Home » Personal collection » Acorn DFS disks » dfs_box03_disk13_bcpl_calc.scp » EXSPIRB

EXSPIRB

This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.

Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.

Tape/disk: Home » Personal collection » Acorn DFS disks » dfs_box03_disk13_bcpl_calc.scp
Filename: EXSPIRB
Read OK:
File size: 0ACA bytes
Load address: FF1122
Exec address: 20007
File contents
SECTION "EXSPIRB"

// Example program to draw a spiral using the fast integer procedures.
// The fast integer procedures are
// copyright Richards Computer Products Ltd. (C) 1983
// Written by C Jobson 22/04/83

// The program is based on the program 'SPIRAL1' in the book 'Creative
// Graphics on the BBC Microcomputer' by J Cownie published by
// Acornsoft Ltd.

NEEDS "VDU"
NEEDS "TIME"
GET "LIBHDR"
GET "FPHDR"

MANIFEST $( PI = 31416 $)


// Draws a flat spiral with palette changes giving the effect of
// movement.

LET START() BE
$( LET C = 1      // used to keep track of palette
   LET A = 0      // angle

   // Enter screen mode 1, hide the cursor, set the graphics origin in
   // the centre of the screen and move to the origin.

   UNLESS MODE(1) DO
   $( WRITES("Not enough free heap space to enter*N*
             *screen mode 1.  Please SHUFFLE and*N*
             *try again.*N")
      STOP(RESULT2)
   $)
   VDU("5,29,640;512;25,4,0;0;")

   // Enter loop to calculate next point and draw a line to it.  Loop
   // is performed 1500 times and increments A by 2000 each time.
   // Thus with scaling of 10000 this represents A going from 0 to 300
   // radians in steps of 0.2 radians.

   FOR I = 0 TO 1500
   $(
      // Choose logical colour 1, 2 or 3 using formula corresponding
      // to '1+(3.8*A REM 3)'.  Note that since A is incremented by
      // 0.2 (i.e. 2000) each time I is incremented by 1, I is
      // equivalent to 5*A and thus the formula becomes '1+(0.76*I REM
      // 3)' and 0.76 = 19/25.  The factor of 3.8 makes the arms
      // reasonably straight.

      VDU("18,0,%", 1+( ((19*I+12)/25) REM 3) )

      // Draw to next point whose coordinates are 3*A*SIN(A) and
      // 2*A*COS(A).  Since SIN(A) and COS(A) are scaled by 10000 use
      // MULDIV with I/5 instead of A in the multiplication.

      VDU("25,5,%;%;", MULDIV(SIN(A), (3*I+2)/5, 10000),
                       MULDIV(COS(A), (2*I+2)/5, 10000) )

      // Increment A by 2000 (representing 0.2) wrapping round from pi
      // to -pi.

      TEST A > PI-2000 THEN
         A := A+2000-(2*PI)
      ELSE
         A := A+2000

      // Change the palette every 4th point.  Use actual colours 3, 4
      // and 5 (yellow, blue and magenta).

      IF (I & 3) = 0 DO
      $( FOR J = 1 TO 3
          VDU("19,%,%;%;", J, ((C+J) REM 3)+3, 0)
         C := (C+1) REM 3     // so next palette change moves colours on one
                              // step
      $)
   $)

   // Wait for 5 seconds then go back to mode 7.

   $( LET T = TIME()+500
      IF T < 0 THEN T := T+#X8000   // compensate for wrapround
      UNTIL TIME() = T LOOP
      MODE(7)
   $)
$)

