Home » CEEFAX disks » telesoftware6.adl » 22-04-88/T\OSB23

22-04-88/T\OSB23

This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.

Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.

Tape/disk: Home » CEEFAX disks » telesoftware6.adl
Filename: 22-04-88/T\OSB23
Read OK:
File size: 2280 bytes
Load address: 0000
Exec address: FFFFFFFF
File contents
OSBITS - An Exploration of the BBC Micro at Machine Level

By Programmer

..........................................................


Part 23: Floating Point Arithmetic II


In this module we don't have much in the way of text, but we
have another program using floating point machine code
arithmetic.  This time, having achieved addition and
subtraction in our experimentation, we go on to
multiplication and division.

The general rule for multiplication is that you multiply the
mantissae and add the exponents while for division you
divide the mantissae and subtract the exponents.

Thus, if A and B are the mantissae and C and D are exponents
(such that, for example, 12.34 could be represented as
1.234e1 where 1.234 is the mantissa and 1 is the exponent -
the power of 10, in this case, needed to multiply the number
to its actual value) we have the following:

              AeC * BeD = (A*B)e(C+D)
              AeC / DeD = (A/B)e(C-D)

The program in this module works on this basis but it does
throw up a few problems.  I'll go through the program
section by section and briefly discuss the problems I came
across in writing it.

As with the last module, this program is divided into
subroutines that carry out the main sections of the work. 
One significant difference is that, this time, I have used
CALL with parameters as a means of getting the floating
point numbers into the program.  This means that the code is
only assembled once in each RUN with a REPEAT UNTIL FALSE
loop letting you enter new values and seeing the results
each time.  This is an alternative to using the FNEQUF
pseudo-opt in the assembler.  You may like to modify the
last module to work in this way.

Having been transferred, using information in the parameter
block at &600 that BASIC sets up for CALL with parameters,
the numbers input are stored securely, since they will be
needed twice, once for multiplication and once for division. 
Note that the initial transfer needs some zero page
workspace because of the indirect addressing used.  The
block at &600 looks like this:

    &600    1 byte - number of parameters
    &601    2 bytes - parameter address
    &603    1 byte - parameter type
    &604    2 bytes - next parameter address .... and so on

The parameter type for a floating point variable is 5. 
Others are 0 for a byte (i.e. an ?X), 4 for an integer, 128
for a $X string in memory (terminated by a CR) and 129 for a
string variable (X$).  In the last case (see module 7) the
parameter address is a pointer to a string information
block.

The numbers are then transferred into the workspaces for the
calculation by a subroutine 'transfer_in'.  The
multiplication is carried out and then the result is
transferred out into 'result_mult'.  This process is
repeated for the division.  At the end the results of the
machine code calculations are compared with the result using
BBC BASIC.  I will admit here and now that my routines are a
little innacurate but I will also admit to this being of an
experimental nature and I was trying for clarity.

As we go down the listing of the assembly program the next
thing we meet is a block of workspace.  I have increased the
workspace for the calculations to seven bytes from five
because I need seven for division.  I have also triple named
'fpws_1' and 'fpws_2' for their multiplication and division
roles.  This is a technique you can use if you want to be
clear about the function of a piece of memory although its
use changes during the program.  There is no penalty for
multi-naming, apart from making the assembly source code a
bit longer.  Your final program code, which does not use the
labels, is not affected.

So let's look at the multiplication first.

To avoid problems I have trapped zeros at the start of the
multiplying routines.  Obviously a zero entered as either
number will give a zero result when they are multiplied
together.  There is a subroutine at 'make_zero' which makes
all five bytes of 'fpws_1' zero.  Note that if you branch or
jump to a sobroutine, rather than JSRing to it, you will
automatically RTS at the end of it, in this case that takes
us out of the 'fp_mult' subroutine completely.

If neither number is zero we move on.  The sign bit is
transferred to another byte and the top bit of the mantissa
corrected exactly as in the last module.

The multiplying denormalisation routine rotates each
mantissa right by two bytes.  With a four byte mantissa this
effectively gives us two two byte numbers which, when
multiplied together, produce a four byte number.  This four
byte number then fills the mantissa work space again.

You might think, as I originally did, that when rotating the
mantissae you should alter the exponents to compensate. 
This produces incorrect results and, after much thinking and
drawing of diagrams I came to the following conclusion.  We
are do not have to change the exponents because the
mantissae are, in fact, just less that 1 in size.  Now if
you multiply 0.9 by 0.9 you get 0.81 and multiplying two
mantissae, each with its top bit set, is just like this.  We
get a similar situation with division.

