Home » CEEFAX disks » telesoftware6.adl » 09-04-88/T\OSB21
09-04-88/T\OSB21
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » CEEFAX disks » telesoftware6.adl |
Filename: | 09-04-88/T\OSB21 |
Read OK: | ✔ |
File size: | 3733 bytes |
Load address: | 0000 |
Exec address: | FFFFFFFF |
Duplicates
There is 1 duplicate copy of this file in the archive:
- CEEFAX disks » telesoftware2.adl » OS\BITS/T\OSB21
- CEEFAX disks » telesoftware6.adl » 09-04-88/T\OSB21
File contents
OSBITS - An Exploration of the BBC Micro at Machine Level By Programmer .......................................................... Part 21: Real Numbers Explore the Mandelbrot Set In the last module I introduced the idea of splitting up a word (in that case it was 4 bytes as used by BASIC integers) such that the lower few bytes were in fact representing fractional parts of 1. This module exploits that idea in order to perform some pretty hairy computation in order to plot a crude diagram showing the Mandelbrot Set. The Mandelbrot Set illustrates the performance of the function z=z+c where both z and c are complex numbers. This means they have a real part and an imaginary part and the imaginary part is a multiple (or fraction) of the square root of -1. Mathematicians call that quantity i while engineers usually call it j. (i to an electrical engineer denotes current, as in Ohm's Law v=ir.) So essentially we take z=z+c, starting with z=0 and keep putting it into the equation. Obviously the first time around z will equal c. If we keep doing this so called iterative process and check on the size of z as we do it we can see how the function behaves. In order to draw the Mandelbrot Set we simply carry out this iteration using screen co-ordinates to represent values of c. Since c has these real and imaginary parts we can plot real values along the x axis and imaginary ones up the y axis. The colour of the pixel plotted at that point is used to tell us how the size of the function behaves. We are interested in whether or not the size of the function increases without limit. For our purposes 'without limit' means only that it reaches 2 because if it reaches 2 it will, I am reliably informed, reach infinity! Different colour values tell us how many iterations it took for the function to reach 2 in size. If after a certain number of iterations it has not yet reached 2 then the pixel is coloured black and that value of c is part of the Mandelbrot Set. This is all named after a Belgian mathematician named Benoit B Mandelbrot who discovered this particular behaviour of complex numbers. Mandelbrot also discovered fractals and the boundary of the black area in the middle of our eventual diagram is a fractal. If we blow it up ever larger we reveal more and more detail. Now you can imagine that since many iterations are taking place at each pixel on the screen the whole process can take a long time. I have drawn blow-ups of areas of the boundary that took over 48 hours to plot on a BBC micro in BASIC. (I've also done it in FORTRAN on a 32016 second processor in an hour but that's down to the power of the machinery and of FORTRAN rather than any fancy coding of mine.) The algorithm is like this: Map out values of c covering the range -2.25-1.5i to 0.75+1.5i across the screen area. This means that the graphics origin (0,0) represents -2.25-1.5i and (1024,1024) represents 0.75+1.5i and each pixel on the screen would represent a value of c. Work your way over the screen and for each pixel: Set a counter at zero, set z equal to zero (0+0i) Loop start Calculate size of z, if > 2 then colour the pixel according to the value in the counter and move on to next pixel If the counter has reached a preset value colour the pixel black and move on to the next pixel If neither condition is met then recalculate z=z+c using the previous value of z and go back to the start of the loop In practice the tendency is to calculate the new value of the size squared, which is the sum of the real part squared and the imaginary part squared. There is no point in taking a spurious square root. So the size variable being used is the square and it is therefore compared with 4 rather than 2. Also the actual order of carrying out the tests will vary from the straight algorithm. In the module program, for example, the counter is decremented at the end of the loop rather than the beginning so the test is carried out there. Also the size is tested as soon after it is calculated as feasible bearing in mind the length of the branch needed after the test. Because of this branch length problem the code here actually tests in a rather odd place, during the calculation of the new value of y. The Mandelbrot set calculation is suited to limited fixed-point arithmetic because it works within a limited range of numbers and because, being a graphic, it is perhaps more tolerant of poor accuracy in the calculations. I will admit this in advance, my fixed-point routine is not amazingly accurate, but your trade-off is speed against precision. So, before we look at the code I shall explain the fixed-point method used here. If we take a four byte word and put the 'binary' point in the middle we then have a fixed point number. If you look at the algorithms for arithmetic I listed in the last module you will find that a constant factor was involved in changing the numbers into the fixed point representation. It was 10000 last time but in the program in this module I will use 65536. This puts the binary point exactly in the middle of the number so that the top two bytes are the integer part and the lower two bytes are the fractional part. In this way we can represent numbers up to 65536 and as small as 1.526E-5 (which is 0.00001526). In order to carry out the necessary multiplications I have modified the multi-byte multiplication routine used in module 13 to produce a five byte result instead of four. This is because we have to divide the result of a fixed point multiplication by the relevant factor. It looks like this: Here is a six byte number. The binary point is represented by a plus sign. ------------------------------------+------------------ | byte 5 | byte 4 | byte 3 | byte 2 | byte 1 | byte 0 | ------------------------------------+------------------ If we multiply a four byte number x ------------------------------------+------------------ | | | xxxxxx | xxxxxx | xxxxxx | xxxxxx | ------------------------------------+------------------ by a four byte number y ------------------------------------+------------------ | | | yyyyyy | yyyyyy | yyyyyy | yyyyyy | ------------------------------------+------------------ we can get a eight byte number xy, part of which is here. ------------------------------------+------------------ | xyxyxy | xyxyxy | xyxyxy | xyxyxy | xyxyxy | xyxyxy | ------------------------------------+------------------ To divide by 65536 we simply discard bytes 0 and 1 and read from byte 2 to byte 5. ------------------+------------------ | byte 5 | byte 4 | byte 3 | byte 2 | ------------------+------------------ And this essentially is how the multiplication routine works. Now I know from experience that we will not be multiplying any numbers to give products greater than 255 so we can use a 5 byte representation. This results in one byte above the binary point in the result, like this. ---------+------------------ | byte 4 | byte 3 | byte 2 | ---------+------------------ In order to cope with 2's complement negatives you have to also pad out the higher bytes in the numbers to be multiplied and in the result with &FF if necessary. That is why you see checks for negative and &FFs being put into 5th bytes in the fixed point multiplication routine. The routine lies between lines 3780 and 4580 in the module program. And so to the code itself. You will find that this code is almost a straight line, with only two subroutines, the Mandelbrot routine itself and the multiplying routine. This was done partly for speed, but also partly because by its nature this is a linear process rather than a multi-branched one, and so subroutines might not have clarified much. At the start of the assembly I test to see if your program is running in a second processor or in the BBC Micro itself, the I/O processor. This is because the program uses Mode 2 graphics and will not fit in memory easily. With a second processor that is no problem but in the micro itself you must be in Mode 7 to assemble and must clear the BASIC variable workspace (with a NEW) before you can run the final code. The first few lines of the program take care of that and will tell you what is going on. The code is executed by pressing function key 0: function key 1 is available to list the program in Mode 3. In the micro the code is assembled at &1300, in a 'safe' part of the disc workspace. In a second processor it can just be put alongside the BASIC/Assembler using DIM. If you have a BBC Master without a second processor you will have to change this part of the code to force the use of DIM because the value of PAGE is &E00. [You can also use shadow memory by using Mode 130 instead of Mode 2.] We set the mode as 2 and this gives us increments of 8 graphics units per pixel on the x axis and 4 on the y. If you want to change to Mode 0 or Mode 1 you have to modify these variables accordingly. The horizontal increments will be 2 and 4 for Modes 0 and 1 respectively. For speed I am using zero page workspace for the multiplying routines, and that is set next. In the assembler itself Mode 2 is set up followed by a VDU5 equivalent (both done using OSWRCH) so that the text cursor is removed. I know that there is a VDU23 instruction to switch off the cursor, but VDU5 is quicker and easier. The next section is a plotting loop that uses two words of memory labelled 'x_coord' and 'y_coord' to set the position of the pixel being plotted currently. The Mandelbrot subroutine uses a GCOL equivalent to set the colour before the pixel is plotted using a PLOT 69 equivalent (plot a point). For convenience I am using a 1024 units square area of the screen. Since the numerical area covered is 3 units along both axes the increment per graphics unit is 3/1024. Since our fixed point representation effectively multiplies that by 65536 (which is 256*256) the increment in fixed point is in fact &C0 in both directions. This figure is put into memory at labels h_inc and v_inc during the assembly. I have in fact eased the difficulty of this program greatly by assuming it will only be plotting the whole set. You could modify it to plot a smaller section at the risk of greater inacuracy with very small numbers but you will have to change the increments and the plot starting points manually, as it were, to do this. Simply, to find the four byte fixed point equivalent of a number, just multiply it by 65536. The complex numbers are broken down into real and imaginary parts. Their labels here are x and y for the components of z (since z is usually written x+iy) and c_real and c_imag for c. These are the calculations we must make: size = x^2 + y^2 (remember size is itself a square) New value of x = x^2 - y^2 + c_real New value of y = 2 * x * y + c_imag From line 1050 the code computes the value of c_real, based upon the current position on the screen. By using the X register counting down from 4 and offset against 'h_inc-1' we can use a BNE to test the loop during the transfer of bytes into multiplication workspace. You will see that most of the transfers are done this way. In line 1310 -2.25 is added in the calculation of c_real. -2.25 is the starting point of that axis. In our fixed point representation the number to be added is -2.25 * 65536 and that (in 2's complement negative) is &FFFDC000. From line 1420 c_imag is calculated and you will note that in line 1680 -1.5 is added in, this is &FFFE8000 in our fixed point. Just prior to the start of the main iteration loop the counter is initialised (we count down as usual in order to use a BNE/BEQ trap at the end of the loop) and x and y are initialised at zero, because z is zero as we start iterating. x squared and y squared are calculated simply by multiplying each with itself. The size is then calculated by adding the two results. Ideally we should test the size now, but there is too much code between here and the nearest point to put the other end of the branch. Remember a branch can only be +127 or -128 bytes. We will find the test shortly. In the calculations for the new x and y you will notice that while x needs x^2 and y^2, y needs x and y, so we must calculate the new y before we calculate the new x. From line 2540 the code calculates the new y. In the middle of this there is the earliest spot for the size test, which is why it appears at line 2850. The reason for putting the test as early as possible is that it will trap on size over most of the screen so by trapping here, rather than at the end of the loop, we save executing code unnecessarily, which saves time albeit only a small amount. We finish calculating the new y and then calculate the new x ready for the next iteration. The counter is decremented for the next iteration, but if that will take us past our iterations limit, in this case 32, we exit instead, using a BEQ in line 3410. At 'size_out' is the code that uses GCOL (VDU 18) to set the pixel colour. Rather than waste time and effort on a division I have simply masked off all but the last three bits of the size, which gives values from 0 to 7. If the iterations limit is exceeded then we reach 'count_out' and set the colour to black (GCOL 0,0). After some variable and workspace setting we finally come to the fixed point multiplication code. You will notice that we test for a negative number and if we find one we make it up to five bytes before the multiplication, since we want a good five byte result. The same applies to the result. The loop is executed 40 times because 5 bytes is 40 bits. Plotting the Mandelbrot set on a 3MHz 6502 second processor from BASIC using floating point takes me over 45 minutes, this routine using fixed point machine code arithmetic takes only 22 minutes. If I could speed up the multiplications I could probably get it even faster. Fair takes your breath away dunnit? The alternative to fixed point, a little slower but more precise, is floating point. That's for next time.