00000000  53 45 43 54 49 4f 4e 20  22 45 58 53 50 49 52 42  |SECTION "EXSPIRB|
00000010  22 0d 0a 0d 0a 2f 2f 20  45 78 61 6d 70 6c 65 20  |"....// Example |
00000020  70 72 6f 67 72 61 6d 20  74 6f 20 64 72 61 77 20  |program to draw |
00000030  61 20 73 70 69 72 61 6c  20 75 73 69 6e 67 20 74  |a spiral using t|
00000040  68 65 20 66 61 73 74 20  69 6e 74 65 67 65 72 20  |he fast integer |
00000050  70 72 6f 63 65 64 75 72  65 73 2e 0d 0a 2f 2f 20  |procedures...// |
00000060  54 68 65 20 66 61 73 74  20 69 6e 74 65 67 65 72  |The fast integer|
00000070  20 70 72 6f 63 65 64 75  72 65 73 20 61 72 65 0d  | procedures are.|
00000080  0a 2f 2f 20 63 6f 70 79  72 69 67 68 74 20 52 69  |.// copyright Ri|
00000090  63 68 61 72 64 73 20 43  6f 6d 70 75 74 65 72 20  |chards Computer |
000000a0  50 72 6f 64 75 63 74 73  20 4c 74 64 2e 20 28 43  |Products Ltd. (C|
000000b0  29 20 31 39 38 33 0d 0a  2f 2f 20 57 72 69 74 74  |) 1983..// Writt|
000000c0  65 6e 20 62 79 20 43 20  4a 6f 62 73 6f 6e 20 32  |en by C Jobson 2|
000000d0  32 2f 30 34 2f 38 33 0d  0a 0d 0a 2f 2f 20 54 68  |2/04/83....// Th|
000000e0  65 20 70 72 6f 67 72 61  6d 20 69 73 20 62 61 73  |e program is bas|
000000f0  65 64 20 6f 6e 20 74 68  65 20 70 72 6f 67 72 61  |ed on the progra|
00000100  6d 20 27 53 50 49 52 41  4c 31 27 20 69 6e 20 74  |m 'SPIRAL1' in t|
00000110  68 65 20 62 6f 6f 6b 20  27 43 72 65 61 74 69 76  |he book 'Creativ|
00000120  65 0d 0a 2f 2f 20 47 72  61 70 68 69 63 73 20 6f  |e..// Graphics o|
00000130  6e 20 74 68 65 20 42 42  43 20 4d 69 63 72 6f 63  |n the BBC Microc|
00000140  6f 6d 70 75 74 65 72 27  20 62 79 20 4a 20 43 6f  |omputer' by J Co|
00000150  77 6e 69 65 20 70 75 62  6c 69 73 68 65 64 20 62  |wnie published b|
00000160  79 0d 0a 2f 2f 20 41 63  6f 72 6e 73 6f 66 74 20  |y..// Acornsoft |
00000170  4c 74 64 2e 0d 0a 0d 0a  4e 45 45 44 53 20 22 56  |Ltd.....NEEDS "V|
00000180  44 55 22 0d 0a 4e 45 45  44 53 20 22 54 49 4d 45  |DU"..NEEDS "TIME|
00000190  22 0d 0a 47 45 54 20 22  4c 49 42 48 44 52 22 0d  |"..GET "LIBHDR".|
000001a0  0a 47 45 54 20 22 46 50  48 44 52 22 0d 0a 0d 0a  |.GET "FPHDR"....|
000001b0  4d 41 4e 49 46 45 53 54  20 24 28 20 50 49 20 3d  |MANIFEST $( PI =|
000001c0  20 33 31 34 31 36 20 24  29 0d 0a 0d 0a 0d 0a 2f  | 31416 $)....../|
000001d0  2f 20 44 72 61 77 73 20  61 20 66 6c 61 74 20 73  |/ Draws a flat s|
000001e0  70 69 72 61 6c 20 77 69  74 68 20 70 61 6c 65 74  |piral with palet|
000001f0  74 65 20 63 68 61 6e 67  65 73 20 67 69 76 69 6e  |te changes givin|
00000200  67 20 74 68 65 20 65 66  66 65 63 74 20 6f 66 0d  |g the effect of.|
00000210  0a 2f 2f 20 6d 6f 76 65  6d 65 6e 74 2e 0d 0a 0d  |.// movement....|
00000220  0a 4c 45 54 20 53 54 41  52 54 28 29 20 42 45 0d  |.LET START() BE.|