'mult_denormalise' also calculates the initial new exponent. 
Remember that BBC BASIC adds &80 to the exponents in its
floating point format.  If on adding the exponents we change
the 2's complement sign of the result then the result ha
overflowed and ismout of range.  This might happen if, say,
we added 120 to 20.  140 is actually a negative number in
2's complement and so we have wrapped around the byte to
give an incorrect result.  We can trap this by chacking the
overflow flag.  This flag will detect an anomolous overflow
and so we can use it to branch to an error routine.  With
multiplication, a result that has overflowed too much
negatively means that the number is in fact too small for us
to represent it.  This is not treated as an error, but
instead means that we must set the result to zero.  For a
value that is too big I have used Error 20, but given it
slightly different messages to BASIC as you can see in the
listing.

I multiplied the two numbers using a modified version of the
multi-byte mutliplication routine from module 13.  The main
difference is that the floating point mantissa is stored
back to front compared to the integers, with the least
significant byte in the lowest memory location.  Note that,
as the partial product workspace does not use the exponent,
it is only four bytes long not five.

After multiplying we renormalise the mantissa by rotating it
left until the top bit is set.  By converting to two two
byte numbers we cannot have an overflow here so we only have
to check for a number that is too small.  A zero result is
trapped here because it would otherwise send the routine
into an endless loop.

Finally the sign bit is replaced.  The sign business is a
great deal easier with multiplcation and division that it
was with addition and subtraction.  If you EOR the two sign
bits together you get the result; simple as that.

Where division is concerned much of the procedure is the
same.  Here a zero as the second number is a fatal error
since we cannot divide by zero.  A zero for first number
just leads to a zero result.

Denormalisation for division, in my implimentation, involves
rotating the divisor right by two bytes.  This effectively
means that we have a four byte number divided by a two byte
one, although the two byte one has two other bytes beyone
the 'binary point' and the division routine therefore works
over 48 bits.

In calculating the initial exponent of the result I found
that to compensate for the rotation, and because both our
numbers were just under 1 in size again, I had to increase
the size of the exponent by 32 (&20) which is done after the
second exponent has been subtracted from the first.  [I wish
I understood these 'fudge' factors more clearly, then I
could explain them more clearly.]

Just as the exponents could overflow during multiplication,
so they can during division, and that is trapped at the end
of the 'div_denormalise' routine.

The division subroutine is a straightforward modification of
the multi-byte integer division routine in module 15.  In
this case we calculate over 48 bits instead of 32, and the
workspace is back to front because of the way the floating
point mantissae are stored.

Renormalisation and fixing the sign bit operate exactly as
with multiplication, using the same subroutines.

These floating point routines are by no means simple.  To
make them more accurate would make them more obscure, but
the principles behind them are straightforward enough. 
Maybe you'd like to try making that Mandelbrot program from
module 21 work using floating point?