00000000 4f 53 42 49 54 53 20 2d 20 41 6e 20 45 78 70 6c |OSBITS - An Expl| 00000010 6f 72 61 74 69 6f 6e 20 6f 66 20 74 68 65 20 42 |oration of the B| 00000020 42 43 20 4d 69 63 72 6f 20 61 74 20 4d 61 63 68 |BC Micro at Mach| 00000030 69 6e 65 20 4c 65 76 65 6c 0d 0d 42 79 20 50 72 |ine Level..By Pr| 00000040 6f 67 72 61 6d 6d 65 72 0d 0d 2e 2e 2e 2e 2e 2e |ogrammer........| 00000050 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e 2e |................| * 00000080 2e 2e 2e 2e 0d 0d 0d 50 61 72 74 20 32 31 3a 20 |.......Part 21: | 00000090 52 65 61 6c 20 4e 75 6d 62 65 72 73 20 45 78 70 |Real Numbers Exp| 000000a0 6c 6f 72 65 20 74 68 65 20 4d 61 6e 64 65 6c 62 |lore the Mandelb| 000000b0 72 6f 74 20 53 65 74 0d 0d 0d 49 6e 20 74 68 65 |rot Set...In the| 000000c0 20 6c 61 73 74 20 6d 6f 64 75 6c 65 20 49 20 69 | last module I i| 000000d0 6e 74 72 6f 64 75 63 65 64 20 74 68 65 20 69 64 |ntroduced the id| 000000e0 65 61 20 6f 66 20 73 70 6c 69 74 74 69 6e 67 20 |ea of splitting | 000000f0 75 70 20 61 0d 77 6f 72 64 20 28 69 6e 20 74 68 |up a.word (in th| 00000100 61 74 20 63 61 73 65 20 69 74 20 77 61 73 20 34 |at case it was 4| 00000110 20 62 79 74 65 73 20 61 73 20 75 73 65 64 20 62 | bytes as used b| 00000120 79 20 42 41 53 49 43 20 69 6e 74 65 67 65 72 73 |y BASIC integers| 00000130 29 0d 73 75 63 68 20 74 68 61 74 20 74 68 65 20 |).such that the | 00000140 6c 6f 77 65 72 20 66 65 77 20 62 79 74 65 73 20 |lower few bytes | 00000150 77 65 72 65 20 69 6e 20 66 61 63 74 20 72 65 70 |were in fact rep| 00000160 72 65 73 65 6e 74 69 6e 67 0d 66 72 61 63 74 69 |resenting.fracti| 00000170 6f 6e 61 6c 20 70 61 72 74 73 20 6f 66 20 31 2e |onal parts of 1.| 00000180 20 20 54 68 69 73 20 6d 6f 64 75 6c 65 20 65 78 | This module ex| 00000190 70 6c 6f 69 74 73 20 74 68 61 74 20 69 64 65 61 |ploits that idea| 000001a0 20 69 6e 0d 6f 72 64 65 72 20 74 6f 20 70 65 72 | in.order to per| 000001b0 66 6f 72 6d 20 73 6f 6d 65 20 70 72 65 74 74 79 |form some pretty| 000001c0 20 68 61 69 72 79 20 63 6f 6d 70 75 74 61 74 69 | hairy computati| 000001d0 6f 6e 20 69 6e 20 6f 72 64 65 72 20 74 6f 0d 70 |on in order to.p| 000001e0 6c 6f 74 20 61 20 63 72 75 64 65 20 64 69 61 67 |lot a crude diag| 000001f0 72 61 6d 20 73 68 6f 77 69 6e 67 20 74 68 65 20 |ram showing the | 00000200 4d 61 6e 64 65 6c 62 72 6f 74 20 53 65 74 2e 0d |Mandelbrot Set..| 00000210 0d 54 68 65 20 4d 61 6e 64 65 6c 62 72 6f 74 20 |.The Mandelbrot | 00000220 53 65 74 20 69 6c 6c 75 73 74 72 61 74 65 73 20 |Set illustrates | 00000230 74 68 65 20 70 65 72 66 6f 72 6d 61 6e 63 65 20 |the performance | 00000240 6f 66 20 74 68 65 0d 66 75 6e 63 74 69 6f 6e 20 |of the.function | 00000250 7a 3d 7a 2b 63 20 77 68 65 72 65 20 62 6f 74 68 |z=z+c where both| 00000260 20 7a 20 61 6e 64 20 63 20 61 72 65 20 63 6f 6d | z and c are com| 00000270 70 6c 65 78 20 6e 75 6d 62 65 72 73 2e 20 20 54 |plex numbers. T| 00000280 68 69 73 0d 6d 65 61 6e 73 20 74 68 65 79 20 68 |his.means they h| 00000290 61 76 65 20 61 20 72 65 61 6c 20 70 61 72 74 20 |ave a real part | 000002a0 61 6e 64 20 61 6e 20 69 6d 61 67 69 6e 61 72 79 |and an imaginary| 000002b0 20 70 61 72 74 20 61 6e 64 20 74 68 65 0d 69 6d | part and the.im| 000002c0 61 67 69 6e 61 72 79 20 70 61 72 74 20 69 73 20 |aginary part is | 000002d0 61 20 6d 75 6c 74 69 70 6c 65 20 28 6f 72 20 66 |a multiple (or f| 000002e0 72 61 63 74 69 6f 6e 29 20 6f 66 20 74 68 65 20 |raction) of the | 000002f0 73 71 75 61 72 65 0d 72 6f 6f 74 20 6f 66 20 2d |square.root of -| 00000300 31 2e 20 20 4d 61 74 68 65 6d 61 74 69 63 69 61 |1. Mathematicia| 00000310 6e 73 20 63 61 6c 6c 20 74 68 61 74 20 71 75 61 |ns call that qua| 00000320 6e 74 69 74 79 20 69 20 77 68 69 6c 65 0d 65 6e |ntity i while.en| 00000330 67 69 6e 65 65 72 73 20 75 73 75 61 6c 6c 79 20 |gineers usually | 00000340 63 61 6c 6c 20 69 74 20 6a 2e 20 20 28 69 20 74 |call it j. (i t| 00000350 6f 20 61 6e 20 65 6c 65 63 74 72 69 63 61 6c 20 |o an electrical | 00000360 65 6e 67 69 6e 65 65 72 0d 64 65 6e 6f 74 65 73 |engineer.denotes| 00000370 20 63 75 72 72 65 6e 74 2c 20 61 73 20 69 6e 20 | current, as in | 00000380 4f 68 6d 27 73 20 4c 61 77 20 76 3d 69 72 2e 29 |Ohm's Law v=ir.)| 00000390 0d 0d 53 6f 20 65 73 73 65 6e 74 69 61 6c 6c 79 |..So essentially| 000003a0 20 77 65 20 74 61 6b 65 20 7a 3d 7a 2b 63 2c 20 | we take z=z+c, | 000003b0 73 74 61 72 74 69 6e 67 20 77 69 74 68 20 7a 3d |starting with z=| 000003c0 30 20 61 6e 64 20 6b 65 65 70 0d 70 75 74 74 69 |0 and keep.putti| 000003d0 6e 67 20 69 74 20 69 6e 74 6f 20 74 68 65 20 65 |ng it into the e| 000003e0 71 75 61 74 69 6f 6e 2e 20 20 4f 62 76 69 6f 75 |quation. Obviou| 000003f0 73 6c 79 20 74 68 65 20 66 69 72 73 74 20 74 69 |sly the first ti| 00000400 6d 65 0d 61 72 6f 75 6e 64 20 7a 20 77 69 6c 6c |me.around z will| 00000410 20 65 71 75 61 6c 20 63 2e 20 20 49 66 20 77 65 | equal c. If we| 00000420 20 6b 65 65 70 20 64 6f 69 6e 67 20 74 68 69 73 | keep doing this| 00000430 20 73 6f 20 63 61 6c 6c 65 64 0d 69 74 65 72 61 | so called.itera| 00000440 74 69 76 65 20 70 72 6f 63 65 73 73 20 61 6e 64 |tive process and| 00000450 20 63 68 65 63 6b 20 6f 6e 20 74 68 65 20 73 69 | check on the si| 00000460 7a 65 20 6f 66 20 7a 20 61 73 20 77 65 20 64 6f |ze of z as we do| 00000470 20 69 74 20 77 65 0d 63 61 6e 20 73 65 65 20 68 | it we.can see h| 00000480 6f 77 20 74 68 65 20 66 75 6e 63 74 69 6f 6e 20 |ow the function | 00000490 62 65 68 61 76 65 73 2e 0d 0d 49 6e 20 6f 72 64 |behaves...In ord| 000004a0 65 72 20 74 6f 20 64 72 61 77 20 74 68 65 20 4d |er to draw the M| 000004b0 61 6e 64 65 6c 62 72 6f 74 20 53 65 74 20 77 65 |andelbrot Set we| 000004c0 20 73 69 6d 70 6c 79 20 63 61 72 72 79 20 6f 75 | simply carry ou| 000004d0 74 20 74 68 69 73 0d 69 74 65 72 61 74 69 6f 6e |t this.iteration| 000004e0 20 75 73 69 6e 67 20 73 63 72 65 65 6e 20 63 6f | using screen co| 000004f0 2d 6f 72 64 69 6e 61 74 65 73 20 74 6f 20 72 65 |-ordinates to re| 00000500 70 72 65 73 65 6e 74 20 76 61 6c 75 65 73 20 6f |present values o| 00000510 66 0d 63 2e 20 20 53 69 6e 63 65 20 63 20 68 61 |f.c. Since c ha| 00000520 73 20 74 68 65 73 65 20 72 65 61 6c 20 61 6e 64 |s these real and| 00000530 20 69 6d 61 67 69 6e 61 72 79 20 70 61 72 74 73 | imaginary parts| 00000540 20 77 65 20 63 61 6e 20 70 6c 6f 74 0d 72 65 61 | we can plot.rea| 00000550 6c 20 76 61 6c 75 65 73 20 61 6c 6f 6e 67 20 74 |l values along t| 00000560 68 65 20 78 20 61 78 69 73 20 61 6e 64 20 69 6d |he x axis and im| 00000570 61 67 69 6e 61 72 79 20 6f 6e 65 73 20 75 70 20 |aginary ones up | 00000580 74 68 65 20 79 0d 61 78 69 73 2e 20 20 54 68 65 |the y.axis. The| 00000590 20 63 6f 6c 6f 75 72 20 6f 66 20 74 68 65 20 70 | colour of the p| 000005a0 69 78 65 6c 20 70 6c 6f 74 74 65 64 20 61 74 20 |ixel plotted at | 000005b0 74 68 61 74 20 70 6f 69 6e 74 20 69 73 20 75 73 |that point is us| 000005c0 65 64 0d 74 6f 20 74 65 6c 6c 20 75 73 20 68 6f |ed.to tell us ho| 000005d0 77 20 74 68 65 20 73 69 7a 65 20 6f 66 20 74 68 |w the size of th| 000005e0 65 20 66 75 6e 63 74 69 6f 6e 20 62 65 68 61 76 |e function behav| 000005f0 65 73 2e 0d 0d 57 65 20 61 72 65 20 69 6e 74 65 |es...We are inte| 00000600 72 65 73 74 65 64 20 69 6e 20 77 68 65 74 68 65 |rested in whethe| 00000610 72 20 6f 72 20 6e 6f 74 20 74 68 65 20 73 69 7a |r or not the siz| 00000620 65 20 6f 66 20 74 68 65 20 66 75 6e 63 74 69 6f |e of the functio| 00000630 6e 0d 69 6e 63 72 65 61 73 65 73 20 77 69 74 68 |n.increases with| 00000640 6f 75 74 20 6c 69 6d 69 74 2e 20 20 46 6f 72 20 |out limit. For | 00000650 6f 75 72 20 70 75 72 70 6f 73 65 73 20 27 77 69 |our purposes 'wi| 00000660 74 68 6f 75 74 20 6c 69 6d 69 74 27 0d 6d 65 61 |thout limit'.mea| 00000670 6e 73 20 6f 6e 6c 79 20 74 68 61 74 20 69 74 20 |ns only that it | 00000680 72 65 61 63 68 65 73 20 32 20 62 65 63 61 75 73 |reaches 2 becaus| 00000690 65 20 69 66 20 69 74 20 72 65 61 63 68 65 73 20 |e if it reaches | 000006a0 32 20 69 74 0d 77 69 6c 6c 2c 20 49 20 61 6d 20 |2 it.will, I am | 000006b0 72 65 6c 69 61 62 6c 79 20 69 6e 66 6f 72 6d 65 |reliably informe| 000006c0 64 2c 20 72 65 61 63 68 20 69 6e 66 69 6e 69 74 |d, reach infinit| 000006d0 79 21 20 20 44 69 66 66 65 72 65 6e 74 0d 63 6f |y! Different.co| 000006e0 6c 6f 75 72 20 76 61 6c 75 65 73 20 74 65 6c 6c |lour values tell| 000006f0 20 75 73 20 68 6f 77 20 6d 61 6e 79 20 69 74 65 | us how many ite| 00000700 72 61 74 69 6f 6e 73 20 69 74 20 74 6f 6f 6b 20 |rations it took | 00000710 66 6f 72 20 74 68 65 0d 66 75 6e 63 74 69 6f 6e |for the.function| 00000720 20 74 6f 20 72 65 61 63 68 20 32 20 69 6e 20 73 | to reach 2 in s| 00000730 69 7a 65 2e 20 20 49 66 20 61 66 74 65 72 20 61 |ize. If after a| 00000740 20 63 65 72 74 61 69 6e 20 6e 75 6d 62 65 72 20 | certain number | 00000750 6f 66 0d 69 74 65 72 61 74 69 6f 6e 73 20 69 74 |of.iterations it| 00000760 20 68 61 73 20 6e 6f 74 20 79 65 74 20 72 65 61 | has not yet rea| 00000770 63 68 65 64 20 32 20 74 68 65 6e 20 74 68 65 20 |ched 2 then the | 00000780 70 69 78 65 6c 20 69 73 0d 63 6f 6c 6f 75 72 65 |pixel is.coloure| 00000790 64 20 62 6c 61 63 6b 20 61 6e 64 20 74 68 61 74 |d black and that| 000007a0 20 76 61 6c 75 65 20 6f 66 20 63 20 69 73 20 70 | value of c is p| 000007b0 61 72 74 20 6f 66 20 74 68 65 20 4d 61 6e 64 65 |art of the Mande| 000007c0 6c 62 72 6f 74 0d 53 65 74 2e 20 20 54 68 69 73 |lbrot.Set. This| 000007d0 20 69 73 20 61 6c 6c 20 6e 61 6d 65 64 20 61 66 | is all named af| 000007e0 74 65 72 20 61 20 42 65 6c 67 69 61 6e 20 6d 61 |ter a Belgian ma| 000007f0 74 68 65 6d 61 74 69 63 69 61 6e 20 6e 61 6d 65 |thematician name| 00000800 64 0d 42 65 6e 6f 69 74 20 42 20 4d 61 6e 64 65 |d.Benoit B Mande| 00000810 6c 62 72 6f 74 20 77 68 6f 20 64 69 73 63 6f 76 |lbrot who discov| 00000820 65 72 65 64 20 74 68 69 73 20 70 61 72 74 69 63 |ered this partic| 00000830 75 6c 61 72 20 62 65 68 61 76 69 6f 75 72 0d 6f |ular behaviour.o| 00000840 66 20 63 6f 6d 70 6c 65 78 20 6e 75 6d 62 65 72 |f complex number| 00000850 73 2e 0d 0d 4d 61 6e 64 65 6c 62 72 6f 74 20 61 |s...Mandelbrot a| 00000860 6c 73 6f 20 64 69 73 63 6f 76 65 72 65 64 20 66 |lso discovered f| 00000870 72 61 63 74 61 6c 73 20 61 6e 64 20 74 68 65 20 |ractals and the | 00000880 62 6f 75 6e 64 61 72 79 20 6f 66 20 74 68 65 0d |boundary of the.