001190 29 0a 25 56 25 25 52 25 63 5f 74 68 65 74 61 28 |).%V%%R%c_theta(| 000011a0 7b 42 33 31 2c 43 33 31 7d 29 0a 25 56 25 25 52 |{B31,C31}).%V%%R| 000011b0 25 63 5f 74 68 65 74 61 28 7b 42 33 32 2c 43 33 |%c_theta({B32,C3| 000011c0 32 7d 29 0a 25 56 25 25 52 25 63 5f 74 68 65 74 |2}).%V%%R%c_thet| 000011d0 61 28 7b 42 33 33 2c 43 33 33 7d 29 0a 25 56 25 |a({B33,C33}).%V%| 000011e0 25 52 25 63 5f 74 68 65 74 61 28 7b 42 33 34 2c |%R%c_theta({B34,| 000011f0 43 33 34 7d 29 0a 25 56 25 25 52 25 63 5f 74 68 |C34}).%V%%R%c_th| 00001200 65 74 61 28 7b 42 33 35 2c 43 33 35 7d 29 0a 25 |eta({B35,C35}).%| 00001210 56 25 25 52 25 63 5f 74 68 65 74 61 28 7b 42 33 |V%%R%c_theta({B3| 00001220 36 2c 43 33 36 7d 29 0a 25 56 25 25 52 25 63 5f |6,C36}).%V%%R%c_| 00001230 74 68 65 74 61 28 7b 42 33 37 2c 43 33 37 7d 29 |theta({B37,C37})| 00001240 0a 25 56 25 25 52 25 63 5f 74 68 65 74 61 28 7b |.%V%%R%c_theta({| 00001250 42 33 38 2c 43 33 38 7d 29 0a 25 43 4f 3a 46 2c |B38,C38}).%CO:F,| 00001260 31 2c 30 25 25 43 4f 3a 47 2c 34 39 2c 35 36 25 |1,0%%CO:G,49,56%| 00001270 0a 0a 0a 53 75 6d 6d 61 72 79 0a 0a 44 65 66 69 |...Summary..Defi| 00001280 6e 69 6e 67 20 63 6f 6d 70 6c 65 78 20 6e 75 6d |ning complex num| 00001290 62 65 72 20 7a 2e 0a 44 65 66 69 6e 69 6e 67 20 |ber z..Defining | 000012a0 63 6f 6d 70 6c 65 78 20 6e 75 6d 62 65 72 20 77 |complex number w| 000012b0 2e 0a 41 64 64 73 20 74 77 6f 20 63 6f 6d 70 6c |..Adds two compl| 000012c0 65 78 20 6e 75 6d 62 65 72 73 2e 0a 53 75 62 74 |ex numbers..Subt| 000012d0 72 61 63 74 73 20 74 77 6f 20 63 6f 6d 70 6c 65 |racts two comple| 000012e0 78 20 6e 75 6d 62 65 72 73 2e 0a 4d 75 6c 74 69 |x numbers..Multi| 000012f0 70 6c 69 65 73 20 74 77 6f 20 63 6f 6d 70 6c 65 |plies two comple| 00001300 78 20 6e 75 6d 62 65 72 73 2e 0a 44 69 76 69 64 |x numbers..Divid| 00001310 65 73 20 6f 6e 65 20 63 6f 6d 70 6c 65 78 20 6e |es one complex n| 00001320 75 6d 62 65 72 20 62 79 20 61 6e 6f 74 68 65 72 |umber by another| 00001330 2e 0a 52 61 69 73 65 73 20 6f 6e 65 20 63 6f 6d |..Raises one com| 00001340 70 6c 65 78 20 6e 75 6d 62 65 72 20 74 6f 20 74 |plex number to t| 00001350 68 65 20 70 6f 77 65 72 20 6f 66 20 61 6e 6f 74 |he power of anot| 00001360 68 65 72 2e 0a 52 61 69 73 65 73 20 65 20 28 6e |her..Raises e (n| 00001370 61 74 75 72 61 6c 20 65 78 70 6f 6e 65 6e 74 29 |atural exponent)| 00001380 20 74 6f 20 74 68 65 20 70 6f 77 65 72 20 6f 66 | to the power of| 00001390 20 61 20 63 6f 6d 70 6c 65 78 20 6e 75 6d 62 65 | a complex numbe| 000013a0 72 2e 0a 52 65 74 75 72 6e 73 20 74 68 65 20 6e |r..Returns the n| 000013b0 61 74 75 72 61 6c 20 6c 6f 67 61 72 69 74 68 6d |atural logarithm| 000013c0 20 6f 66 20 61 20 63 6f 6d 70 6c 65 78 20 6e 75 | of a complex nu| 000013d0 6d 62 65 72 2e 0a 52 65 74 75 72 6e 73 20 74 68 |mber..Returns th| 000013e0 65 20 43 6f 