00000230  0a 24 28 20 4c 45 54 20  43 20 3d 20 31 20 20 20  |.$( LET C = 1   |
00000240  20 20 20 2f 2f 20 75 73  65 64 20 74 6f 20 6b 65  |   // used to ke|
00000250  65 70 20 74 72 61 63 6b  20 6f 66 20 70 61 6c 65  |ep track of pale|
00000260  74 74 65 0d 0a 20 20 20  4c 45 54 20 41 20 3d 20  |tte..   LET A = |
00000270  30 20 20 20 20 20 20 2f  2f 20 61 6e 67 6c 65 0d  |0      // angle.|
00000280  0a 0d 0a 20 20 20 2f 2f  20 45 6e 74 65 72 20 73  |...   // Enter s|
00000290  63 72 65 65 6e 20 6d 6f  64 65 20 31 2c 20 68 69  |creen mode 1, hi|
000002a0  64 65 20 74 68 65 20 63  75 72 73 6f 72 2c 20 73  |de the cursor, s|
000002b0  65 74 20 74 68 65 20 67  72 61 70 68 69 63 73 20  |et the graphics |
000002c0  6f 72 69 67 69 6e 20 69  6e 0d 0a 20 20 20 2f 2f  |origin in..   //|
000002d0  20 74 68 65 20 63 65 6e  74 72 65 20 6f 66 20 74  | the centre of t|
000002e0  68 65 20 73 63 72 65 65  6e 20 61 6e 64 20 6d 6f  |he screen and mo|
000002f0  76 65 20 74 6f 20 74 68  65 20 6f 72 69 67 69 6e  |ve to the origin|
00000300  2e 0d 0a 0d 0a 20 20 20  55 4e 4c 45 53 53 20 4d  |.....   UNLESS M|
00000310  4f 44 45 28 31 29 20 44  4f 0d 0a 20 20 20 24 28  |ODE(1) DO..   $(|
00000320  20 57 52 49 54 45 53 28  22 4e 6f 74 20 65 6e 6f  | WRITES("Not eno|
00000330  75 67 68 20 66 72 65 65  20 68 65 61 70 20 73 70  |ugh free heap sp|
00000340  61 63 65 20 74 6f 20 65  6e 74 65 72 2a 4e 2a 0d  |ace to enter*N*.|
00000350  0a 20 20 20 20 20 20 20  20 20 20 20 20 20 2a 73  |.             *s|
00000360  63 72 65 65 6e 20 6d 6f  64 65 20 31 2e 20 20 50  |creen mode 1.  P|
00000370  6c 65 61 73 65 20 53 48  55 46 46 4c 45 20 61 6e  |lease SHUFFLE an|
00000380  64 2a 4e 2a 0d 0a 20 20  20 20 20 20 20 20 20 20  |d*N*..          |
00000390  20 20 20 2a 74 72 79 20  61 67 61 69 6e 2e 2a 4e  |   *try again.*N|
000003a0  22 29 0d 0a 20 20 20 20  20 20 53 54 4f 50 28 52  |")..      STOP(R|
000003b0  45 53 55 4c 54 32 29 0d  0a 20 20 20 24 29 0d 0a  |ESULT2)..   $)..|
000003c0  20 20 20 56 44 55 28 22  35 2c 32 39 2c 36 34 30  |   VDU("5,29,640|
000003d0  3b 35 31 32 3b 32 35 2c  34 2c 30 3b 30 3b 22 29  |;512;25,4,0;0;")|
000003e0  0d 0a 0d 0a 20 20 20 2f  2f 20 45 6e 74 65 72 20  |....   // Enter |
000003f0  6c 6f 6f 70 20 74 6f 20  63 61 6c 63 75 6c 61 74  |loop to calculat|
00000400  65 20 6e 65 78 74 20 70  6f 69 6e 74 20 61 6e 64  |e next point and|
00000410  20 64 72 61 77 20 61 20  6c 69 6e 65 20 74 6f 20  | draw a line to |
00000420  69 74 2e 20 20 4c 6f 6f  70 0d 0a 20 20 20 2f 2f  |it.  Loop..   //|
00000430  20 69 73 20 70 65 72 66  6f 72 6d 65 64 20 31 35  | is performed 15|
00000440  30 30 20 74 69 6d 65 73  20 61 6e 64 20 69 6e 63  |00 times and inc|