| 00000890 62 6c 61 63 6b 20 61 72 65 61 20 69 6e 20 74 68 |black area in th| 000008a0 65 20 6d 69 64 64 6c 65 20 6f 66 20 6f 75 72 20 |e middle of our | 000008b0 65 76 65 6e 74 75 61 6c 20 64 69 61 67 72 61 6d |eventual diagram| 000008c0 20 69 73 20 61 0d 66 72 61 63 74 61 6c 2e 20 20 | is a.fractal. | 000008d0 49 66 20 77 65 20 62 6c 6f 77 20 69 74 20 75 70 |If we blow it up| 000008e0 20 65 76 65 72 20 6c 61 72 67 65 72 20 77 65 20 | ever larger we | 000008f0 72 65 76 65 61 6c 20 6d 6f 72 65 20 61 6e 64 0d |reveal more and.| 00000900 6d 6f 72 65 20 64 65 74 61 69 6c 2e 20 20 4e 6f |more detail. No| 00000910 77 20 79 6f 75 20 63 61 6e 20 69 6d 61 67 69 6e |w you can imagin| 00000920 65 20 74 68 61 74 20 73 69 6e 63 65 20 6d 61 6e |e that since man| 00000930 79 20 69 74 65 72 61 74 69 6f 6e 73 0d 61 72 65 |y iterations.are| 00000940 20 74 61 6b 69 6e 67 20 70 6c 61 63 65 20 61 74 | taking place at| 00000950 20 65 61 63 68 20 70 69 78 65 6c 20 6f 6e 20 74 | each pixel on t| 00000960 68 65 20 73 63 72 65 65 6e 20 74 68 65 20 77 68 |he screen the wh| 00000970 6f 6c 65 0d 70 72 6f 63 65 73 73 20 63 61 6e 20 |ole.process can | 00000980 74 61 6b 65 20 61 20 6c 6f 6e 67 20 74 69 6d 65 |take a long time| 00000990 2e 20 20 49 20 68 61 76 65 20 64 72 61 77 6e 20 |. I have drawn | 000009a0 62 6c 6f 77 2d 75 70 73 20 6f 66 0d 61 72 65 61 |blow-ups of.area| 000009b0 73 20 6f 66 20 74 68 65 20 62 6f 75 6e 64 61 72 |s of the boundar| 000009c0 79 20 74 68 61 74 20 74 6f 6f 6b 20 6f 76 65 72 |y that took over| 000009d0 20 34 38 20 68 6f 75 72 73 20 74 6f 20 70 6c 6f | 48 hours to plo| 000009e0 74 20 6f 6e 20 61 0d 42 42 43 20 6d 69 63 72 6f |t on a.BBC micro| 000009f0 20 69 6e 20 42 41 53 49 43 2e 20 20 28 49 27 76 | in BASIC. (I'v| 00000a00 65 20 61 6c 73 6f 20 64 6f 6e 65 20 69 74 20 69 |e also done it i| 00000a10 6e 20 46 4f 52 54 52 41 4e 20 6f 6e 20 61 0d 33 |n FORTRAN on a.3| 00000a20 32 30 31 36 20 73 65 63 6f 6e 64 20 70 72 6f 63 |2016 second proc| 00000a30 65 73 73 6f 72 20 69 6e 20 61 6e 20 68 6f 75 72 |essor in an hour| 00000a40 20 62 75 74 20 74 68 61 74 27 73 20 64 6f 77 6e | but that's down| 00000a50 20 74 6f 20 74 68 65 0d 70 6f 77 65 72 20 6f 66 | to the.power of| 00000a60 20 74 68 65 20 6d 61 63 68 69 6e 65 72 79 20 61 | the machinery a| 00000a70 6e 64 20 6f 66 20 46 4f 52 54 52 41 4e 20 72 61 |nd of FORTRAN ra| 00000a80 74 68 65 72 20 74 68 61 6e 20 61 6e 79 20 66 61 |ther than any fa| 00000a90 6e 63 79 0d 63 6f 64 69 6e 67 20 6f 66 20 6d 69 |ncy.coding of mi| 00000aa0 6e 65 2e 29 0d 0d 54 68 65 20 61 6c 67 6f 72 69 |ne.)..The algori| 00000ab0 74 68 6d 20 69 73 20 6c 69 6b 65 20 74 68 69 73 |thm is like this| 00000ac0 3a 0d 0d 4d 61 70 20 6f 75 74 20 76 61 6c 75 65 |:..Map out value| 00000ad0 73 20 6f 66 20 63 20 63 6f 76 65 72 69 6e 67 20 |s of c covering | 00000ae0 74 68 65 20 72 61 6e 67 65 20 2d 32 2e 32 35 2d |the range -2.25-| 00000af0 31 2e 35 69 20 74 6f 0d 30 2e 37 35 2b 31 2e 35 |1.5i to.0.75+1.5| 00000b00 69 20 61 63 72 6f 73 73 20 74 68 65 20 73 63 72 |i across the scr| 00000b10 65 65 6e 20 61 72 65 61 2e 20 20 54 68 69 73 20 |een area. This | 00000b20 6d 65 61 6e 73 20 74 68 61 74 20 74 68 65 0d 67 |means that the.g| 00000b30 72 61 70 68 69 63 73 20 6f 72 69 67 69 6e 20 28 |raphics origin (| 00000b40 30 2c 30 29 20 72 65 70 72 65 73 65 6e 74 73 20 |0,0) represents | 00000b50 2d 32 2e 32 35 2d 31 2e 35 69 20 61 6e 64 20 28 |-2.25-1.5i and (| 00000b60 31 30 32 34 2c 31 30 32 34 29 0d 72 65 70 72 65 |1024,1024).repre| 00000b70 73 65 6e 74 73 20 30 2e 37 35 2b 31 2e 35 69 20 |sents 0.75+1.5i | 00000b80 61 6e 64 20 65 61 63 68 20 70 69 78 65 6c 20 6f |and each pixel o| 00000b90 6e 20 74 68 65 20 73 63 72 65 65 6e 20 77 6f 75 |n the screen wou| 00000ba0 6c 64 0d 72 65 70 72 65 73 65 6e 74 20 61 20 76 |ld.represent a v| 00000bb0 61 6c 75 65 20 6f 66 20 63 2e 0d 0d 57 6f 72 6b |alue of c...Work| 00000bc0 20 79 6f 75 72 20 77 61 79 20 6f 76 65 72 20 74 | your way over t| 00000bd0 68 65 20 73 63 72 65 65 6e 20 61 6e 64 20 66 6f |he screen and fo| 00000be0 72 20 65 61 63 68 20 70 69 78 65 6c 3a 0d 0d 53 |r each pixel:..S| 00000bf0 65 74 20 61 20 63 6f 75 6e 74 65 72 20 61 74 20 |et a counter at | 00000c00 7a 65 72 6f 2c 20 73 65 74 20 7a 20 65 71 75 61 |zero, set z equa| 00000c10 6c 20 74 6f 20 7a 65 72 6f 20 28 30 2b 30 69 29 |l to zero (0+0i)| 00000c20 0d 0d 4c 6f 6f 70 20 73 74 61 72 74 0d 0d 43 61 |..Loop start..Ca| 00000c30 6c 63 75 6c 61 74 65 20 73 69 7a 65 20 6f 66 20 |lculate size of | 00000c40 7a 2c 20 69 66 20 3e 20 32 20 74 68 65 6e 20 63 |z, if > 2 then c| 00000c50 6f 6c 6f 75 72 20 74 68 65 20 70 69 78 65 6c 20 |olour the pixel | 00000c60 61 63 63 6f 72 64 69 6e 67 0d 74 6f 20 74 68 65 |according.to the| 00000c70 20 76 61 6c 75 65 20 69 6e 20 74 68 65 20 63 6f | value in the co| 00000c80 75 6e 74 65 72 20 61 6e 64 20 6d 6f 76 65 20 6f |unter and move o| 00000c90 6e 20 74 6f 20 6e 65 78 74 20 70 69 78 65 6c 0d |n to next pixel.| 00000ca0 0d 49 66 20 74 68 65 20 63 6f 75 6e 74 65 72 20 |.If the counter | 00000cb0 68 61 73 20 72 65 61 63 68 65 64 20 61 20 70 72 |has reached a pr| 00000cc0 65 73 65 74 20 76 61 6c 75 65 20 63 6f 6c 6f 75 |eset value colou| 00000cd0 72 20 74 68 65 20 70 69 78 65 6c 0d 62 6c 61 63 |r the pixel.blac| 00000ce0 6b 20 61 6e 64 20 6d 6f 76 65 20 6f 6e 20 74 6f |k and move on to| 00000cf0 20 74 68 65 20 6e 65 78 74 20 70 69 78 65 6c 0d | the next pixel.| 00000d00 0d 49 66 20 6e 65 69 74 68 65 72 20 63 6f 6e 64 |.If neither cond| 00000d10 69 74 69 6f 6e 20 69 73 20 6d 65 74 20 74 68 65 |ition is met the| 00000d20 6e 20 72 65 63 61 6c 63 75 6c 61 74 65 20 7a 3d |n recalculate z=| 00000d30 7a 2b 63 20 75 73 69 6e 67 20 74 68 65 0d 70 72 |z+c using the.pr| 00000d40 65 76 69 6f 75 73 20 76 61 6c 75 65 20 6f 66 20 |evious value of | 00000d50 7a 20 61 6e 64 20 67 6f 20 62 61 63 6b 20 74 6f |z and go back to| 00000d60 20 74 68 65 20 73 74 61 72 74 20 6f 66 20 74 68 | the start of th| 00000d70 65 20 6c 6f 6f 70 0d 0d 49 6e 20 70 72 61 63 74 |e loop..In pract| 00000d80 69 63 65 20 74 68 65 20 74 65 6e 64 65 6e 63 79 |ice the tendency| 00000d90 20 69 73 20 74 6f 20 63 61 6c 63 75 6c 61 74 65 | is to calculate| 00000da0 20 74 68 65 20 6e 65 77 20 76 61 6c 75 65 20 6f | the new value o| 00000db0 66 0d 74 68 65 20 73 69 7a 65 20 73 71 75 61 72 |f.the size squar| 00000dc0 65 64 2c 20 77 68 69 63 68 20 69 73 20 74 68 65 |ed, which is the| 00000dd0 20 73 75 6d 20 6f 66 20 74 68 65 20 72 65 61 6c | sum of the real| 00000de0 20 70 61 72 74 20 73 71 75 61 72 65 64 0d 61 6e | part squared.an| 00000df0 64 20 74 68 65 20 69 6d 61 67 69 6e 61 72 79 20 |d the imaginary | 00000e00 70 61 72 74 20 73 71 75 61 72 65 64 2e 20 20 54 |part squared. T| 00000e10 68 65 72 65 20 69 73 20 6e 6f 20 70 6f 69 6e 74 |here is no point| 00000e20 20 69 6e 20 74 61 6b 69 6e 67 0d 61 20 73 70 75 | in taking.a spu| 00000e30 72 69 6f 75 73 20 73 71 75 61 72 65 20 72 6f 6f |rious square roo| 00000e40 74 2e 20 20 53 6f 20 74 68 65 20 73 69 7a 65 20 |t. So the size | 00000e50 76 61 72 69 61 62 6c 65 20 62 65 69 6e 67 20 75 |variable being u| 00000e60 73 65 64 20 69 73 0d 74 68 65 20 73 71 75 61 72 |sed is.the squar| 00000e70 65 20 61 6e 64 20 69 74 20 69 73 20 74 68 65 72 |e and it is ther| 00000e80 65 66 6f 72 65 20 63 6f 6d 70 61 72 65 64 20 77 |efore compared w| 00000e90 69 74 68 20 34 20 72 61 74 68 65 72 20 74 68 61 |ith 4 rather tha| 00000ea0 6e 0d 32 2e 20 20 41 6c 73 6f 20 74 68 65 20 61 |n.2. Also the a| 00000eb0 63 74 75 61 6c 20 6f 72 64 65 72 20 6f 66 20 63 |ctual order of c| 00000ec0 61 72 72 79 69 6e 67 20 6f 75 74 20 74 68 65 20 |arrying out the | 00000ed0 74 65 73 74 73 20 77 69 6c 6c 0d 76 61 72 79 20 |tests will.vary | 00000ee0 66 72 6f 6d 20 74 68 65 20 73 74 72 61 69 67 68 |from the straigh| 00000ef0 74 20 61 6c 67 6f 72 69 74 68 6d 2e 20 20 49 6e |t algorithm. In| 00000f00 20 74 68 65 20 6d 6f 64 75 6c 65 20 70 72 6f 67 | the module prog| 00000f10 72 61 6d 2c 0d 66 6f 72 20 65 78 61 6d 70 6c 65 |ram,.for example| 00000f20 2c 20 74 68 65 20 63 6f 75 6e 74 65 72 20 69 73 |, the counter is| 00000f30 20 64 65 63 72 65 6d 65 6e 74 65 64 20 61 74 20 | decremented at | 00000f40 74 68 65 20 65 6e 64 20 6f 66 20 74 68 65 0d 6c |the end of the.l| 00000f50 6f 6f 70 20 72 61 74 68 65 72 20 74 68 61 6e 20 |oop rather than | 00000f60 74 68 65 20 62 65 67 69 6e 6e 69 6e 67 20 73 6f |the beginning so| 00000f70 20 74 68 65 20 74 65 73 74 20 69 73 20 63 61 72 | the test is car| 00000f80 72 69 65 64 20 6f 75 74 0d 74 68 65 72 65 2e 20 |ried out.there. | 00000f90 20 41 6c 73 6f 20 74 68 65 20 73 69 7a 65 20 69 | Also the size i| 00000fa0 73 20 74 65 73 74 65 64 20 61 73 20 73 6f 6f 6e |s tested as soon| 00000fb0 20 61 66 74 65 72 20 69 74 20 69 73 0d 63 61 6c | after it is.cal| 00000fc0 63 75 6c 61 74 65 64 20 61 73 20 66 65 61 73 69 |culated as feasi| 