While you're thinking about that I will move on to sideways
ROMs, a subject very specific to the BBC Micro, in the next
module.
00000000  4f 53 42 49 54 53 20 2d  20 41 6e 20 45 78 70 6c  |OSBITS - An Expl|
00000010  6f 72 61 74 69 6f 6e 20  6f 66 20 74 68 65 20 42  |oration of the B|
00000020  42 43 20 4d 69 63 72 6f  20 61 74 20 4d 61 63 68  |BC Micro at Mach|
00000030  69 6e 65 20 4c 65 76 65  6c 0d 0d 42 79 20 50 72  |ine Level..By Pr|
00000040  6f 67 72 61 6d 6d 65 72  0d 0d 2e 2e 2e 2e 2e 2e  |ogrammer........|
00000050  2e 2e 2e 2e 2e 2e 2e 2e  2e 2e 2e 2e 2e 2e 2e 2e  |................|
*
00000080  2e 2e 2e 2e 0d 0d 0d 50  61 72 74 20 32 33 3a 20  |.......Part 23: |
00000090  46 6c 6f 61 74 69 6e 67  20 50 6f 69 6e 74 20 41  |Floating Point A|
000000a0  72 69 74 68 6d 65 74 69  63 20 49 49 0d 0d 0d 49  |rithmetic II...I|
000000b0  6e 20 74 68 69 73 20 6d  6f 64 75 6c 65 20 77 65  |n this module we|
000000c0  20 64 6f 6e 27 74 20 68  61 76 65 20 6d 75 63 68  | don't have much|
000000d0  20 69 6e 20 74 68 65 20  77 61 79 20 6f 66 20 74  | in the way of t|
000000e0  65 78 74 2c 20 62 75 74  20 77 65 0d 68 61 76 65  |ext, but we.have|
000000f0  20 61 6e 6f 74 68 65 72  20 70 72 6f 67 72 61 6d  | another program|
00000100  20 75 73 69 6e 67 20 66  6c 6f 61 74 69 6e 67 20  | using floating |
00000110  70 6f 69 6e 74 20 6d 61  63 68 69 6e 65 20 63 6f  |point machine co|
00000120  64 65 0d 61 72 69 74 68  6d 65 74 69 63 2e 20 20  |de.arithmetic.  |
00000130  54 68 69 73 20 74 69 6d  65 2c 20 68 61 76 69 6e  |This time, havin|
00000140  67 20 61 63 68 69 65 76  65 64 20 61 64 64 69 74  |g achieved addit|
00000150  69 6f 6e 20 61 6e 64 0d  73 75 62 74 72 61 63 74  |ion and.subtract|
00000160  69 6f 6e 20 69 6e 20 6f  75 72 20 65 78 70 65 72  |ion in our exper|
00000170  69 6d 65 6e 74 61 74 69  6f 6e 2c 20 77 65 20 67  |imentation, we g|
00000180  6f 20 6f 6e 20 74 6f 0d  6d 75 6c 74 69 70 6c 69  |o on to.multipli|
00000190  63 61 74 69 6f 6e 20 61  6e 64 20 64 69 76 69 73  |cation and divis|
000001a0  69 6f 6e 2e 0d 0d 54 68  65 20 67 65 6e 65 72 61  |ion...The genera|
000001b0  6c 20 72 75 6c 65 20 66  6f 72 20 6d 75 6c 74 69  |l rule for multi|
000001c0  70 6c 69 63 61 74 69 6f  6e 20 69 73 20 74 68 61  |plication is tha|
000001d0  74 20 79 6f 75 20 6d 75  6c 74 69 70 6c 79 20 74  |t you multiply t|
000001e0  68 65 0d 6d 61 6e 74 69  73 73 61 65 20 61 6e 64  |he.mantissae and|
000001f0  20 61 64 64 20 74 68 65  20 65 78 70 6f 6e 65 6e  | add the exponen|
00000200  74 73 20 77 68 69 6c 65  20 66 6f 72 20 64 69 76  |ts while for div|
00000210  69 73 69 6f 6e 20 79 6f  75 0d 64 69 76 69 64 65  |ision you.divide|
00000220  20 74 68 65 20 6d 61 6e  74 69 73 73 61 65 20 61  | the mantissae a|
00000230  6e 64 20 73 75 62 74 72  61 63 74 20 74 68 65 20  |nd subtract the |
00000240  65 78 70 6f 6e 65 6e 74  73 2e 0d 0d 54 68 75 73  |exponents...Thus|
00000250  2c 20 69 66 20 41 20 61  6e 64 20 42 20 61 72 65  |, if A and B are|
00000260  20 74 68 65 20 6d 61 6e  74 69 73 73 61 65 20 61  | the mantissae a|
00000270  6e 64 20 43 20 61 6e 64  20 44 20 61 72 65 20 65  |nd C and D are e|
00000280  78 70 6f 6e 65 6e 74 73  0d 28 73 75 63 68 20 74  |xponents.(such t|
00000290  68 61 74 2c 20 66 6f 72  20 65 78 61 6d 70 6c 65  |hat, for example|
000002a0  2c 20 31 32 2e 33 34 20  63 6f 75 6c 64 20 62 65  |, 12.34 could be|
000002b0  20 72 65 70 72 65 73 65  6e 74 65 64 20 61 73 0d  | represented as.|