73 69 6e 65 20 6f 66 20 61 20 63 6f |e Cosine of a co| 000013f0 6d 70 6c 65 78 20 6e 75 6d 62 65 72 2e 0a 52 65 |mplex number..Re| 00001400 74 75 72 6e 73 20 74 68 65 20 53 69 6e 65 20 6f |turns the Sine o| 00001410 66 20 61 20 63 6f 6d 70 6c 65 78 20 6e 75 6d 62 |f a complex numb| 00001420 65 72 2e 0a 52 65 74 75 72 6e 73 20 74 68 65 20 |er..Returns the | 00001430 54 61 6e 67 65 6e 74 20 6f 66 20 61 20 63 6f 6d |Tangent of a com| 00001440 70 6c 65 78 20 6e 75 6d 62 65 72 2e 0a 52 65 74 |plex number..Ret| 00001450 75 72 6e 73 20 74 68 65 20 69 6e 76 65 72 73 65 |urns the inverse| 00001460 20 43 6f 73 69 6e 65 20 6f 66 20 61 20 63 6f 6d | Cosine of a com| 00001470 70 6c 65 78 20 6e 75 6d 62 65 72 2e 0a 52 65 74 |plex number..Ret| 00001480 75 72 6e 73 20 74 68 65 20 69 6e 76 65 72 73 65 |urns the inverse| 00001490 20 53 69 6e 65 20 6f 66 20 61 20 63 6f 6d 70 6c | Sine of a compl| 000014a0 65 78 20 6e 75 6d 62 65 72 2e 0a 52 65 74 75 72 |ex number..Retur| 000014b0 6e 73 20 74 68 65 20 69 6e 76 65 72 73 65 20 54 |ns the inverse T| 000014c0 61 6e 67 65 6e 74 20 6f 66 20 61 20 63 6f 6d 70 |angent of a comp| 000014d0 6c 65 78 20 6e 75 6d 62 65 72 2e 0a 52 65 74 75 |lex number..Retu| 000014e0 72 6e 73 20 74 68 65 20 68 79 70 65 72 62 6f 6c |rns the hyperbol| 000014f0 69 63 20 43 6f 73 69 6e 65 20 6f 66 20 61 20 63 |ic Cosine of a c| 00001500 6f 6d 70 6c 65 78 20 6e 75 6d 62 65 72 2e 0a 52 |omplex number..R| 00001510 65 74 75 72 6e 73 20 74 68 65 20 68 79 70 65 72 |eturns the hyper| 00001520 62 6f 6c 69 63 20 53 69 6e 65 20 6f 66 20 61 20 |bolic Sine of a | 00001530 63 6f 6d 70 6c 65 78 20 6e 75 6d 62 65 72 2e 0a |complex number..| 00001540 52 65 74 75 72 6e 73 20 74 68 65 20 68 79 70 65 |Returns the hype| 00001550 72 62 6f 6c 69 63 20 54 61 6e 67 65 6e 74 20 6f |rbolic Tangent o| 00001560 66 20 61 20 63 6f 6d 70 6c 65 78 20 6e 75 6d 62 |f a complex numb| 00001570 65 72 2e 0a 52 65 74 75 72 6e 73 20 74 68 65 20 |er..Returns the | 00001580 69 6e 76 65 72 73 65 20 68 79 70 65 72 62 6f 6c |inverse hyperbol| 00001590 69 63 20 43 6f 73 69 6e 65 20 6f 66 20 61 20 63 |ic Cosine of a c| 000015a0 6f 6d 70 6c 65 78 20 6e 75 6d 62 65 72 2e 0a 52 |omplex number..R| 000015b0 65 74 75 72 6e 73 20 74 68 65 20 69 6e 76 65 72 |eturns the inver| 000015c0 73 65 20 68 79 70 65 72 62 6f 6c 69 63 20 53 69 |se hyperbolic Si| 000015d0 6e 65 20 6f 66 20 61 20 63 6f 6d 70 6c 65 78 20 |ne of a complex | 000015e0 6e 75 6d 62 65 72 2e 0a 52 65 74 75 72 6e 73 20 |number..Returns | 000015f0 74 68 65 20 69 6e 76 65 72 73 65 20 68 79 70 65 |the inverse hype| 00001600 72 62 6f 6c 69 63 20 54 61 6e 67 65 6e 74 20 6f |rbolic Tangent o| 00001610 66 20 61 20 63 6f 6d 70 6c 65 78 20 6e 75 6d 62 |f a complex numb| 00001620 65 72 2e 0a 52 65 74 75 72 6e 73 20 74 68 65 20 |er..Returns the | 00001630 43 6f 73 65 63 61 6e 74 20 6f 66 