00000fd0 62 6c 65 20 62 65 61 72 69 6e 67 20 69 6e 20 6d |ble bearing in m| 00000fe0 69 6e 64 20 74 68 65 20 6c 65 6e 67 74 68 20 6f |ind the length o| 00000ff0 66 20 74 68 65 0d 62 72 61 6e 63 68 20 6e 65 65 |f the.branch nee| 00001000 64 65 64 20 61 66 74 65 72 20 74 68 65 20 74 65 |ded after the te| 00001010 73 74 2e 20 20 42 65 63 61 75 73 65 20 6f 66 20 |st. Because of | 00001020 74 68 69 73 20 62 72 61 6e 63 68 20 6c 65 6e 67 |this branch leng| 00001030 74 68 0d 70 72 6f 62 6c 65 6d 20 74 68 65 20 63 |th.problem the c| 00001040 6f 64 65 20 68 65 72 65 20 61 63 74 75 61 6c 6c |ode here actuall| 00001050 79 20 74 65 73 74 73 20 69 6e 20 61 20 72 61 74 |y tests in a rat| 00001060 68 65 72 20 6f 64 64 20 70 6c 61 63 65 2c 0d 64 |her odd place,.d| 00001070 75 72 69 6e 67 20 74 68 65 20 63 61 6c 63 75 6c |uring the calcul| 00001080 61 74 69 6f 6e 20 6f 66 20 74 68 65 20 6e 65 77 |ation of the new| 00001090 20 76 61 6c 75 65 20 6f 66 20 79 2e 0d 0d 54 68 | value of y...Th| 000010a0 65 20 4d 61 6e 64 65 6c 62 72 6f 74 20 73 65 74 |e Mandelbrot set| 000010b0 20 63 61 6c 63 75 6c 61 74 69 6f 6e 20 69 73 20 | calculation is | 000010c0 73 75 69 74 65 64 20 74 6f 20 6c 69 6d 69 74 65 |suited to limite| 000010d0 64 0d 66 69 78 65 64 2d 70 6f 69 6e 74 20 61 72 |d.fixed-point ar| 000010e0 69 74 68 6d 65 74 69 63 20 62 65 63 61 75 73 65 |ithmetic because| 000010f0 20 69 74 20 77 6f 72 6b 73 20 77 69 74 68 69 6e | it works within| 00001100 20 61 20 6c 69 6d 69 74 65 64 0d 72 61 6e 67 65 | a limited.range| 00001110 20 6f 66 20 6e 75 6d 62 65 72 73 20 61 6e 64 20 | of numbers and | 00001120 62 65 63 61 75 73 65 2c 20 62 65 69 6e 67 20 61 |because, being a| 00001130 20 67 72 61 70 68 69 63 2c 20 69 74 20 69 73 20 | graphic, it is | 00001140 70 65 72 68 61 70 73 0d 6d 6f 72 65 20 74 6f 6c |perhaps.more tol| 00001150 65 72 61 6e 74 20 6f 66 20 70 6f 6f 72 20 61 63 |erant of poor ac| 00001160 63 75 72 61 63 79 20 69 6e 20 74 68 65 20 63 61 |curacy in the ca| 00001170 6c 63 75 6c 61 74 69 6f 6e 73 2e 20 20 49 20 77 |lculations. I w| 00001180 69 6c 6c 0d 61 64 6d 69 74 20 74 68 69 73 20 69 |ill.admit this i| 00001190 6e 20 61 64 76 61 6e 63 65 2c 20 6d 79 20 66 69 |n advance, my fi| 000011a0 78 65 64 2d 70 6f 69 6e 74 20 72 6f 75 74 69 6e |xed-point routin| 000011b0 65 20 69 73 20 6e 6f 74 0d 61 6d 61 7a 69 6e 67 |e is not.amazing| 000011c0 6c 79 20 61 63 63 75 72 61 74 65 2c 20 62 75 74 |ly accurate, but| 000011d0 20 79 6f 75 72 20 74 72 61 64 65 2d 6f 66 66 20 | your trade-off | 000011e0 69 73 20 73 70 65 65 64 20 61 67 61 69 6e 73 74 |is speed against| 000011f0 0d 70 72 65 63 69 73 69 6f 6e 2e 20 20 53 6f 2c |.precision. So,| 00001200 20 62 65 66 6f 72 65 20 77 65 20 6c 6f 6f 6b 20 | before we look | 00001210 61 74 20 74 68 65 20 63 6f 64 65 20 49 20 73 68 |at the code I sh| 00001220 61 6c 6c 20 65 78 70 6c 61 69 6e 0d 74 68 65 20 |all explain.the | 00001230 66 69 78 65 64 2d 70 6f 69 6e 74 20 6d 65 74 68 |fixed-point meth| 00001240 6f 64 20 75 73 65 64 20 68 65 72 65 2e 0d 0d 49 |od used here...I| 00001250 66 20 77 65 20 74 61 6b 65 20 61 20 66 6f 75 72 |f we take a four| 00001260 20 62 79 74 65 20 77 6f 72 64 20 61 6e 64 20 70 | byte word and p| 00001270 75 74 20 74 68 65 20 27 62 69 6e 61 72 79 27 20 |ut the 'binary' | 00001280 70 6f 69 6e 74 20 69 6e 0d 74 68 65 20 6d 69 64 |point in.the mid| 00001290 64 6c 65 20 77 65 20 74 68 65 6e 20 68 61 76 65 |dle we then have| 000012a0 20 61 20 66 69 78 65 64 20 70 6f 69 6e 74 20 6e | a fixed point n| 000012b0 75 6d 62 65 72 2e 20 20 49 66 20 79 6f 75 20 6c |umber. If you l| 000012c0 6f 6f 6b 0d 61 74 20 74 68 65 20 61 6c 67 6f 72 |ook.at the algor| 000012d0 69 74 68 6d 73 20 66 6f 72 20 61 72 69 74 68 6d |ithms for arithm| 000012e0 65 74 69 63 20 49 20 6c 69 73 74 65 64 20 69 6e |etic I listed in| 000012f0 20 74 68 65 20 6c 61 73 74 20 6d 6f 64 75 6c 65 | the last module| 00001300 0d 79 6f 75 20 77 69 6c 6c 20 66 69 6e 64 20 74 |.you will find t| 00001310 68 61 74 20 61 20 63 6f 6e 73 74 61 6e 74 20 66 |hat a constant f| 00001320 61 63 74 6f 72 20 77 61 73 20 69 6e 76 6f 6c 76 |actor was involv| 00001330 65 64 20 69 6e 0d 63 68 61 6e 67 69 6e 67 20 74 |ed in.changing t| 00001340 68 65 20 6e 75 6d 62 65 72 73 20 69 6e 74 6f 20 |he numbers into | 00001350 74 68 65 20 66 69 78 65 64 20 70 6f 69 6e 74 20 |the fixed point | 00001360 72 65 70 72 65 73 65 6e 74 61 74 69 6f 6e 2e 20 |representation. | 00001370 0d 49 74 20 77 61 73 20 31 30 30 30 30 20 6c 61 |.It was 10000 la| 00001380 73 74 20 74 69 6d 65 20 62 75 74 20 69 6e 20 74 |st time but in t| 00001390 68 65 20 70 72 6f 67 72 61 6d 20 69 6e 20 74 68 |he program in th| 000013a0 69 73 20 6d 6f 64 75 6c 65 20 49 0d 77 69 6c 6c |is module I.will| 000013b0 20 75 73 65 20 36 35 35 33 36 2e 20 20 54 68 69 | use 65536. Thi| 000013c0 73 20 70 75 74 73 20 74 68 65 20 62 69 6e 61 72 |s puts the binar| 000013d0 79 20 70 6f 69 6e 74 20 65 78 61 63 74 6c 79 20 |y point exactly | 000013e0 69 6e 20 74 68 65 0d 6d 69 64 64 6c 65 20 6f 66 |in the.middle of| 000013f0 20 74 68 65 20 6e 75 6d 62 65 72 20 73 6f 20 74 | the number so t| 00001400 68 61 74 20 74 68 65 20 74 6f 70 20 74 77 6f 20 |hat the top two | 00001410 62 79 74 65 73 20 61 72 65 20 74 68 65 0d 69 6e |bytes are the.in| 00001420 74 65 67 65 72 20 70 61 72 74 20 61 6e 64 20 74 |teger part and t| 00001430 68 65 20 6c 6f 77 65 72 20 74 77 6f 20 62 79 74 |he lower two byt| 00001440 65 73 20 61 72 65 20 74 68 65 20 66 72 61 63 74 |es are the fract| 00001450 69 6f 6e 61 6c 0d 70 61 72 74 2e 20 20 49 6e 20 |ional.part. In | 00001460 74 68 69 73 20 77 61 79 20 77 65 20 63 61 6e 20 |this way we can | 00001470 72 65 70 72 65 73 65 6e 74 20 6e 75 6d 62 65 72 |represent number| 00001480 73 20 75 70 20 74 6f 20 36 35 35 33 36 20 61 6e |s up to 65536 an| 00001490 64 0d 61 73 20 73 6d 61 6c 6c 20 61 73 20 31 2e |d.as small as 1.| 000014a0 35 32 36 45 2d 35 20 28 77 68 69 63 68 20 69 73 |526E-5 (which is| 000014b0 20 30 2e 30 30 30 30 31 35 32 36 29 2e 0d 0d 49 | 0.00001526)...I| 000014c0 6e 20 6f 72 64 65 72 20 74 6f 20 63 61 72 72 79 |n order to carry| 000014d0 20 6f 75 74 20 74 68 65 20 6e 65 63 65 73 73 61 | out the necessa| 000014e0 72 79 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f |ry multiplicatio| 000014f0 6e 73 20 49 20 68 61 76 65 0d 6d 6f 64 69 66 69 |ns I have.modifi| 00001500 65 64 20 74 68 65 20 6d 75 6c 74 69 2d 62 79 74 |ed the multi-byt| 00001510 65 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e |e multiplication| 00001520 20 72 6f 75 74 69 6e 65 20 75 73 65 64 20 69 6e | routine used in| 00001530 0d 6d 6f 64 75 6c 65 20 31 33 20 74 6f 20 70 72 |.module 13 to pr| 00001540 6f 64 75 63 65 20 61 20 66 69 76 65 20 62 79 74 |oduce a five byt| 00001550 65 20 72 65 73 75 6c 74 20 69 6e 73 74 65 61 64 |e result instead| 00001560 20 6f 66 20 66 6f 75 72 2e 20 0d 54 68 69 73 20 | of four. .This | 00001570 69 73 20 62 65 63 61 75 73 65 20 77 65 20 68 61 |is because we ha| 00001580 76 65 20 74 6f 20 64 69 76 69 64 65 20 74 68 65 |ve to divide the| 00001590 20 72 65 73 75 6c 74 20 6f 66 20 61 20 66 69 78 | result of a fix| 000015a0 65 64 0d 70 6f 69 6e 74 20 6d 75 6c 74 69 70 6c |ed.point multipl| 000015b0 69 63 61 74 69 6f 6e 20 62 79 20 74 68 65 20 72 |ication by the r| 000015c0 65 6c 65 76 61 6e 74 20 66 61 63 74 6f 72 2e 20 |elevant factor. | 000015d0 20 49 74 20 6c 6f 6f 6b 73 20 6c 69 6b 65 0d 74 | It looks like.t| 000015e0 68 69 73 3a 0d 0d 48 65 72 65 20 69 73 20 61 20 |his:..Here is a | 000015f0 73 69 78 20 62 79 74 65 20 6e 75 6d 62 65 72 2e |six byte number.| 00001600 20 54 68 65 20 62 69 6e 61 72 79 20 70 6f 69 6e | The binary poin| 00001610 74 20 69 73 20 72 65 70 72 65 73 65 6e 74 65 64 |t is represented| 00001620 0d 62 79 20 61 20 70 6c 75 73 20 73 69 67 6e 2e |.by a plus sign.| 00001630 0d 0d 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |.. ------------| 00001640 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| 00001650 2d 2d 2d 2d 2d 2d 2d 2d 2b 2d 2d 2d 2d 2d 2d 2d |--------+-------| 00001660 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0d 20 20 7c 20 |-----------. | | 00001670 62 79 74 65 20 35 20 7c 20 62 79 74 65 20 34 20 |byte 5 | byte 4 | 00001680 7c 20 62 79 74 65 20 33 20 7c 20 62 79 74 65 20 || byte 3 | byte | 00001690 32 20 7c 20 62 79 74 65 20 31 20 7c 20 62 79 74 |2 | byte 1 | byt| 000016a0 65 20 30 20 7c 0d 20 20 2d 2d 2d 2d 2d 2d 2d 2d |e 0 |. --------| 000016b0 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| 000016c0 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2b 2d 2d 2d |------------+---| 000016d0 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0d |---------------.| 000016e0 0d 49 66 20 77 65 20 6d 75 6c 74 69 70 6c 79 20 |.If we multiply | 000016f0 61 20 66 6f 75 72 20 62 79 74 65 20 6e 75 6d 62 |a four byte numb| 00001700 65 72 20 78 0d 0d 20 20 2d 2d 2d 2d 2d 2d 2d 2d |er x.. --------| 00001710 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| 00001720 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2b 2d 2d 2d |------------+---| 00001730 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0d |---------------.