000002c0  31 2e 32 33 34 65 31 20  77 68 65 72 65 20 31 2e  |1.234e1 where 1.|
000002d0  32 33 34 20 69 73 20 74  68 65 20 6d 61 6e 74 69  |234 is the manti|
000002e0  73 73 61 20 61 6e 64 20  31 20 69 73 20 74 68 65  |ssa and 1 is the|
000002f0  20 65 78 70 6f 6e 65 6e  74 20 2d 0d 74 68 65 20  | exponent -.the |
00000300  70 6f 77 65 72 20 6f 66  20 31 30 2c 20 69 6e 20  |power of 10, in |
00000310  74 68 69 73 20 63 61 73  65 2c 20 6e 65 65 64 65  |this case, neede|
00000320  64 20 74 6f 20 6d 75 6c  74 69 70 6c 79 20 74 68  |d to multiply th|
00000330  65 20 6e 75 6d 62 65 72  0d 74 6f 20 69 74 73 20  |e number.to its |
00000340  61 63 74 75 61 6c 20 76  61 6c 75 65 29 20 77 65  |actual value) we|
00000350  20 68 61 76 65 20 74 68  65 20 66 6f 6c 6c 6f 77  | have the follow|
00000360  69 6e 67 3a 0d 0d 20 20  20 20 20 20 20 20 20 20  |ing:..          |
00000370  20 20 20 20 41 65 43 20  2a 20 42 65 44 20 3d 20  |    AeC * BeD = |
00000380  28 41 2a 42 29 65 28 43  2b 44 29 0d 20 20 20 20  |(A*B)e(C+D).    |
00000390  20 20 20 20 20 20 20 20  20 20 41 65 43 20 2f 20  |          AeC / |
000003a0  44 65 44 20 3d 20 28 41  2f 42 29 65 28 43 2d 44  |DeD = (A/B)e(C-D|
000003b0  29 0d 0d 54 68 65 20 70  72 6f 67 72 61 6d 20 69  |)..The program i|
000003c0  6e 20 74 68 69 73 20 6d  6f 64 75 6c 65 20 77 6f  |n this module wo|
000003d0  72 6b 73 20 6f 6e 20 74  68 69 73 20 62 61 73 69  |rks on this basi|
000003e0  73 20 62 75 74 20 69 74  20 64 6f 65 73 0d 74 68  |s but it does.th|
000003f0  72 6f 77 20 75 70 20 61  20 66 65 77 20 70 72 6f  |row up a few pro|
00000400  62 6c 65 6d 73 2e 20 20  49 27 6c 6c 20 67 6f 20  |blems.  I'll go |
00000410  74 68 72 6f 75 67 68 20  74 68 65 20 70 72 6f 67  |through the prog|
00000420  72 61 6d 0d 73 65 63 74  69 6f 6e 20 62 79 20 73  |ram.section by s|
00000430  65 63 74 69 6f 6e 20 61  6e 64 20 62 72 69 65 66  |ection and brief|
00000440  6c 79 20 64 69 73 63 75  73 73 20 74 68 65 20 70  |ly discuss the p|
00000450  72 6f 62 6c 65 6d 73 20  49 20 63 61 6d 65 0d 61  |roblems I came.a|
00000460  63 72 6f 73 73 20 69 6e  20 77 72 69 74 69 6e 67  |cross in writing|
00000470  20 69 74 2e 0d 0d 41 73  20 77 69 74 68 20 74 68  | it...As with th|
00000480  65 20 6c 61 73 74 20 6d  6f 64 75 6c 65 2c 20 74  |e last module, t|
00000490  68 69 73 20 70 72 6f 67  72 61 6d 20 69 73 20 64  |his program is d|
000004a0  69 76 69 64 65 64 20 69  6e 74 6f 0d 73 75 62 72  |ivided into.subr|
000004b0  6f 75 74 69 6e 65 73 20  74 68 61 74 20 63 61 72  |outines that car|
000004c0  72 79 20 6f 75 74 20 74  68 65 20 6d 61 69 6e 20  |ry out the main |
000004d0  73 65 63 74 69 6f 6e 73  20 6f 66 20 74 68 65 20  |sections of the |
000004e0  77 6f 72 6b 2e 20 0d 4f  6e 65 20 73 69 67 6e 69  |work. .One signi|
000004f0  66 69 63 61 6e 74 20 64  69 66 66 65 72 65 6e 63  |ficant differenc|
00000500  65 20 69 73 20 74 68 61  74 2c 20 74 68 69 73 20  |e is that, this |
00000510  74 69 6d 65 2c 20 49 20  68 61 76 65 20 75 73 65  |time, I have use|
00000520  64 0d 43 41 4c 4c 20 77  69 74 68 20 70 61 72 61  |d.CALL with para|
00000530  6d 65 74 65 72 73 20 61  73 20 61 20 6d 65 61 6e  |meters as a mean|
00000540  73 20 6f 66 20 67 65 74  74 69 6e 67 20 74 68 65  |s of getting the|
00000550  20 66 6c 6f 61 74 69 6e  67 0d 70 6f 69 6e 74 20  | floating.point |
00000560  6e 75 6d 62 65 72 73 20  69 6e 74 6f 20 74 68 65  |numbers into the|