20 61 20 63 6f |Cosecant of a co| 00001640 6d 70 6c 65 78 20 6e 75 6d 62 65 72 2e 0a 52 65 |mplex number..Re| 00001650 74 75 72 6e 73 20 74 68 65 20 43 6f 74 61 6e 67 |turns the Cotang| 00001660 65 6e 74 20 6f 66 20 61 20 63 6f 6d 70 6c 65 78 |ent of a complex| 00001670 20 6e 75 6d 62 65 72 2e 0a 52 65 74 75 72 6e 73 | number..Returns| 00001680 20 74 68 65 20 53 65 63 61 6e 74 20 6f 66 20 61 | the Secant of a| 00001690 20 63 6f 6d 70 6c 65 78 20 6e 75 6d 62 65 72 2e | complex number.| 000016a0 0a 52 65 74 75 72 6e 73 20 74 68 65 20 69 6e 76 |.Returns the inv| 000016b0 65 72 73 65 20 43 6f 73 65 63 61 6e 74 20 6f 66 |erse Cosecant of| 000016c0 20 61 20 63 6f 6d 70 6c 65 78 20 6e 75 6d 62 65 | a complex numbe| 000016d0 72 2e 0a 52 65 74 75 72 6e 73 20 74 68 65 20 69 |r..Returns the i| 000016e0 6e 76 65 72 73 65 20 43 6f 74 61 6e 67 65 6e 74 |nverse Cotangent| 000016f0 20 6f 66 20 61 20 63 6f 6d 70 6c 65 78 20 6e 75 | of a complex nu| 00001700 6d 62 65 72 2e 0a 52 65 74 75 72 6e 73 20 74 68 |mber..Returns th| 00001710 65 20 69 6e 76 65 72 73 65 20 53 65 63 61 6e 74 |e inverse Secant| 00001720 20 6f 66 20 61 20 63 6f 6d 70 6c 65 78 20 6e 75 | of a complex nu| 00001730 6d 62 65 72 2e 0a 52 65 74 75 72 6e 73 20 74 68 |mber..Returns th| 00001740 65 20 68 79 70 65 72 62 6f 6c 69 63 20 43 6f 73 |e hyperbolic Cos| 00001750 65 63 61 6e 74 20 6f 66 20 61 20 63 6f 6d 70 6c |ecant of a compl| 00001760 65 78 20 6e 75 6d 62 65 72 2e 0a 52 65 74 75 72 |ex number..Retur| 00001770 6e 73 20 74 68 65 20 68 79 70 65 72 62 6f 6c 69 |ns the hyperboli| 00001780 63 20 43 6f 74 61 6e 67 65 6e 74 20 6f 66 20 61 |c Cotangent of a| 00001790 20 63 6f 6d 70 6c 65 78 20 6e 75 6d 62 65 72 2e | complex number.| 000017a0 0a 52 65 74 75 72 6e 73 20 74 68 65 20 68 79 70 |.Returns the hyp| 000017b0 65 72 62 6f 6c 69 63 20 53 65 63 61 6e 74 20 6f |erbolic Secant o| 000017c0 66 20 61 20 63 6f 6d 70 6c 65 78 20 6e 75 6d 62 |f a complex numb| 000017d0 65 72 2e 0a 52 65 74 75 72 6e 73 20 74 68 65 20 |er..Returns the | 000017e0 69 6e 76 65 72 73 65 20 68 79 70 65 72 62 6f 6c |inverse hyperbol| 000017f0 69 63 20 43 6f 73 65 63 61 6e 74 20 6f 66 20 61 |ic Cosecant of a| 00001800 20 63 6f 6d 70 6c 65 78 20 6e 75 6d 62 65 72 2e | complex number.| 00001810 0a 52 65 74 75 72 6e 73 20 74 68 65 20 69 6e 76 |.Returns the inv| 00001820 65 72 73 65 20 68 79 70 65 72 62 6f 6c 69 63 20 |erse hyperbolic | 00001830 43 6f 74 61 6e 67 65 6e 74 20 6f 66 20 61 20 63 |Cotangent of a c| 00001840 6f 6d 70 6c 65 78 20 6e 75 6d 62 65 72 2e 0a 52 |omplex number..R| 00001850 65 74 75 72 6e 73 20 74 68 65 20 69 6e 76 65 72 |eturns the inver| 00001860 73 65 20 68 79 70 65 72 62 6f 6c 69 63 20 53 65 |se hyperbolic Se| 00001870 63 61 6e 74 20 6f 66 20 61 20 63 6f 6d 70 6c 65 |cant of a comple| 00001880 78 20 6e 75 6d 62 65 72 2e 0a |x number..| 0000188a