| 00001740 20 20 7c 20 20 20 20 20 20 20 20 7c 20 20 20 20 | | | | 00001750 20 20 20 20 7c 20 78 78 78 78 78 78 20 7c 20 78 | | xxxxxx | x| 00001760 78 78 78 78 78 20 7c 20 78 78 78 78 78 78 20 7c |xxxxx | xxxxxx || 00001770 20 78 78 78 78 78 78 20 7c 0d 20 20 2d 2d 2d 2d | xxxxxx |. ----| 00001780 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| * 000017a0 2b 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |+---------------| 000017b0 2d 2d 2d 0d 0d 62 79 20 61 20 66 6f 75 72 20 62 |---..by a four b| 000017c0 79 74 65 20 6e 75 6d 62 65 72 20 79 0d 0d 20 20 |yte number y.. | 000017d0 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| * 000017f0 2d 2d 2d 2d 2b 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----+-----------| 00001800 2d 2d 2d 2d 2d 2d 2d 0d 20 20 7c 20 20 20 20 20 |-------. | | 00001810 20 20 20 7c 20 20 20 20 20 20 20 20 7c 20 79 79 | | | yy| 00001820 79 79 79 79 20 7c 20 79 79 79 79 79 79 20 7c 20 |yyyy | yyyyyy | | 00001830 79 79 79 79 79 79 20 7c 20 79 79 79 79 79 79 20 |yyyyyy | yyyyyy | 00001840 7c 0d 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d ||. ------------| 00001850 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| 00001860 2d 2d 2d 2d 2d 2d 2d 2d 2b 2d 2d 2d 2d 2d 2d 2d |--------+-------| 00001870 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0d 0d 77 65 20 |-----------..we | 00001880 63 61 6e 20 67 65 74 20 61 20 65 69 67 68 74 20 |can get a eight | 00001890 62 79 74 65 20 6e 75 6d 62 65 72 20 78 79 2c 20 |byte number xy, | 000018a0 70 61 72 74 20 6f 66 20 77 68 69 63 68 20 69 73 |part of which is| 000018b0 20 68 65 72 65 2e 0d 0d 20 20 2d 2d 2d 2d 2d 2d | here... ------| 000018c0 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| 000018d0 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2b 2d |--------------+-| 000018e0 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| 000018f0 2d 0d 20 20 7c 20 78 79 78 79 78 79 20 7c 20 78 |-. | xyxyxy | x| 00001900 79 78 79 78 79 20 7c 20 78 79 78 79 78 79 20 7c |yxyxy | xyxyxy || 00001910 20 78 79 78 79 78 79 20 7c 20 78 79 78 79 78 79 | xyxyxy | xyxyxy| 00001920 20 7c 20 78 79 78 79 78 79 20 7c 0d 20 20 2d 2d | | xyxyxy |. --| 00001930 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| * 00001950 2d 2d 2b 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |--+-------------| 00001960 2d 2d 2d 2d 2d 0d 0d 54 6f 20 64 69 76 69 64 65 |-----..To divide| 00001970 20 62 79 20 36 35 35 33 36 20 77 65 20 73 69 6d | by 65536 we sim| 00001980 70 6c 79 20 64 69 73 63 61 72 64 20 62 79 74 65 |ply discard byte| 00001990 73 20 30 20 61 6e 64 20 31 20 61 6e 64 20 72 65 |s 0 and 1 and re| 000019a0 61 64 0d 66 72 6f 6d 20 62 79 74 65 20 32 20 74 |ad.from byte 2 t| 000019b0 6f 20 62 79 74 65 20 35 2e 0d 0d 20 20 2d 2d 2d |o byte 5... ---| 000019c0 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2b |---------------+| 000019d0 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| 000019e0 2d 2d 0d 20 20 7c 20 62 79 74 65 20 35 20 7c 20 |--. | byte 5 | | 000019f0 62 79 74 65 20 34 20 7c 20 62 79 74 65 20 33 20 |byte 4 | byte 3 | 00001a00 7c 20 62 79 74 65 20 32 20 7c 0d 20 20 2d 2d 2d || byte 2 |. ---| 00001a10 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2b |---------------+| 00001a20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| 00001a30 2d 2d 0d 0d 41 6e 64 20 74 68 69 73 20 65 73 73 |--..And this ess| 00001a40 65 6e 74 69 61 6c 6c 79 20 69 73 20 68 6f 77 20 |entially is how | 00001a50 74 68 65 20 6d 75 6c 74 69 70 6c 69 63 61 74 69 |the multiplicati| 00001a60 6f 6e 20 72 6f 75 74 69 6e 65 0d 77 6f 72 6b 73 |on routine.works| 00001a70 2e 20 20 4e 6f 77 20 49 20 6b 6e 6f 77 20 66 72 |. Now I know fr| 00001a80 6f 6d 20 65 78 70 65 72 69 65 6e 63 65 20 74 68 |om experience th| 00001a90 61 74 20 77 65 20 77 69 6c 6c 20 6e 6f 74 20 62 |at we will not b| 00001aa0 65 0d 6d 75 6c 74 69 70 6c 79 69 6e 67 20 61 6e |e.multiplying an| 00001ab0 79 20 6e 75 6d 62 65 72 73 20 74 6f 20 67 69 76 |y numbers to giv| 00001ac0 65 20 70 72 6f 64 75 63 74 73 20 67 72 65 61 74 |e products great| 00001ad0 65 72 20 74 68 61 6e 20 32 35 35 20 73 6f 0d 77 |er than 255 so.w| 00001ae0 65 20 63 61 6e 20 75 73 65 20 61 20 35 20 62 79 |e can use a 5 by| 00001af0 74 65 20 72 65 70 72 65 73 65 6e 74 61 74 69 6f |te representatio| 00001b00 6e 2e 20 20 54 68 69 73 20 72 65 73 75 6c 74 73 |n. This results| 00001b10 20 69 6e 20 6f 6e 65 0d 62 79 74 65 20 61 62 6f | in one.byte abo| 00001b20 76 65 20 74 68 65 20 62 69 6e 61 72 79 20 70 6f |ve the binary po| 00001b30 69 6e 74 20 69 6e 20 74 68 65 20 72 65 73 75 6c |int in the resul| 00001b40 74 2c 20 6c 69 6b 65 20 74 68 69 73 2e 0d 0d 20 |t, like this... | 00001b50 20 20 20 20 20 20 20 20 20 20 2d 2d 2d 2d 2d 2d | ------| 00001b60 2d 2d 2d 2b 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |---+------------| 00001b70 2d 2d 2d 2d 2d 2d 0d 20 20 20 20 20 20 20 20 20 |------. | 00001b80 20 20 7c 20 62 79 74 65 20 34 20 7c 20 62 79 74 | | byte 4 | byt| 00001b90 65 20 33 20 7c 20 62 79 74 65 20 32 20 7c 0d 20 |e 3 | byte 2 |. | 00001ba0 20 20 20 20 20 20 20 20 20 20 2d 2d 2d 2d 2d 2d | ------| 00001bb0 2d 2d 2d 2b 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |---+------------| 00001bc0 2d 2d 2d 2d 2d 2d 0d 0d 49 6e 20 6f 72 64 65 72 |------..In order| 00001bd0 20 74 6f 20 63 6f 70 65 20 77 69 74 68 20 32 27 | to cope with 2'| 00001be0 73 20 63 6f 6d 70 6c 65 6d 65 6e 74 20 6e 65 67 |s complement neg| 00001bf0 61 74 69 76 65 73 20 79 6f 75 20 68 61 76 65 20 |atives you have | 00001c00 74 6f 0d 61 6c 73 6f 20 70 61 64 20 6f 75 74 20 |to.also pad out | 00001c10 74 68 65 20 68 69 67 68 65 72 20 62 79 74 65 73 |the higher bytes| 00001c20 20 69 6e 20 74 68 65 20 6e 75 6d 62 65 72 73 20 | in the numbers | 00001c30 74 6f 20 62 65 0d 6d 75 6c 74 69 70 6c 69 65 64 |to be.multiplied| 00001c40 20 61 6e 64 20 69 6e 20 74 68 65 20 72 65 73 75 | and in the resu| 00001c50 6c 74 20 77 69 74 68 20 26 46 46 20 69 66 20 6e |lt with &FF if n| 00001c60 65 63 65 73 73 61 72 79 2e 20 20 54 68 61 74 20 |ecessary. That | 00001c70 69 73 0d 77 68 79 20 79 6f 75 20 73 65 65 20 63 |is.why you see c| 00001c80 68 65 63 6b 73 20 66 6f 72 20 6e 65 67 61 74 69 |hecks for negati| 00001c90 76 65 20 61 6e 64 20 26 46 46 73 20 62 65 69 6e |ve and &FFs bein| 00001ca0 67 20 70 75 74 20 69 6e 74 6f 20 35 74 68 0d 62 |g put into 5th.b| 00001cb0 79 74 65 73 20 69 6e 20 74 68 65 20 66 69 78 65 |ytes in the fixe| 00001cc0 64 20 70 6f 69 6e 74 20 6d 75 6c 74 69 70 6c 69 |d point multipli| 00001cd0 63 61 74 69 6f 6e 20 72 6f 75 74 69 6e 65 2e 0d |cation routine..| 00001ce0 0d 54 68 65 20 72 6f 75 74 69 6e 65 20 6c 69 65 |.The routine lie| 00001cf0 73 20 62 65 74 77 65 65 6e 20 6c 69 6e 65 73 20 |s between lines | 00001d00 33 37 38 30 20 61 6e 64 20 34 35 38 30 20 69 6e |3780 and 4580 in| 00001d10 20 74 68 65 20 6d 6f 64 75 6c 65 0d 70 72 6f 67 | the module.prog| 00001d20 72 61 6d 2e 0d 0d 41 6e 64 20 73 6f 20 74 6f 20 |ram...And so to | 00001d30 74 68 65 20 63 6f 64 65 20 69 74 73 65 6c 66 2e |the code itself.| 00001d40 0d 0d 59 6f 75 20 77 69 6c 6c 20 66 69 6e 64 20 |..You will find | 00001d50 74 68 61 74 20 74 68 69 73 20 63 6f 64 65 20 69 |that this code i| 00001d60 73 20 61 6c 6d 6f 73 74 20 61 20 73 74 72 61 69 |s almost a strai| 00001d70 67 68 74 20 6c 69 6e 65 2c 20 77 69 74 68 0d 6f |ght line, with.o| 00001d80 6e 6c 79 20 74 77 6f 20 73 75 62 72 6f 75 74 69 |nly two subrouti| 00001d90 6e 65 73 2c 20 74 68 65 20 4d 61 6e 64 65 6c 62 |nes, the Mandelb| 00001da0 72 6f 74 20 72 6f 75 74 69 6e 65 20 69 74 73 65 |rot routine itse| 00001db0 6c 66 20 61 6e 64 20 74 68 65 0d 6d 75 6c 74 69 |lf and the.multi| 00001dc0 70 6c 79 69 6e 67 20 72 6f 75 74 69 6e 65 2e 20 |plying routine. | 00001dd0 20 54 68 69 73 20 77 61 73 20 64 6f 6e 65 20 70 | This was done p| 00001de0 61 72 74 6c 79 20 66 6f 72 20 73 70 65 65 64 2c |artly for speed,| 00001df0 20 62 75 74 0d 61 6c 73 6f 20 70 61 72 74 6c 79 | but.also partly| 00001e00 20 62 65 63 61 75 73 65 20 62 79 20 69 74 73 20 | because by its | 00001e10 6e 61 74 75 72 65 20 74 68 69 73 20 69 73 20 61 |nature this is a| 00001e20 20 6c 69 6e 65 61 72 20 70 72 6f 63 65 73 73 0d | linear process.| 00001e30 72 61 74 68 65 72 20 74 68 61 6e 20 61 20 6d 75 |rather than a mu| 00001e40 6c 74 69 2d 62 72 61 6e 63 68 65 64 20 6f 6e 65 |lti-branched one| 00001e50 2c 20 61 6e 64 20 73 6f 20 73 75 62 72 6f 75 74 |, and so subrout| 00001e60 69 6e 65 73 20 6d 69 67 68 74 0d 6e 6f 74 20 68 |ines might.not h| 00001e70 61 76 65 20 63 6c 61 72 69 66 69 65 64 20 6d 75 |ave clarified mu| 00001e80 63 68 2e 0d 0d 41 74 20 74 68 65 20 73 74 61 72 |ch...At the star| 00001e90 74 20 6f 66 20 74 68 65 20 61 73 73 65 6d 62 6c |t of the assembl| 00001ea0 79 20 49 20 74 65 73 74 20 74 6f 20 73 65 65 20 |y I test to see | 00001eb0 69 66 20 79 6f 75 72 20 70 72 6f 67 72 61 6d 0d |if your program.| 00001ec0 69 73 20 72 75 6e 6e 69 6e 67 20 69 6e 20 61 20 |is running in a | 00001ed0 73 65 63 6f 6e 64 20 70 72 6f 63 65 73 73 6f 72 |second processor| 00001ee0 20 6f 72 20 69 6e 20 74 68 65 20 42 42 43 20 4d | or in the BBC M| 00001ef0 69 63 72 6f 20 69 74 73 65 6c 66 2c 0d 74 68 65 |icro itself,.the| 00001f00 20 49 2f 4f 20 70 72 6f 63 65 73 73 6f 72 2e 20 | I/O processor. | 00001f10 20 54 68 69 73 20 69 73 20 62 65 63 61 75 73 65 | This is because| 00001f20 20 74 68 65 20 70 72 6f 67 72 61 6d 20 75 73 65 | the program use| 00001f30 73 20 4d 6f 64 65 20 32 0d 67 72 61 70 68 69 63 |s Mode 2.graphic| 00001f40 73 20 61 6e 64 20 77 69 6c 6c 20 6e 6f 74 20 66 |s and will not f| 00001f50 69 74 20 69 6e 20 6d 65 6d 6f 72 79 20 65 61 73 |it in memory eas| 00001f60 69 6c 79 2e 20 20 57 69 74 68 20 61 20 73 65 63 |ily. With a sec| 00001f70 6f 6e 64 0d 70 72 6f 63 65 73 73 6f 72 20 74 68 |ond.processor th| 00001f80 61 74 20 69 73 20 6e 6f 20 70 72 6f 62 6c 65 6d |at is no problem| 00001f90 20 62 75 74 20 69 6e 20 74 68 65 20 6d 69 63 72 | but in the micr| 00001fa0 6f 20 69 74 73 65 6c 66 20 79 6f 75 0d 6d 75 73 |o itself you.mus| 00001fb0 74 20 62 65 20 69 6e 20 4d 6f 64 65 20 37 20 74 |t be in Mode 7 t| 00001fc0 6f 20 61 73 73 65 6d 62 6c 65 20 61 6e 64 20 6d |o assemble and m| 00001fd0 75 73 74 20 63 6c 65 61 72 20 74 68 65 20 42 41 |ust clear the BA| 00001fe0 53 49 43 0d 76 61 72 69 61 62 6c 65 20 77 6f 72 |SIC.variable wor| 00001ff0 6b 73 70 61 63 65 20 28 77 69 74 68 20 61 20 4e |kspace (with a N| 00002000 45 57 29 20 62 65 66 6f 72 65 20 79 6f 75 20 63 |EW) before you c| 00002010 61 6e 20 72 75 6e 20 74 68 65 20 66 69 6e 61 6c |an run the final| 00002020 0d 63 6f 64 65 2e 20 20 54 68 65 20 66 69 72 73 |.code. The firs| 00002030 74 20 66 65 77 20 6c 69 6e 65 73 20 6f 66 20 74 |t few lines of t| 00002040 68 65 20 70 72 6f 67 72 61 6d 20 74 61 6b 65 20 |he program take | 00002050 63 61 72 65 20 6f 66 20 74 68 61 74 0d 61 6e 64 |care of that.and| 00002060 20 77 69 6c 6c 20 74 65 6c 6c 20 79 6f 75 20 77 | will tell you w| 00002070 68 61 74 20 69 73 20 67 6f 69 6e 67 20 6f 6e 2e |hat is going on.