00000570  20 70 72 6f 67 72 61 6d  2e 20 20 54 68 69 73 20  | program.  This |
00000580  6d 65 61 6e 73 20 74 68  61 74 20 74 68 65 20 63  |means that the c|
00000590  6f 64 65 20 69 73 0d 6f  6e 6c 79 20 61 73 73 65  |ode is.only asse|
000005a0  6d 62 6c 65 64 20 6f 6e  63 65 20 69 6e 20 65 61  |mbled once in ea|
000005b0  63 68 20 52 55 4e 20 77  69 74 68 20 61 20 52 45  |ch RUN with a RE|
000005c0  50 45 41 54 20 55 4e 54  49 4c 20 46 41 4c 53 45  |PEAT UNTIL FALSE|
000005d0  0d 6c 6f 6f 70 20 6c 65  74 74 69 6e 67 20 79 6f  |.loop letting yo|
000005e0  75 20 65 6e 74 65 72 20  6e 65 77 20 76 61 6c 75  |u enter new valu|
000005f0  65 73 20 61 6e 64 20 73  65 65 69 6e 67 20 74 68  |es and seeing th|
00000600  65 20 72 65 73 75 6c 74  73 0d 65 61 63 68 20 74  |e results.each t|
00000610  69 6d 65 2e 20 20 54 68  69 73 20 69 73 20 61 6e  |ime.  This is an|
00000620  20 61 6c 74 65 72 6e 61  74 69 76 65 20 74 6f 20  | alternative to |
00000630  75 73 69 6e 67 20 74 68  65 20 46 4e 45 51 55 46  |using the FNEQUF|
00000640  0d 70 73 65 75 64 6f 2d  6f 70 74 20 69 6e 20 74  |.pseudo-opt in t|
00000650  68 65 20 61 73 73 65 6d  62 6c 65 72 2e 20 20 59  |he assembler.  Y|
00000660  6f 75 20 6d 61 79 20 6c  69 6b 65 20 74 6f 20 6d  |ou may like to m|
00000670  6f 64 69 66 79 20 74 68  65 0d 6c 61 73 74 20 6d  |odify the.last m|
00000680  6f 64 75 6c 65 20 74 6f  20 77 6f 72 6b 20 69 6e  |odule to work in|
00000690  20 74 68 69 73 20 77 61  79 2e 0d 0d 48 61 76 69  | this way...Havi|
000006a0  6e 67 20 62 65 65 6e 20  74 72 61 6e 73 66 65 72  |ng been transfer|
000006b0  72 65 64 2c 20 75 73 69  6e 67 20 69 6e 66 6f 72  |red, using infor|
000006c0  6d 61 74 69 6f 6e 20 69  6e 20 74 68 65 20 70 61  |mation in the pa|
000006d0  72 61 6d 65 74 65 72 0d  62 6c 6f 63 6b 20 61 74  |rameter.block at|
000006e0  20 26 36 30 30 20 74 68  61 74 20 42 41 53 49 43  | &600 that BASIC|
000006f0  20 73 65 74 73 20 75 70  20 66 6f 72 20 43 41 4c  | sets up for CAL|
00000700  4c 20 77 69 74 68 20 70  61 72 61 6d 65 74 65 72  |L with parameter|
00000710  73 2c 0d 74 68 65 20 6e  75 6d 62 65 72 73 20 69  |s,.the numbers i|
00000720  6e 70 75 74 20 61 72 65  20 73 74 6f 72 65 64 20  |nput are stored |
00000730  73 65 63 75 72 65 6c 79  2c 20 73 69 6e 63 65 20  |securely, since |
00000740  74 68 65 79 20 77 69 6c  6c 20 62 65 0d 6e 65 65  |they will be.nee|
00000750  64 65 64 20 74 77 69 63  65 2c 20 6f 6e 63 65 20  |ded twice, once |
00000760  66 6f 72 20 6d 75 6c 74  69 70 6c 69 63 61 74 69  |for multiplicati|
00000770  6f 6e 20 61 6e 64 20 6f  6e 63 65 20 66 6f 72 20  |on and once for |
00000780  64 69 76 69 73 69 6f 6e  2e 20 0d 4e 6f 74 65 20  |division. .Note |
00000790  74 68 61 74 20 74 68 65  20 69 6e 69 74 69 61 6c  |that the initial|
000007a0  20 74 72 61 6e 73 66 65  72 20 6e 65 65 64 73 20  | transfer needs |
000007b0  73 6f 6d 65 20 7a 65 72  6f 20 70 61 67 65 0d 77  |some zero page.w|
000007c0  6f 72 6b 73 70 61 63 65  20 62 65 63 61 75 73 65  |orkspace because|
000007d0  20 6f 66 20 74 68 65 20  69 6e 64 69 72 65 63 74  | of the indirect|
000007e0  20 61 64 64 72 65 73 73  69 6e 67 20 75 73 65 64  | addressing used|
000007f0  2e 20 20 54 68 65 0d 62  6c 6f 63 6b 20 61 74 20  |.  The.block at |
00000800  26 36 30 30 20 6c 6f 6f  6b 73 20 6c 69 6b 65 20  |&600 looks like |
00000810  74 68 69 73 3a 0d 0d 20  20 20 20 26 36 30 30 20  |this:..    &600 |