00000450  72 65 6d 65 6e 74 73 20  41 20 62 79 20 32 30 30  |rements A by 200|
00000460  30 20 65 61 63 68 20 74  69 6d 65 2e 0d 0a 20 20  |0 each time...  |
00000470  20 2f 2f 20 54 68 75 73  20 77 69 74 68 20 73 63  | // Thus with sc|
00000480  61 6c 69 6e 67 20 6f 66  20 31 30 30 30 30 20 74  |aling of 10000 t|
00000490  68 69 73 20 72 65 70 72  65 73 65 6e 74 73 20 41  |his represents A|
000004a0  20 67 6f 69 6e 67 20 66  72 6f 6d 20 30 20 74 6f  | going from 0 to|
000004b0  20 33 30 30 0d 0a 20 20  20 2f 2f 20 72 61 64 69  | 300..   // radi|
000004c0  61 6e 73 20 69 6e 20 73  74 65 70 73 20 6f 66 20  |ans in steps of |
000004d0  30 2e 32 20 72 61 64 69  61 6e 73 2e 0d 0a 0d 0a  |0.2 radians.....|
000004e0  20 20 20 46 4f 52 20 49  20 3d 20 30 20 54 4f 20  |   FOR I = 0 TO |
000004f0  31 35 30 30 0d 0a 20 20  20 24 28 0d 0a 20 20 20  |1500..   $(..   |
00000500  20 20 20 2f 2f 20 43 68  6f 6f 73 65 20 6c 6f 67  |   // Choose log|
00000510  69 63 61 6c 20 63 6f 6c  6f 75 72 20 31 2c 20 32  |ical colour 1, 2|
00000520  20 6f 72 20 33 20 75 73  69 6e 67 20 66 6f 72 6d  | or 3 using form|
00000530  75 6c 61 20 63 6f 72 72  65 73 70 6f 6e 64 69 6e  |ula correspondin|
00000540  67 0d 0a 20 20 20 20 20  20 2f 2f 20 74 6f 20 27  |g..      // to '|
00000550  31 2b 28 33 2e 38 2a 41  20 52 45 4d 20 33 29 27  |1+(3.8*A REM 3)'|
00000560  2e 20 20 4e 6f 74 65 20  74 68 61 74 20 73 69 6e  |.  Note that sin|
00000570  63 65 20 41 20 69 73 20  69 6e 63 72 65 6d 65 6e  |ce A is incremen|
00000580  74 65 64 20 62 79 0d 0a  20 20 20 20 20 20 2f 2f  |ted by..      //|
00000590  20 30 2e 32 20 28 69 2e  65 2e 20 32 30 30 30 29  | 0.2 (i.e. 2000)|
000005a0  20 65 61 63 68 20 74 69  6d 65 20 49 20 69 73 20  | each time I is |
000005b0  69 6e 63 72 65 6d 65 6e  74 65 64 20 62 79 20 31  |incremented by 1|
000005c0  2c 20 49 20 69 73 0d 0a  20 20 20 20 20 20 2f 2f  |, I is..      //|
000005d0  20 65 71 75 69 76 61 6c  65 6e 74 20 74 6f 20 35  | equivalent to 5|
000005e0  2a 41 20 61 6e 64 20 74  68 75 73 20 74 68 65 20  |*A and thus the |
000005f0  66 6f 72 6d 75 6c 61 20  62 65 63 6f 6d 65 73 20  |formula becomes |
00000600  27 31 2b 28 30 2e 37 36  2a 49 20 52 45 4d 0d 0a  |'1+(0.76*I REM..|
00000610  20 20 20 20 20 20 2f 2f  20 33 29 27 20 61 6e 64  |      // 3)' and|
00000620  20 30 2e 37 36 20 3d 20  31 39 2f 32 35 2e 20 20  | 0.76 = 19/25.  |
00000630  54 68 65 20 66 61 63 74  6f 72 20 6f 66 20 33 2e  |The factor of 3.|
00000640  38 20 6d 61 6b 65 73 20  74 68 65 20 61 72 6d 73  |8 makes the arms|
00000650  0d 0a 20 20 20 20 20 20  2f 2f 20 72 65 61 73 6f  |..      // reaso|
00000660  6e 61 62 6c 79 20 73 74  72 61 69 67 68 74 2e 0d  |nably straight..|
00000670  0a 0d 0a 20 20 20 20 20  20 56 44 55 28 22 31 38  |...      VDU("18|