| 00002080 20 20 54 68 65 20 63 6f 64 65 20 69 73 20 65 78 | The code is ex| 00002090 65 63 75 74 65 64 20 62 79 0d 70 72 65 73 73 69 |ecuted by.pressi| 000020a0 6e 67 20 66 75 6e 63 74 69 6f 6e 20 6b 65 79 20 |ng function key | 000020b0 30 3a 20 66 75 6e 63 74 69 6f 6e 20 6b 65 79 20 |0: function key | 000020c0 31 20 69 73 20 61 76 61 69 6c 61 62 6c 65 20 74 |1 is available t| 000020d0 6f 20 6c 69 73 74 0d 74 68 65 20 70 72 6f 67 72 |o list.the progr| 000020e0 61 6d 20 69 6e 20 4d 6f 64 65 20 33 2e 20 20 49 |am in Mode 3. I| 000020f0 6e 20 74 68 65 20 6d 69 63 72 6f 20 74 68 65 20 |n the micro the | 00002100 63 6f 64 65 20 69 73 20 61 73 73 65 6d 62 6c 65 |code is assemble| 00002110 64 0d 61 74 20 26 31 33 30 30 2c 20 69 6e 20 61 |d.at &1300, in a| 00002120 20 27 73 61 66 65 27 20 70 61 72 74 20 6f 66 20 | 'safe' part of | 00002130 74 68 65 20 64 69 73 63 20 77 6f 72 6b 73 70 61 |the disc workspa| 00002140 63 65 2e 20 20 49 6e 20 61 0d 73 65 63 6f 6e 64 |ce. In a.second| 00002150 20 70 72 6f 63 65 73 73 6f 72 20 69 74 20 63 61 | processor it ca| 00002160 6e 20 6a 75 73 74 20 62 65 20 70 75 74 20 61 6c |n just be put al| 00002170 6f 6e 67 73 69 64 65 20 74 68 65 0d 42 41 53 49 |ongside the.BASI| 00002180 43 2f 41 73 73 65 6d 62 6c 65 72 20 75 73 69 6e |C/Assembler usin| 00002190 67 20 44 49 4d 2e 20 20 49 66 20 79 6f 75 20 68 |g DIM. If you h| 000021a0 61 76 65 20 61 20 42 42 43 20 4d 61 73 74 65 72 |ave a BBC Master| 000021b0 20 77 69 74 68 6f 75 74 0d 61 20 73 65 63 6f 6e | without.a secon| 000021c0 64 20 70 72 6f 63 65 73 73 6f 72 20 79 6f 75 20 |d processor you | 000021d0 77 69 6c 6c 20 68 61 76 65 20 74 6f 20 63 68 61 |will have to cha| 000021e0 6e 67 65 20 74 68 69 73 20 70 61 72 74 20 6f 66 |nge this part of| 000021f0 20 74 68 65 0d 63 6f 64 65 20 74 6f 20 66 6f 72 | the.code to for| 00002200 63 65 20 74 68 65 20 75 73 65 20 6f 66 20 44 49 |ce the use of DI| 00002210 4d 20 62 65 63 61 75 73 65 20 74 68 65 20 76 61 |M because the va| 00002220 6c 75 65 20 6f 66 20 50 41 47 45 20 69 73 0d 26 |lue of PAGE is.&| 00002230 45 30 30 2e 20 20 5b 59 6f 75 20 63 61 6e 20 61 |E00. [You can a| 00002240 6c 73 6f 20 75 73 65 20 73 68 61 64 6f 77 20 6d |lso use shadow m| 00002250 65 6d 6f 72 79 20 62 79 20 75 73 69 6e 67 20 4d |emory by using M| 00002260 6f 64 65 20 31 33 30 0d 69 6e 73 74 65 61 64 20 |ode 130.instead | 00002270 6f 66 20 4d 6f 64 65 20 32 2e 5d 0d 0d 57 65 20 |of Mode 2.]..We | 00002280 73 65 74 20 74 68 65 20 6d 6f 64 65 20 61 73 20 |set the mode as | 00002290 32 20 61 6e 64 20 74 68 69 73 20 67 69 76 65 73 |2 and this gives| 000022a0 20 75 73 20 69 6e 63 72 65 6d 65 6e 74 73 20 6f | us increments o| 000022b0 66 20 38 0d 67 72 61 70 68 69 63 73 20 75 6e 69 |f 8.graphics uni| 000022c0 74 73 20 70 65 72 20 70 69 78 65 6c 20 6f 6e 20 |ts per pixel on | 000022d0 74 68 65 20 78 20 61 78 69 73 20 61 6e 64 20 34 |the x axis and 4| 000022e0 20 6f 6e 20 74 68 65 20 79 2e 20 20 49 66 0d 79 | on the y. If.y| 000022f0 6f 75 20 77 61 6e 74 20 74 6f 20 63 68 61 6e 67 |ou want to chang| 00002300 65 20 74 6f 20 4d 6f 64 65 20 30 20 6f 72 20 4d |e to Mode 0 or M| 00002310 6f 64 65 20 31 20 79 6f 75 20 68 61 76 65 20 74 |ode 1 you have t| 00002320 6f 20 6d 6f 64 69 66 79 0d 74 68 65 73 65 20 76 |o modify.these v| 00002330 61 72 69 61 62 6c 65 73 20 61 63 63 6f 72 64 69 |ariables accordi| 00002340 6e 67 6c 79 2e 20 20 54 68 65 20 68 6f 72 69 7a |ngly. The horiz| 00002350 6f 6e 74 61 6c 20 69 6e 63 72 65 6d 65 6e 74 73 |ontal increments| 00002360 20 77 69 6c 6c 0d 62 65 20 32 20 61 6e 64 20 34 | will.be 2 and 4| 00002370 20 66 6f 72 20 4d 6f 64 65 73 20 30 20 61 6e 64 | for Modes 0 and| 00002380 20 31 20 72 65 73 70 65 63 74 69 76 65 6c 79 2e | 1 respectively.| 00002390 0d 0d 46 6f 72 20 73 70 65 65 64 20 49 20 61 6d |..For speed I am| 000023a0 20 75 73 69 6e 67 20 7a 65 72 6f 20 70 61 67 65 | using zero page| 000023b0 20 77 6f 72 6b 73 70 61 63 65 20 66 6f 72 20 74 | workspace for t| 000023c0 68 65 0d 6d 75 6c 74 69 70 6c 79 69 6e 67 20 72 |he.multiplying r| 000023d0 6f 75 74 69 6e 65 73 2c 20 61 6e 64 20 74 68 61 |outines, and tha| 000023e0 74 20 69 73 20 73 65 74 20 6e 65 78 74 2e 0d 0d |t is set next...| 000023f0 49 6e 20 74 68 65 20 61 73 73 65 6d 62 6c 65 72 |In the assembler| 00002400 20 69 74 73 65 6c 66 20 4d 6f 64 65 20 32 20 69 | itself Mode 2 i| 00002410 73 20 73 65 74 20 75 70 20 66 6f 6c 6c 6f 77 65 |s set up followe| 00002420 64 20 62 79 20 61 20 56 44 55 35 0d 65 71 75 69 |d by a VDU5.equi| 00002430 76 61 6c 65 6e 74 20 28 62 6f 74 68 20 64 6f 6e |valent (both don| 00002440 65 20 75 73 69 6e 67 20 4f 53 57 52 43 48 29 20 |e using OSWRCH) | 00002450 73 6f 20 74 68 61 74 20 74 68 65 20 74 65 78 74 |so that the text| 00002460 20 63 75 72 73 6f 72 0d 69 73 20 72 65 6d 6f 76 | cursor.is remov| 00002470 65 64 2e 20 20 49 20 6b 6e 6f 77 20 74 68 61 74 |ed. I know that| 00002480 20 74 68 65 72 65 20 69 73 20 61 20 56 44 55 32 | there is a VDU2| 00002490 33 20 69 6e 73 74 72 75 63 74 69 6f 6e 20 74 6f |3 instruction to| 000024a0 0d 73 77 69 74 63 68 20 6f 66 66 20 74 68 65 20 |.switch off the | 000024b0 63 75 72 73 6f 72 2c 20 62 75 74 20 56 44 55 35 |cursor, but VDU5| 000024c0 20 69 73 20 71 75 69 63 6b 65 72 20 61 6e 64 20 | is quicker and | 000024d0 65 61 73 69 65 72 2e 0d 0d 54 68 65 20 6e 65 78 |easier...The nex| 000024e0 74 20 73 65 63 74 69 6f 6e 20 69 73 20 61 20 70 |t section is a p| 000024f0 6c 6f 74 74 69 6e 67 20 6c 6f 6f 70 20 74 68 61 |lotting loop tha| 00002500 74 20 75 73 65 73 20 74 77 6f 20 77 6f 72 64 73 |t uses two words| 00002510 20 6f 66 0d 6d 65 6d 6f 72 79 20 6c 61 62 65 6c | of.memory label| 00002520 6c 65 64 20 27 78 5f 63 6f 6f 72 64 27 20 61 6e |led 'x_coord' an| 00002530 64 20 27 79 5f 63 6f 6f 72 64 27 20 74 6f 20 73 |d 'y_coord' to s| 00002540 65 74 20 74 68 65 20 70 6f 73 69 74 69 6f 6e 0d |et the position.| 00002550 6f 66 20 74 68 65 20 70 69 78 65 6c 20 62 65 69 |of the pixel bei| 00002560 6e 67 20 70 6c 6f 74 74 65 64 20 63 75 72 72 65 |ng plotted curre| 00002570 6e 74 6c 79 2e 20 20 54 68 65 20 4d 61 6e 64 65 |ntly. The Mande| 00002580 6c 62 72 6f 74 0d 73 75 62 72 6f 75 74 69 6e 65 |lbrot.subroutine| 00002590 20 75 73 65 73 20 61 20 47 43 4f 4c 20 65 71 75 | uses a GCOL equ| 000025a0 69 76 61 6c 65 6e 74 20 74 6f 20 73 65 74 20 74 |ivalent to set t| 000025b0 68 65 20 63 6f 6c 6f 75 72 20 62 65 66 6f 72 65 |he colour before| 000025c0 0d 74 68 65 20 70 69 78 65 6c 20 69 73 20 70 6c |.the pixel is pl| 000025d0 6f 74 74 65 64 20 75 73 69 6e 67 20 61 20 50 4c |otted using a PL| 000025e0 4f 54 20 36 39 20 65 71 75 69 76 61 6c 65 6e 74 |OT 69 equivalent| 000025f0 20 28 70 6c 6f 74 20 61 0d 70 6f 69 6e 74 29 2e | (plot a.point).| 00002600 20 20 46 6f 72 20 63 6f 6e 76 65 6e 69 65 6e 63 | For convenienc| 00002610 65 20 49 20 61 6d 20 75 73 69 6e 67 20 61 20 31 |e I am using a 1| 00002620 30 32 34 20 75 6e 69 74 73 20 73 71 75 61 72 65 |024 units square| 00002630 20 61 72 65 61 0d 6f 66 20 74 68 65 20 73 63 72 | area.of the scr| 00002640 65 65 6e 2e 0d 0d 53 69 6e 63 65 20 74 68 65 20 |een...Since the | 00002650 6e 75 6d 65 72 69 63 61 6c 20 61 72 65 61 20 63 |numerical area c| 00002660 6f 76 65 72 65 64 20 69 73 20 33 20 75 6e 69 74 |overed is 3 unit| 00002670 73 20 61 6c 6f 6e 67 20 62 6f 74 68 20 61 78 65 |s along both axe| 00002680 73 0d 74 68 65 20 69 6e 63 72 65 6d 65 6e 74 20 |s.the increment | 00002690 70 65 72 20 67 72 61 70 68 69 63 73 20 75 6e 69 |per graphics uni| 000026a0 74 20 69 73 20 33 2f 31 30 32 34 2e 20 20 53 69 |t is 3/1024. Si| 000026b0 6e 63 65 20 6f 75 72 20 66 69 78 65 64 0d 70 6f |nce our fixed.po| 000026c0 69 6e 74 20 72 65 70 72 65 73 65 6e 74 61 74 69 |int representati| 000026d0 6f 6e 20 65 66 66 65 63 74 69 76 65 6c 79 20 6d |on effectively m| 000026e0 75 6c 74 69 70 6c 69 65 73 20 74 68 61 74 20 62 |ultiplies that b| 000026f0 79 20 36 35 35 33 36 0d 28 77 68 69 63 68 20 69 |y 65536.(which i| 00002700 73 20 32 35 36 2a 32 35 36 29 20 74 68 65 20 69 |s 256*256) the i| 00002710 6e 63 72 65 6d 65 6e 74 20 69 6e 20 66 69 78 65 |ncrement in fixe| 00002720 64 20 70 6f 69 6e 74 20 69 73 20 69 6e 20 66 61 |d point is in fa| 00002730 63 74 0d 26 43 30 20 69 6e 20 62 6f 74 68 20 64 |ct.