00000820  20 20 20 31 20 62 79 74  65 20 2d 20 6e 75 6d 62  |   1 byte - numb|
00000830  65 72 20 6f 66 20 70 61  72 61 6d 65 74 65 72 73  |er of parameters|
00000840  0d 20 20 20 20 26 36 30  31 20 20 20 20 32 20 62  |.    &601    2 b|
00000850  79 74 65 73 20 2d 20 70  61 72 61 6d 65 74 65 72  |ytes - parameter|
00000860  20 61 64 64 72 65 73 73  0d 20 20 20 20 26 36 30  | address.    &60|
00000870  33 20 20 20 20 31 20 62  79 74 65 20 2d 20 70 61  |3    1 byte - pa|
00000880  72 61 6d 65 74 65 72 20  74 79 70 65 0d 20 20 20  |rameter type.   |
00000890  20 26 36 30 34 20 20 20  20 32 20 62 79 74 65 73  | &604    2 bytes|
000008a0  20 2d 20 6e 65 78 74 20  70 61 72 61 6d 65 74 65  | - next paramete|
000008b0  72 20 61 64 64 72 65 73  73 20 2e 2e 2e 2e 20 61  |r address .... a|
000008c0  6e 64 20 73 6f 20 6f 6e  0d 0d 54 68 65 20 70 61  |nd so on..The pa|
000008d0  72 61 6d 65 74 65 72 20  74 79 70 65 20 66 6f 72  |rameter type for|
000008e0  20 61 20 66 6c 6f 61 74  69 6e 67 20 70 6f 69 6e  | a floating poin|
000008f0  74 20 76 61 72 69 61 62  6c 65 20 69 73 20 35 2e  |t variable is 5.|
00000900  20 0d 4f 74 68 65 72 73  20 61 72 65 20 30 20 66  | .Others are 0 f|
00000910  6f 72 20 61 20 62 79 74  65 20 28 69 2e 65 2e 20  |or a byte (i.e. |
00000920  61 6e 20 3f 58 29 2c 20  34 20 66 6f 72 20 61 6e  |an ?X), 4 for an|
00000930  20 69 6e 74 65 67 65 72  2c 20 31 32 38 0d 66 6f  | integer, 128.fo|
00000940  72 20 61 20 24 58 20 73  74 72 69 6e 67 20 69 6e  |r a $X string in|
00000950  20 6d 65 6d 6f 72 79 20  28 74 65 72 6d 69 6e 61  | memory (termina|
00000960  74 65 64 20 62 79 20 61  20 43 52 29 20 61 6e 64  |ted by a CR) and|
00000970  20 31 32 39 20 66 6f 72  20 61 0d 73 74 72 69 6e  | 129 for a.strin|
00000980  67 20 76 61 72 69 61 62  6c 65 20 28 58 24 29 2e  |g variable (X$).|
00000990  20 20 49 6e 20 74 68 65  20 6c 61 73 74 20 63 61  |  In the last ca|
000009a0  73 65 20 28 73 65 65 20  6d 6f 64 75 6c 65 20 37  |se (see module 7|
000009b0  29 20 74 68 65 0d 70 61  72 61 6d 65 74 65 72 20  |) the.parameter |
000009c0  61 64 64 72 65 73 73 20  69 73 20 61 20 70 6f 69  |address is a poi|
000009d0  6e 74 65 72 20 74 6f 20  61 20 73 74 72 69 6e 67  |nter to a string|
000009e0  20 69 6e 66 6f 72 6d 61  74 69 6f 6e 0d 62 6c 6f  | information.blo|
000009f0  63 6b 2e 0d 0d 54 68 65  20 6e 75 6d 62 65 72 73  |ck...The numbers|
00000a00  20 61 72 65 20 74 68 65  6e 20 74 72 61 6e 73 66  | are then transf|
00000a10  65 72 72 65 64 20 69 6e  74 6f 20 74 68 65 20 77  |erred into the w|
00000a20  6f 72 6b 73 70 61 63 65  73 20 66 6f 72 20 74 68  |orkspaces for th|
00000a30  65 0d 63 61 6c 63 75 6c  61 74 69 6f 6e 20 62 79  |e.calculation by|
00000a40  20 61 20 73 75 62 72 6f  75 74 69 6e 65 20 27 74  | a subroutine 't|
00000a50  72 61 6e 73 66 65 72 5f  69 6e 27 2e 20 20 54 68  |ransfer_in'.  Th|
00000a60  65 0d 6d 75 6c 74 69 70  6c 69 63 61 74 69 6f 6e  |e.multiplication|
00000a70  20 69 73 20 63 61 72 72  69 65 64 20 6f 75 74 20  | is carried out |
00000a80  61 6e 64 20 74 68 65 6e  20 74 68 65 20 72 65 73  |and then the res|
00000a90  75 6c 74 20 69 73 0d 74  72 61 6e 73 66 65 72 72  |ult is.transferr|
00000aa0  65 64 20 6f 75 74 20 69  6e 74 6f 20 27 72 65 73  |ed out into 'res|
00000ab0  75 6c 74 5f 6d 75 6c 74  27 2e 20 20 54 68 69 73  |ult_mult'.  This|
00000ac0  20 70 72 6f 63 65 73 73  20 69 73 0d 72 65 70 65  | process is.repe|
00000ad0  61 74 65 64 20 66 6f 72  20 74 68 65 20 64 69 76  |ated for the div|