00000680  2c 30 2c 25 22 2c 20 31  2b 28 20 28 28 31 39 2a  |,0,%", 1+( ((19*|
00000690  49 2b 31 32 29 2f 32 35  29 20 52 45 4d 20 33 29  |I+12)/25) REM 3)|
000006a0  20 29 0d 0a 0d 0a 20 20  20 20 20 20 2f 2f 20 44  | )....      // D|
000006b0  72 61 77 20 74 6f 20 6e  65 78 74 20 70 6f 69 6e  |raw to next poin|
000006c0  74 20 77 68 6f 73 65 20  63 6f 6f 72 64 69 6e 61  |t whose coordina|
000006d0  74 65 73 20 61 72 65 20  33 2a 41 2a 53 49 4e 28  |tes are 3*A*SIN(|
000006e0  41 29 20 61 6e 64 0d 0a  20 20 20 20 20 20 2f 2f  |A) and..      //|
000006f0  20 32 2a 41 2a 43 4f 53  28 41 29 2e 20 20 53 69  | 2*A*COS(A).  Si|
00000700  6e 63 65 20 53 49 4e 28  41 29 20 61 6e 64 20 43  |nce SIN(A) and C|
00000710  4f 53 28 41 29 20 61 72  65 20 73 63 61 6c 65 64  |OS(A) are scaled|
00000720  20 62 79 20 31 30 30 30  30 20 75 73 65 0d 0a 20  | by 10000 use.. |
00000730  20 20 20 20 20 2f 2f 20  4d 55 4c 44 49 56 20 77  |     // MULDIV w|
00000740  69 74 68 20 49 2f 35 20  69 6e 73 74 65 61 64 20  |ith I/5 instead |
00000750  6f 66 20 41 20 69 6e 20  74 68 65 20 6d 75 6c 74  |of A in the mult|
00000760  69 70 6c 69 63 61 74 69  6f 6e 2e 0d 0a 0d 0a 20  |iplication..... |
00000770  20 20 20 20 20 56 44 55  28 22 32 35 2c 35 2c 25  |     VDU("25,5,%|
00000780  3b 25 3b 22 2c 20 4d 55  4c 44 49 56 28 53 49 4e  |;%;", MULDIV(SIN|
00000790  28 41 29 2c 20 28 33 2a  49 2b 32 29 2f 35 2c 20  |(A), (3*I+2)/5, |
000007a0  31 30 30 30 30 29 2c 0d  0a 20 20 20 20 20 20 20  |10000),..       |
000007b0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
000007c0  4d 55 4c 44 49 56 28 43  4f 53 28 41 29 2c 20 28  |MULDIV(COS(A), (|
000007d0  32 2a 49 2b 32 29 2f 35  2c 20 31 30 30 30 30 29  |2*I+2)/5, 10000)|
000007e0  20 29 0d 0a 0d 0a 20 20  20 20 20 20 2f 2f 20 49  | )....      // I|
000007f0  6e 63 72 65 6d 65 6e 74  20 41 20 62 79 20 32 30  |ncrement A by 20|
00000800  30 30 20 28 72 65 70 72  65 73 65 6e 74 69 6e 67  |00 (representing|
00000810  20 30 2e 32 29 20 77 72  61 70 70 69 6e 67 20 72  | 0.2) wrapping r|
00000820  6f 75 6e 64 20 66 72 6f  6d 20 70 69 0d 0a 20 20  |ound from pi..  |
00000830  20 20 20 20 2f 2f 20 74  6f 20 2d 70 69 2e 0d 0a  |    // to -pi...|
00000840  0d 0a 20 20 20 20 20 20  54 45 53 54 20 41 20 3e  |..      TEST A >|
00000850  20 50 49 2d 32 30 30 30  20 54 48 45 4e 0d 0a 20  | PI-2000 THEN.. |
00000860  20 20 20 20 20 20 20 20  41 20 3a 3d 20 41 2b 32  |        A := A+2|
00000870  30 30 30 2d 28 32 2a 50  49 29 0d 0a 20 20 20 20  |000-(2*PI)..    |
00000880  20 20 45 4c 53 45 0d 0a  20 20 20 20 20 20 20 20  |  ELSE..        |
00000890  20 41 20 3a 3d 20 41 2b  32 30 30 30 0d 0a 0d 0a  | A := A+2000....|
000008a0  20 20 20 20 20 20 2f 2f  20 43 68 61 6e 67 65 20  |      // Change |