&C0 in both d| 00002740 69 72 65 63 74 69 6f 6e 73 2e 20 20 54 68 69 73 |irections. This| 00002750 20 66 69 67 75 72 65 20 69 73 20 70 75 74 20 69 | figure is put i| 00002760 6e 74 6f 20 6d 65 6d 6f 72 79 20 61 74 0d 6c 61 |nto memory at.la| 00002770 62 65 6c 73 20 68 5f 69 6e 63 20 61 6e 64 20 76 |bels h_inc and v| 00002780 5f 69 6e 63 20 64 75 72 69 6e 67 20 74 68 65 20 |_inc during the | 00002790 61 73 73 65 6d 62 6c 79 2e 0d 0d 49 20 68 61 76 |assembly...I hav| 000027a0 65 20 69 6e 20 66 61 63 74 20 65 61 73 65 64 20 |e in fact eased | 000027b0 74 68 65 20 64 69 66 66 69 63 75 6c 74 79 20 6f |the difficulty o| 000027c0 66 20 74 68 69 73 20 70 72 6f 67 72 61 6d 20 67 |f this program g| 000027d0 72 65 61 74 6c 79 0d 62 79 20 61 73 73 75 6d 69 |reatly.by assumi| 000027e0 6e 67 20 69 74 20 77 69 6c 6c 20 6f 6e 6c 79 20 |ng it will only | 000027f0 62 65 20 70 6c 6f 74 74 69 6e 67 20 74 68 65 20 |be plotting the | 00002800 77 68 6f 6c 65 20 73 65 74 2e 20 20 59 6f 75 0d |whole set. You.| 00002810 63 6f 75 6c 64 20 6d 6f 64 69 66 79 20 69 74 20 |could modify it | 00002820 74 6f 20 70 6c 6f 74 20 61 20 73 6d 61 6c 6c 65 |to plot a smalle| 00002830 72 20 73 65 63 74 69 6f 6e 20 61 74 20 74 68 65 |r section at the| 00002840 20 72 69 73 6b 20 6f 66 0d 67 72 65 61 74 65 72 | risk of.greater| 00002850 20 69 6e 61 63 75 72 61 63 79 20 77 69 74 68 20 | inacuracy with | 00002860 76 65 72 79 20 73 6d 61 6c 6c 20 6e 75 6d 62 65 |very small numbe| 00002870 72 73 20 62 75 74 20 79 6f 75 20 77 69 6c 6c 20 |rs but you will | 00002880 68 61 76 65 0d 74 6f 20 63 68 61 6e 67 65 20 74 |have.to change t| 00002890 68 65 20 69 6e 63 72 65 6d 65 6e 74 73 20 61 6e |he increments an| 000028a0 64 20 74 68 65 20 70 6c 6f 74 20 73 74 61 72 74 |d the plot start| 000028b0 69 6e 67 20 70 6f 69 6e 74 73 0d 6d 61 6e 75 61 |ing points.manua| 000028c0 6c 6c 79 2c 20 61 73 20 69 74 20 77 65 72 65 2c |lly, as it were,| 000028d0 20 74 6f 20 64 6f 20 74 68 69 73 2e 20 20 53 69 | to do this. Si| 000028e0 6d 70 6c 79 2c 20 74 6f 20 66 69 6e 64 20 74 68 |mply, to find th| 000028f0 65 20 66 6f 75 72 0d 62 79 74 65 20 66 69 78 65 |e four.byte fixe| 00002900 64 20 70 6f 69 6e 74 20 65 71 75 69 76 61 6c 65 |d point equivale| 00002910 6e 74 20 6f 66 20 61 20 6e 75 6d 62 65 72 2c 20 |nt of a number, | 00002920 6a 75 73 74 20 6d 75 6c 74 69 70 6c 79 20 69 74 |just multiply it| 00002930 20 62 79 0d 36 35 35 33 36 2e 0d 0d 54 68 65 20 | by.65536...The | 00002940 63 6f 6d 70 6c 65 78 20 6e 75 6d 62 65 72 73 20 |complex numbers | 00002950 61 72 65 20 62 72 6f 6b 65 6e 20 64 6f 77 6e 20 |are broken down | 00002960 69 6e 74 6f 20 72 65 61 6c 20 61 6e 64 20 69 6d |into real and im| 00002970 61 67 69 6e 61 72 79 0d 70 61 72 74 73 2e 20 20 |aginary.parts. | 00002980 54 68 65 69 72 20 6c 61 62 65 6c 73 20 68 65 72 |Their labels her| 00002990 65 20 61 72 65 20 78 20 61 6e 64 20 79 20 66 6f |e are x and y fo| 000029a0 72 20 74 68 65 20 63 6f 6d 70 6f 6e 65 6e 74 73 |r the components| 000029b0 20 6f 66 0d 7a 20 28 73 69 6e 63 65 20 7a 20 69 | of.z (since z i| 000029c0 73 20 75 73 75 61 6c 6c 79 20 77 72 69 74 74 65 |s usually writte| 000029d0 6e 20 78 2b 69 79 29 20 61 6e 64 20 63 5f 72 65 |n x+iy) and c_re| 000029e0 61 6c 20 61 6e 64 20 63 5f 69 6d 61 67 0d 66 6f |al and c_imag.fo| 000029f0 72 20 63 2e 20 20 54 68 65 73 65 20 61 72 65 20 |r c. These are | 00002a00 74 68 65 20 63 61 6c 63 75 6c 61 74 69 6f 6e 73 |the calculations| 00002a10 20 77 65 20 6d 75 73 74 20 6d 61 6b 65 3a 0d 0d | we must make:..| 00002a20 20 20 20 20 73 69 7a 65 20 3d 20 78 5e 32 20 2b | size = x^2 +| 00002a30 20 79 5e 32 20 20 28 72 65 6d 65 6d 62 65 72 20 | y^2 (remember | 00002a40 73 69 7a 65 20 69 73 20 69 74 73 65 6c 66 20 61 |size is itself a| 00002a50 20 73 71 75 61 72 65 29 0d 0d 20 20 20 20 4e 65 | square).. Ne| 00002a60 77 20 76 61 6c 75 65 20 6f 66 20 78 20 3d 20 78 |w value of x = x| 00002a70 5e 32 20 2d 20 79 5e 32 20 2b 20 63 5f 72 65 61 |^2 - y^2 + c_rea| 00002a80 6c 0d 0d 20 20 20 20 4e 65 77 20 76 61 6c 75 65 |l.. New value| 00002a90 20 6f 66 20 79 20 3d 20 32 20 2a 20 78 20 2a 20 | of y = 2 * x * | 00002aa0 79 20 2b 20 63 5f 69 6d 61 67 0d 0d 46 72 6f 6d |y + c_imag..From| 00002ab0 20 6c 69 6e 65 20 31 30 35 30 20 74 68 65 20 63 | line 1050 the c| 00002ac0 6f 64 65 20 63 6f 6d 70 75 74 65 73 20 74 68 65 |ode computes the| 00002ad0 20 76 61 6c 75 65 20 6f 66 20 63 5f 72 65 61 6c | value of c_real| 00002ae0 2c 20 62 61 73 65 64 0d 75 70 6f 6e 20 74 68 65 |, based.upon the| 00002af0 20 63 75 72 72 65 6e 74 20 70 6f 73 69 74 69 6f | current positio| 00002b00 6e 20 6f 6e 20 74 68 65 20 73 63 72 65 65 6e 2e |n on the screen.| 00002b10 20 20 42 79 20 75 73 69 6e 67 20 74 68 65 20 58 | By using the X| 00002b20 0d 72 65 67 69 73 74 65 72 20 63 6f 75 6e 74 69 |.register counti| 00002b30 6e 67 20 64 6f 77 6e 20 66 72 6f 6d 20 34 20 61 |ng down from 4 a| 00002b40 6e 64 20 6f 66 66 73 65 74 20 61 67 61 69 6e 73 |nd offset agains| 00002b50 74 20 27 68 5f 69 6e 63 2d 31 27 0d 77 65 20 63 |t 'h_inc-1'.we c| 00002b60 61 6e 20 75 73 65 20 61 20 42 4e 45 20 74 6f 20 |an use a BNE to | 00002b70 74 65 73 74 20 74 68 65 20 6c 6f 6f 70 20 64 75 |test the loop du| 00002b80 72 69 6e 67 20 74 68 65 20 74 72 61 6e 73 66 65 |ring the transfe| 00002b90 72 20 6f 66 0d 62 79 74 65 73 20 69 6e 74 6f 20 |r of.bytes into | 00002ba0 6d 75 6c 74 69 70 6c 69 63 61 74 69 6f 6e 20 77 |multiplication w| 00002bb0 6f 72 6b 73 70 61 63 65 2e 20 20 59 6f 75 20 77 |orkspace. You w| 00002bc0 69 6c 6c 20 73 65 65 20 74 68 61 74 20 6d 6f 73 |ill see that mos| 00002bd0 74 0d 6f 66 20 74 68 65 20 74 72 61 6e 73 66 65 |t.of the transfe| 00002be0 72 73 20 61 72 65 20 64 6f 6e 65 20 74 68 69 73 |rs are done this| 00002bf0 20 77 61 79 2e 0d 0d 49 6e 20 6c 69 6e 65 20 31 | way...In line 1| 00002c00 33 31 30 20 2d 32 2e 32 35 20 69 73 20 61 64 64 |310 -2.25 is add| 00002c10 65 64 20 69 6e 20 74 68 65 20 63 61 6c 63 75 6c |ed in the calcul| 00002c20 61 74 69 6f 6e 20 6f 66 20 63 5f 72 65 61 6c 2e |ation of c_real.| 00002c30 20 0d 2d 32 2e 32 35 20 69 73 20 74 68 65 20 73 | .-2.25 is the s| 00002c40 74 61 72 74 69 6e 67 20 70 6f 69 6e 74 20 6f 66 |tarting point of| 00002c50 20 74 68 61 74 20 61 78 69 73 2e 20 20 49 6e 20 | that axis. In | 00002c60 6f 75 72 20 66 69 78 65 64 0d 70 6f 69 6e 74 20 |our fixed.point | 00002c70 72 65 70 72 65 73 65 6e 74 61 74 69 6f 6e 20 74 |representation t| 00002c80 68 65 20 6e 75 6d 62 65 72 20 74 6f 20 62 65 20 |he number to be | 00002c90 61 64 64 65 64 20 69 73 20 2d 32 2e 32 35 20 2a |added is -2.25 *| 00002ca0 20 36 35 35 33 36 0d 61 6e 64 20 74 68 61 74 20 | 65536.and that | 00002cb0 28 69 6e 20 32 27 73 20 63 6f 6d 70 6c 65 6d 65 |(in 2's compleme| 00002cc0 6e 74 20 6e 65 67 61 74 69 76 65 29 20 69 73 20 |nt negative) is | 00002cd0 26 46 46 46 44 43 30 30 30 2e 0d 0d 46 72 6f 6d |&FFFDC000...From| 00002ce0 20 6c 69 6e 65 20 31 34 32 30 20 63 5f 69 6d 61 | line 1420 c_ima| 00002cf0 67 20 69 73 20 63 61 6c 63 75 6c 61 74 65 64 20 |g is calculated | 00002d00 61 6e 64 20 79 6f 75 20 77 69 6c 6c 20 6e 6f 74 |and you will not| 00002d10 65 20 74 68 61 74 0d 69 6e 20 6c 69 6e 65 20 31 |e that.in line 1| 00002d20 36 38 30 20 2d 31 2e 35 20 69 73 20 61 64 64 65 |680 -1.5 is adde| 00002d30 64 20 69 6e 2c 20 74 68 69 73 20 69 73 20 26 46 |d in, this is &F| 00002d40 46 46 45 38 30 30 30 20 69 6e 20 6f 75 72 0d 66 |FFE8000 in our.f| 00002d50 69 78 65 64 20 70 6f 69 6e 74 2e 0d 0d 4a 75 73 |ixed point...Jus| 00002d60 74 20 70 72 69 6f 72 20 74 6f 20 74 68 65 20 73 |t prior to the s| 00002d70 74 61 72 74 20 6f 66 20 74 68 65 20 6d 61 69 6e |tart of the main| 00002d80 20 69 74 65 72 61 74 69 6f 6e 20 6c 6f 6f 70 20 | iteration loop | 00002d90 74 68 65 0d 63 6f 75 6e 74 65 72 20 69 73 20 69 |the.counter is i| 00002da0 6e 69 74 69 61 6c 69 73 65 64 20 28 77 65 20 63 |nitialised (we c| 00002db0 6f 75 6e 74 20 64 6f 77 6e 20 61 73 20 75 73 75 |ount down as usu| 00002dc0 61 6c 20 69 6e 20 6f 72 64 65 72 20 74 6f 0d 75 |al in order to.u| 00002dd0 73 65 20 61 20 42 4e 45 2f 42 45 51 20 74 72 61 |se a BNE/BEQ tra| 00002de0 70 20 61 74 20 74 68 65 20 65 6e 64 20 6f 66 20 |p at the end of | 00002df0 74 68 65 20 6c 6f 6f 70 29 20 61 6e 64 20 78 20 |the loop) and x | 00002e00 61 6e 64 20 79 20 61 72 65 0d 69 6e 69 74 69 61 |and y are.initia| 00002e10 6c 69 73 65 64 20 61 74 20 7a 65 72 6f 2c 20 62 |lised at zero, b| 00002e20 65 63 61 75 73 65 20 7a 20 69 73 20 7a 65 72 6f |ecause z is zero| 00002e30 20 61 73 20 77 65 20 73 74 61 72 74 0d 69 74 65 | as we start.ite| 00002e40 72 61 74 69 6e 67 2e 0d 0d 78 20 73 71 75 61 72 |rating...x squar| 00002e50 65 64 20 61 6e 64 20 79 20 73 71 75 61 72 65 64 |ed and y squared| 00002e60 20 61 72 65 20 63 61 6c 63 75 6c 61 74 65 64 20 | are calculated | 00002e70 73 69 6d 70 6c 79 20 62 79 20 6d 75 6c 74 69 70 |simply by multip| 00002e80 6c 79 69 6e 67 0d 65 61 63 68 20 77 69 74 68 20 |lying.each with | 00002e90 69 74 73 65 6c 66 2e 20 20 54 68 65 20 73 69 7a |itself. The siz| 00002ea0 65 20 69 73 20 74 68 65 6e 20 63 61 6c 63 75 6c |e is then calcul| 00002eb0 61 74 65 64 20 62 79 20 61 64 64 69 6e 67 20 74 |ated by adding t| 00002ec0 68 65 0d 74 77 6f 20 72 65 73 75 6c 74 73 2e 20 |he.two results. | 00002ed0 20 49 64 65 61 6c 6c 79 20 77 65 20 73 68 6f 75 | Ideally we shou| 00002ee0 6c 64 20 74 65 73 74 20 74 68 65 20 73 69 7a 65 |ld test the size| 00002ef0 20 6e 6f 77 2c 20 62 75 74 20 74 68 65 72 65 0d | now, but there.| 00002f00 69 73 20 74 6f 6f 20 6d 75 63 68 20 63 6f 64 65 |is too much code| 00002f10 20 62 65 74 77 65 65 6e 20 68 65 72 65 20 61 6e | between here an| 00002f20 64 20 74 68 65 20 6e 65 61 72 65 73 74 20 70 6f |d the nearest po| 00002f30 69 6e 74 20 74 6f 20 70 75 74 0d 74 68 65 20 6f |int to put.the o| 00002f40 74 68 65 72 20 65 6e 64 20 6f 66 20 74 68 65 20 |ther end of the | 00002f50 62 72 61 6e 63 68 2e 20 20 52 65 6d 65 6d 62 65 |branch. Remembe| 00002f60 72 20 61 20 62 72 61 6e 63 68 20 63 61 6e 20 6f |r a branch can o| 00002f70 6e 6c 79 20 62 65 0d 2b 31 32 37 20 6f 72 20 2d |nly be.