00000ae0  69 73 69 6f 6e 2e 20 20  41 74 20 74 68 65 20 65  |ision.  At the e|
00000af0  6e 64 20 74 68 65 20 72  65 73 75 6c 74 73 20 6f  |nd the results o|
00000b00  66 20 74 68 65 0d 6d 61  63 68 69 6e 65 20 63 6f  |f the.machine co|
00000b10  64 65 20 63 61 6c 63 75  6c 61 74 69 6f 6e 73 20  |de calculations |
00000b20  61 72 65 20 63 6f 6d 70  61 72 65 64 20 77 69 74  |are compared wit|
00000b30  68 20 74 68 65 20 72 65  73 75 6c 74 20 75 73 69  |h the result usi|
00000b40  6e 67 0d 42 42 43 20 42  41 53 49 43 2e 20 20 49  |ng.BBC BASIC.  I|
00000b50  20 77 69 6c 6c 20 61 64  6d 69 74 20 68 65 72 65  | will admit here|
00000b60  20 61 6e 64 20 6e 6f 77  20 74 68 61 74 20 6d 79  | and now that my|
00000b70  20 72 6f 75 74 69 6e 65  73 20 61 72 65 20 61 0d  | routines are a.|
00000b80  6c 69 74 74 6c 65 20 69  6e 6e 61 63 75 72 61 74  |little innacurat|
00000b90  65 20 62 75 74 20 49 20  77 69 6c 6c 20 61 6c 73  |e but I will als|
00000ba0  6f 20 61 64 6d 69 74 20  74 6f 20 74 68 69 73 20  |o admit to this |
00000bb0  62 65 69 6e 67 20 6f 66  20 61 6e 0d 65 78 70 65  |being of an.expe|
00000bc0  72 69 6d 65 6e 74 61 6c  20 6e 61 74 75 72 65 20  |rimental nature |
00000bd0  61 6e 64 20 49 20 77 61  73 20 74 72 79 69 6e 67  |and I was trying|
00000be0  20 66 6f 72 20 63 6c 61  72 69 74 79 2e 0d 0d 41  | for clarity...A|
00000bf0  73 20 77 65 20 67 6f 20  64 6f 77 6e 20 74 68 65  |s we go down the|
00000c00  20 6c 69 73 74 69 6e 67  20 6f 66 20 74 68 65 20  | listing of the |
00000c10  61 73 73 65 6d 62 6c 79  20 70 72 6f 67 72 61 6d  |assembly program|
00000c20  20 74 68 65 20 6e 65 78  74 0d 74 68 69 6e 67 20  | the next.thing |
00000c30  77 65 20 6d 65 65 74 20  69 73 20 61 20 62 6c 6f  |we meet is a blo|
00000c40  63 6b 20 6f 66 20 77 6f  72 6b 73 70 61 63 65 2e  |ck of workspace.|
00000c50  20 20 49 20 68 61 76 65  20 69 6e 63 72 65 61 73  |  I have increas|
00000c60  65 64 20 74 68 65 0d 77  6f 72 6b 73 70 61 63 65  |ed the.workspace|
00000c70  20 66 6f 72 20 74 68 65  20 63 61 6c 63 75 6c 61  | for the calcula|
00000c80  74 69 6f 6e 73 20 74 6f  20 73 65 76 65 6e 20 62  |tions to seven b|
00000c90  79 74 65 73 20 66 72 6f  6d 20 66 69 76 65 0d 62  |ytes from five.b|
00000ca0  65 63 61 75 73 65 20 49  20 6e 65 65 64 20 73 65  |ecause I need se|
00000cb0  76 65 6e 20 66 6f 72 20  64 69 76 69 73 69 6f 6e  |ven for division|
00000cc0  2e 20 20 49 20 68 61 76  65 20 61 6c 73 6f 20 74  |.  I have also t|
00000cd0  72 69 70 6c 65 20 6e 61  6d 65 64 0d 27 66 70 77  |riple named.'fpw|
00000ce0  73 5f 31 27 20 61 6e 64  20 27 66 70 77 73 5f 32  |s_1' and 'fpws_2|
00000cf0  27 20 66 6f 72 20 74 68  65 69 72 20 6d 75 6c 74  |' for their mult|
00000d00  69 70 6c 69 63 61 74 69  6f 6e 20 61 6e 64 20 64  |iplication and d|
00000d10  69 76 69 73 69 6f 6e 0d  72 6f 6c 65 73 2e 20 20  |ivision.roles.  |
00000d20  54 68 69 73 20 69 73 20  61 20 74 65 63 68 6e 69  |This is a techni|
00000d30  71 75 65 20 79 6f 75 20  63 61 6e 20 75 73 65 20  |que you can use |
00000d40  69 66 20 79 6f 75 20 77  61 6e 74 20 74 6f 20 62  |if you want to b|
00000d50  65 0d 63 6c 65 61 72 20  61 62 6f 75 74 20 74 68  |e.clear about th|
00000d60  65 20 66 75 6e 63 74 69  6f 6e 20 6f 66 20 61 20  |e function of a |
00000d70  70 69 65 63 65 20 6f 66  20 6d 65 6d 6f 72 79 20  |piece of memory |
00000d80  61 6c 74 68 6f 75 67 68  20 69 74 73 0d 75 73 65  |although its.use|