000008b0  74 68 65 20 70 61 6c 65  74 74 65 20 65 76 65 72  |the palette ever|
000008c0  79 20 34 74 68 20 70 6f  69 6e 74 2e 20 20 55 73  |y 4th point.  Us|
000008d0  65 20 61 63 74 75 61 6c  20 63 6f 6c 6f 75 72 73  |e actual colours|
000008e0  20 33 2c 20 34 0d 0a 20  20 20 20 20 20 2f 2f 20  | 3, 4..      // |
000008f0  61 6e 64 20 35 20 28 79  65 6c 6c 6f 77 2c 20 62  |and 5 (yellow, b|
00000900  6c 75 65 20 61 6e 64 20  6d 61 67 65 6e 74 61 29  |lue and magenta)|
00000910  2e 0d 0a 0d 0a 20 20 20  20 20 20 49 46 20 28 49  |.....      IF (I|
00000920  20 26 20 33 29 20 3d 20  30 20 44 4f 0d 0a 20 20  | & 3) = 0 DO..  |
00000930  20 20 20 20 24 28 20 46  4f 52 20 4a 20 3d 20 31  |    $( FOR J = 1|
00000940  20 54 4f 20 33 0d 0a 20  20 20 20 20 20 20 20 20  | TO 3..         |
00000950  20 56 44 55 28 22 31 39  2c 25 2c 25 3b 25 3b 22  | VDU("19,%,%;%;"|
00000960  2c 20 4a 2c 20 28 28 43  2b 4a 29 20 52 45 4d 20  |, J, ((C+J) REM |
00000970  33 29 2b 33 2c 20 30 29  0d 0a 20 20 20 20 20 20  |3)+3, 0)..      |
00000980  20 20 20 43 20 3a 3d 20  28 43 2b 31 29 20 52 45  |   C := (C+1) RE|
00000990  4d 20 33 20 20 20 20 20  2f 2f 20 73 6f 20 6e 65  |M 3     // so ne|
000009a0  78 74 20 70 61 6c 65 74  74 65 20 63 68 61 6e 67  |xt palette chang|
000009b0  65 20 6d 6f 76 65 73 20  63 6f 6c 6f 75 72 73 20  |e moves colours |
000009c0  6f 6e 20 6f 6e 65 0d 0a  20 20 20 20 20 20 20 20  |on one..        |
000009d0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
000009e0  20 20 20 20 20 20 2f 2f  20 73 74 65 70 0d 0a 20  |      // step.. |
000009f0  20 20 20 20 20 24 29 0d  0a 20 20 20 24 29 0d 0a  |     $)..   $)..|
00000a00  0d 0a 20 20 20 2f 2f 20  57 61 69 74 20 66 6f 72  |..   // Wait for|
00000a10  20 35 20 73 65 63 6f 6e  64 73 20 74 68 65 6e 20  | 5 seconds then |
00000a20  67 6f 20 62 61 63 6b 20  74 6f 20 6d 6f 64 65 20  |go back to mode |
00000a30  37 2e 0d 0a 0d 0a 20 20  20 24 28 20 4c 45 54 20  |7.....   $( LET |
00000a40  54 20 3d 20 54 49 4d 45  28 29 2b 35 30 30 0d 0a  |T = TIME()+500..|
00000a50  20 20 20 20 20 20 49 46  20 54 20 3c 20 30 20 54  |      IF T < 0 T|
00000a60  48 45 4e 20 54 20 3a 3d  20 54 2b 23 58 38 30 30  |HEN T := T+#X800|
00000a70  30 20 20 20 2f 2f 20 63  6f 6d 70 65 6e 73 61 74  |0   // compensat|
00000a80  65 20 66 6f 72 20 77 72  61 70 72 6f 75 6e 64 0d  |e for wrapround.|
00000a90  0a 20 20 20 20 20 20 55  4e 54 49 4c 20 54 49 4d  |.      UNTIL TIM|
00000aa0  45 28 29 20 3d 20 54 20  4c 4f 4f 50 0d 0a 20 20  |E() = T LOOP..  |
00000ab0  20 20 20 20 4d 4f 44 45  28 37 29 0d 0a 20 20 20  |    MODE(7)..   |
00000ac0  24 29 0d 0a 24 29 0d 0a  0d 0a                    |$)..$)....|
00000aca
EXSPIRB.m0
EXSPIRB.m1
EXSPIRB.m2
EXSPIRB.m4
EXSPIRB.m5