+127 or -| 00002f80 31 32 38 20 62 79 74 65 73 2e 20 20 57 65 20 77 |128 bytes. We w| 00002f90 69 6c 6c 20 66 69 6e 64 20 74 68 65 20 74 65 73 |ill find the tes| 00002fa0 74 20 73 68 6f 72 74 6c 79 2e 0d 0d 49 6e 20 74 |t shortly...In t| 00002fb0 68 65 20 63 61 6c 63 75 6c 61 74 69 6f 6e 73 20 |he calculations | 00002fc0 66 6f 72 20 74 68 65 20 6e 65 77 20 78 20 61 6e |for the new x an| 00002fd0 64 20 79 20 79 6f 75 20 77 69 6c 6c 20 6e 6f 74 |d y you will not| 00002fe0 69 63 65 20 74 68 61 74 0d 77 68 69 6c 65 20 78 |ice that.while x| 00002ff0 20 6e 65 65 64 73 20 78 5e 32 20 61 6e 64 20 79 | needs x^2 and y| 00003000 5e 32 2c 20 79 20 6e 65 65 64 73 20 78 20 61 6e |^2, y needs x an| 00003010 64 20 79 2c 20 73 6f 20 77 65 20 6d 75 73 74 0d |d y, so we must.| 00003020 63 61 6c 63 75 6c 61 74 65 20 74 68 65 20 6e 65 |calculate the ne| 00003030 77 20 79 20 62 65 66 6f 72 65 20 77 65 20 63 61 |w y before we ca| 00003040 6c 63 75 6c 61 74 65 20 74 68 65 20 6e 65 77 20 |lculate the new | 00003050 78 2e 20 20 46 72 6f 6d 0d 6c 69 6e 65 20 32 35 |x. From.line 25| 00003060 34 30 20 74 68 65 20 63 6f 64 65 20 63 61 6c 63 |40 the code calc| 00003070 75 6c 61 74 65 73 20 74 68 65 20 6e 65 77 20 79 |ulates the new y| 00003080 2e 20 20 49 6e 20 74 68 65 20 6d 69 64 64 6c 65 |. In the middle| 00003090 20 6f 66 0d 74 68 69 73 20 74 68 65 72 65 20 69 | of.this there i| 000030a0 73 20 74 68 65 20 65 61 72 6c 69 65 73 74 20 73 |s the earliest s| 000030b0 70 6f 74 20 66 6f 72 20 74 68 65 20 73 69 7a 65 |pot for the size| 000030c0 20 74 65 73 74 2c 20 77 68 69 63 68 20 69 73 0d | test, which is.| 000030d0 77 68 79 20 69 74 20 61 70 70 65 61 72 73 20 61 |why it appears a| 000030e0 74 20 6c 69 6e 65 20 32 38 35 30 2e 20 20 54 68 |t line 2850. Th| 000030f0 65 20 72 65 61 73 6f 6e 20 66 6f 72 20 70 75 74 |e reason for put| 00003100 74 69 6e 67 20 74 68 65 0d 74 65 73 74 20 61 73 |ting the.test as| 00003110 20 65 61 72 6c 79 20 61 73 20 70 6f 73 73 69 62 | early as possib| 00003120 6c 65 20 69 73 20 74 68 61 74 20 69 74 20 77 69 |le is that it wi| 00003130 6c 6c 20 74 72 61 70 20 6f 6e 20 73 69 7a 65 20 |ll trap on size | 00003140 6f 76 65 72 0d 6d 6f 73 74 20 6f 66 20 74 68 65 |over.most of the| 00003150 20 73 63 72 65 65 6e 20 73 6f 20 62 79 20 74 72 | screen so by tr| 00003160 61 70 70 69 6e 67 20 68 65 72 65 2c 20 72 61 74 |apping here, rat| 00003170 68 65 72 20 74 68 61 6e 20 61 74 20 74 68 65 0d |her than at the.| 00003180 65 6e 64 20 6f 66 20 74 68 65 20 6c 6f 6f 70 2c |end of the loop,| 00003190 20 77 65 20 73 61 76 65 20 65 78 65 63 75 74 69 | we save executi| 000031a0 6e 67 20 63 6f 64 65 20 75 6e 6e 65 63 65 73 73 |ng code unnecess| 000031b0 61 72 69 6c 79 2c 20 77 68 69 63 68 0d 73 61 76 |arily, which.sav| 000031c0 65 73 20 74 69 6d 65 20 61 6c 62 65 69 74 20 6f |es time albeit o| 000031d0 6e 6c 79 20 61 20 73 6d 61 6c 6c 20 61 6d 6f 75 |nly a small amou| 000031e0 6e 74 2e 0d 0d 57 65 20 66 69 6e 69 73 68 20 63 |nt...We finish c| 000031f0 61 6c 63 75 6c 61 74 69 6e 67 20 74 68 65 20 6e |alculating the n| 00003200 65 77 20 79 20 61 6e 64 20 74 68 65 6e 20 63 61 |ew y and then ca| 00003210 6c 63 75 6c 61 74 65 20 74 68 65 20 6e 65 77 0d |lculate the new.| 00003220 78 20 72 65 61 64 79 20 66 6f 72 20 74 68 65 20 |x ready for the | 00003230 6e 65 78 74 20 69 74 65 72 61 74 69 6f 6e 2e 0d |next iteration..| 00003240 0d 54 68 65 20 63 6f 75 6e 74 65 72 20 69 73 20 |.The counter is | 00003250 64 65 63 72 65 6d 65 6e 74 65 64 20 66 6f 72 20 |decremented for | 00003260 74 68 65 20 6e 65 78 74 20 69 74 65 72 61 74 69 |the next iterati| 00003270 6f 6e 2c 20 62 75 74 20 69 66 0d 74 68 61 74 20 |on, but if.that | 00003280 77 69 6c 6c 20 74 61 6b 65 20 75 73 20 70 61 73 |will take us pas| 00003290 74 20 6f 75 72 20 69 74 65 72 61 74 69 6f 6e 73 |t our iterations| 000032a0 20 6c 69 6d 69 74 2c 20 69 6e 20 74 68 69 73 20 | limit, in this | 000032b0 63 61 73 65 0d 33 32 2c 20 77 65 20 65 78 69 74 |case.32, we exit| 000032c0 20 69 6e 73 74 65 61 64 2c 20 75 73 69 6e 67 20 | instead, using | 000032d0 61 20 42 45 51 20 69 6e 20 6c 69 6e 65 20 33 34 |a BEQ in line 34| 000032e0 31 30 2e 0d 0d 41 74 20 27 73 69 7a 65 5f 6f 75 |10...At 'size_ou| 000032f0 74 27 20 69 73 20 74 68 65 20 63 6f 64 65 20 74 |t' is the code t| 00003300 68 61 74 20 75 73 65 73 20 47 43 4f 4c 20 28 56 |hat uses GCOL (V| 00003310 44 55 20 31 38 29 20 74 6f 20 73 65 74 20 74 68 |DU 18) to set th| 00003320 65 0d 70 69 78 65 6c 20 63 6f 6c 6f 75 72 2e 20 |e.pixel colour. | 00003330 20 52 61 74 68 65 72 20 74 68 61 6e 20 77 61 73 | Rather than was| 00003340 74 65 20 74 69 6d 65 20 61 6e 64 20 65 66 66 6f |te time and effo| 00003350 72 74 20 6f 6e 20 61 0d 64 69 76 69 73 69 6f 6e |rt on a.division| 00003360 20 49 20 68 61 76 65 20 73 69 6d 70 6c 79 20 6d | I have simply m| 00003370 61 73 6b 65 64 20 6f 66 66 20 61 6c 6c 20 62 75 |asked off all bu| 00003380 74 20 74 68 65 20 6c 61 73 74 20 74 68 72 65 65 |t the last three| 00003390 0d 62 69 74 73 20 6f 66 20 74 68 65 20 73 69 7a |.bits of the siz| 000033a0 65 2c 20 77 68 69 63 68 20 67 69 76 65 73 20 76 |e, which gives v| 000033b0 61 6c 75 65 73 20 66 72 6f 6d 20 30 20 74 6f 20 |alues from 0 to | 000033c0 37 2e 20 20 49 66 20 74 68 65 0d 69 74 65 72 61 |7. If the.itera| 000033d0 74 69 6f 6e 73 20 6c 69 6d 69 74 20 69 73 20 65 |tions limit is e| 000033e0 78 63 65 65 64 65 64 20 74 68 65 6e 20 77 65 20 |xceeded then we | 000033f0 72 65 61 63 68 20 27 63 6f 75 6e 74 5f 6f 75 74 |reach 'count_out| 00003400 27 20 61 6e 64 0d 73 65 74 20 74 68 65 20 63 6f |' and.set the co| 00003410 6c 6f 75 72 20 74 6f 20 62 6c 61 63 6b 20 28 47 |lour to black (G| 00003420 43 4f 4c 20 30 2c 30 29 2e 0d 0d 41 66 74 65 72 |COL 0,0)...After| 00003430 20 73 6f 6d 65 20 76 61 72 69 61 62 6c 65 20 61 | some variable a| 00003440 6e 64 20 77 6f 72 6b 73 70 61 63 65 20 73 65 74 |nd workspace set| 00003450 74 69 6e 67 20 77 65 20 66 69 6e 61 6c 6c 79 20 |ting we finally | 00003460 63 6f 6d 65 20 74 6f 0d 74 68 65 20 66 69 78 65 |come to.the fixe| 00003470 64 20 70 6f 69 6e 74 20 6d 75 6c 74 69 70 6c 69 |d point multipli| 00003480 63 61 74 69 6f 6e 20 63 6f 64 65 2e 20 20 59 6f |cation code. Yo| 00003490 75 20 77 69 6c 6c 20 6e 6f 74 69 63 65 20 74 68 |u will notice th| 000034a0 61 74 0d 77 65 20 74 65 73 74 20 66 6f 72 20 61 |at.we test for a| 000034b0 20 6e 65 67 61 74 69 76 65 20 6e 75 6d 62 65 72 | negative number| 000034c0 20 61 6e 64 20 69 66 20 77 65 20 66 69 6e 64 20 | and if we find | 000034d0 6f 6e 65 20 77 65 20 6d 61 6b 65 20 69 74 0d 75 |one we make it.u| 000034e0 70 20 74 6f 20 66 69 76 65 20 62 79 74 65 73 20 |p to five bytes | 000034f0 62 65 66 6f 72 65 20 74 68 65 20 6d 75 6c 74 69 |before the multi| 00003500 70 6c 69 63 61 74 69 6f 6e 2c 20 73 69 6e 63 65 |plication, since| 00003510 20 77 65 20 77 61 6e 74 20 61 0d 67 6f 6f 64 20 | we want a.good | 00003520 66 69 76 65 20 62 79 74 65 20 72 65 73 75 6c 74 |five byte result| 00003530 2e 20 20 54 68 65 20 73 61 6d 65 20 61 70 70 6c |. The same appl| 00003540 69 65 73 20 74 6f 20 74 68 65 20 72 65 73 75 6c |ies to the resul| 00003550 74 2e 20 20 54 68 65 0d 6c 6f 6f 70 20 69 73 20 |t. The.loop is | 00003560 65 78 65 63 75 74 65 64 20 34 30 20 74 69 6d 65 |executed 40 time| 00003570 73 20 62 65 63 61 75 73 65 20 35 20 62 79 74 65 |s because 5 byte| 00003580 73 20 69 73 20 34 30 20 62 69 74 73 2e 0d 0d 50 |s is 40 bits...P| 00003590 6c 6f 74 74 69 6e 67 20 74 68 65 20 4d 61 6e 64 |lotting the Mand| 000035a0 65 6c 62 72 6f 74 20 73 65 74 20 6f 6e 20 61 20 |elbrot set on a | 000035b0 33 4d 48 7a 20 36 35 30 32 20 73 65 63 6f 6e 64 |3MHz 6502 second| 000035c0 20 70 72 6f 63 65 73 73 6f 72 0d 66 72 6f 6d 20 | processor.from | 000035d0 42 41 53 49 43 20 75 73 69 6e 67 20 66 6c 6f 61 |BASIC using floa| 000035e0 74 69 6e 67 20 70 6f 69 6e 74 20 74 61 6b 65 73 |ting point takes| 000035f0 20 6d 65 20 6f 76 65 72 20 34 35 20 6d 69 6e 75 | me over 45 minu| 00003600 74 65 73 2c 0d 74 68 69 73 20 72 6f 75 74 69 6e |tes,.this routin| 00003610 65 20 75 73 69 6e 67 20 66 69 78 65 64 20 70 6f |e using fixed po| 00003620 69 6e 74 20 6d 61 63 68 69 6e 65 20 63 6f 64 65 |int machine code| 00003630 20 61 72 69 74 68 6d 65 74 69 63 20 74 61 6b 65 | arithmetic take| 00003640 73 0d 6f 6e 6c 79 20 32 32 20 6d 69 6e 75 74 65 |s.only 22 minute| 00003650 73 2e 20 20 49 66 20 49 20 63 6f 75 6c 64 20 73 |s. If I could s| 00003660 70 65 65 64 20 75 70 20 74 68 65 20 6d 75 6c 74 |peed up the mult| 00003670 69 70 6c 69 63 61 74 69 6f 6e 73 20 49 0d 63 6f |iplications I.co| 00003680 75 6c 64 20 70 72 6f 62 61 62 6c 79 20 67 65 74 |uld probably get| 00003690 20 69 74 20 65 76 65 6e 20 66 61 73 74 65 72 2e | it even faster.| 000036a0 20 20 46 61 69 72 20 74 61 6b 65 73 20 79 6f 75 | Fair takes you| 000036b0 72 20 62 72 65 61 74 68 0d 61 77 61 79 20 64 75 |r breath.away du| 000036c0 6e 6e 69 74 3f 0d 0d 54 68 65 20 61 6c 74 65 72 |nnit?..The alter| 000036d0 6e 61 74 69 76 65 20 74 6f 20 66 69 78 65 64 20 |native to fixed | 000036e0 70 6f 69 6e 74 2c 20 61 20 6c 69 74 74 6c 65 20 |point, a little | 000036f0 73 6c 6f 77 65 72 20 62 75 74 20 6d 6f 72 65 0d |slower but more.| 00003700 70 72 65 63 69 73 65 2c 20 69 73 20 66 6c 6f 61 |precise, is floa| 00003710 74 69 6e 67 20 70 6f 69 6e 74 2e 20 20 54 68 61 |ting point. Tha| 00003720 74 27 73 20 66 6f 72 20 6e 65 78 74 20 74 69 6d |t's for next tim| 00003730 65 2e 0d |e..| 00003733