00000d90  20 63 68 61 6e 67 65 73  20 64 75 72 69 6e 67 20  | changes during |
00000da0  74 68 65 20 70 72 6f 67  72 61 6d 2e 20 20 54 68  |the program.  Th|
00000db0  65 72 65 20 69 73 20 6e  6f 20 70 65 6e 61 6c 74  |ere is no penalt|
00000dc0  79 20 66 6f 72 0d 6d 75  6c 74 69 2d 6e 61 6d 69  |y for.multi-nami|
00000dd0  6e 67 2c 20 61 70 61 72  74 20 66 72 6f 6d 20 6d  |ng, apart from m|
00000de0  61 6b 69 6e 67 20 74 68  65 20 61 73 73 65 6d 62  |aking the assemb|
00000df0  6c 79 20 73 6f 75 72 63  65 20 63 6f 64 65 20 61  |ly source code a|
00000e00  0d 62 69 74 20 6c 6f 6e  67 65 72 2e 20 20 59 6f  |.bit longer.  Yo|
00000e10  75 72 20 66 69 6e 61 6c  20 70 72 6f 67 72 61 6d  |ur final program|
00000e20  20 63 6f 64 65 2c 20 77  68 69 63 68 20 64 6f 65  | code, which doe|
00000e30  73 20 6e 6f 74 20 75 73  65 20 74 68 65 0d 6c 61  |s not use the.la|
00000e40  62 65 6c 73 2c 20 69 73  20 6e 6f 74 20 61 66 66  |bels, is not aff|
00000e50  65 63 74 65 64 2e 0d 0d  53 6f 20 6c 65 74 27 73  |ected...So let's|
00000e60  20 6c 6f 6f 6b 20 61 74  20 74 68 65 20 6d 75 6c  | look at the mul|
00000e70  74 69 70 6c 69 63 61 74  69 6f 6e 20 66 69 72 73  |tiplication firs|
00000e80  74 2e 0d 0d 54 6f 20 61  76 6f 69 64 20 70 72 6f  |t...To avoid pro|
00000e90  62 6c 65 6d 73 20 49 20  68 61 76 65 20 74 72 61  |blems I have tra|
00000ea0  70 70 65 64 20 7a 65 72  6f 73 20 61 74 20 74 68  |pped zeros at th|
00000eb0  65 20 73 74 61 72 74 20  6f 66 20 74 68 65 0d 6d  |e start of the.m|
00000ec0  75 6c 74 69 70 6c 79 69  6e 67 20 72 6f 75 74 69  |ultiplying routi|
00000ed0  6e 65 73 2e 20 20 4f 62  76 69 6f 75 73 6c 79 20  |nes.  Obviously |
00000ee0  61 20 7a 65 72 6f 20 65  6e 74 65 72 65 64 20 61  |a zero entered a|
00000ef0  73 20 65 69 74 68 65 72  0d 6e 75 6d 62 65 72 20  |s either.number |
00000f00  77 69 6c 6c 20 67 69 76  65 20 61 20 7a 65 72 6f  |will give a zero|
00000f10  20 72 65 73 75 6c 74 20  77 68 65 6e 20 74 68 65  | result when the|
00000f20  79 20 61 72 65 20 6d 75  6c 74 69 70 6c 69 65 64  |y are multiplied|
00000f30  0d 74 6f 67 65 74 68 65  72 2e 20 20 54 68 65 72  |.together.  Ther|
00000f40  65 20 69 73 20 61 20 73  75 62 72 6f 75 74 69 6e  |e is a subroutin|
00000f50  65 20 61 74 20 27 6d 61  6b 65 5f 7a 65 72 6f 27  |e at 'make_zero'|
00000f60  20 77 68 69 63 68 20 6d  61 6b 65 73 0d 61 6c 6c  | which makes.all|
00000f70  20 66 69 76 65 20 62 79  74 65 73 20 6f 66 20 27  | five bytes of '|
00000f80  66 70 77 73 5f 31 27 20  7a 65 72 6f 2e 20 20 4e  |fpws_1' zero.  N|
00000f90  6f 74 65 20 74 68 61 74  20 69 66 20 79 6f 75 20  |ote that if you |
00000fa0  62 72 61 6e 63 68 20 6f  72 0d 6a 75 6d 70 20 74  |branch or.jump t|
00000fb0  6f 20 61 20 73 6f 62 72  6f 75 74 69 6e 65 2c 20  |o a sobroutine, |
00000fc0  72 61 74 68 65 72 20 74  68 61 6e 20 4a 53 52 69  |rather than JSRi|
00000fd0  6e 67 20 74 6f 20 69 74  2c 20 79 6f 75 20 77 69  |ng to it, you wi|
00000fe0  6c 6c 0d 61 75 74 6f 6d  61 74 69 63 61 6c 6c 79  |ll.automatically|
00000ff0  20 52 54 53 20 61 74 20  74 68 65 20 65 6e 64 20  | RTS at the end |
00001000  6f 66 20 69 74 2c 20 69  6e 20 74 68 69 73 20 63  |of it, in this c|
00001010  61 73 65 20 74 68 61 74  20 74 61 6b 65 73 0d 75  |ase that takes.u|
00001020  73 20 6f 75 74 20 6f 66  20 74 68 65 20 27 66 70  |s out of the 'fp|
00001030  5f 6d 75 6c 74 27 20 73  75 62 72 6f 75 74 69 6e  |_mult' subroutin|
00001040  65 20 63 6f 6d 70 6c 65  74 65 6c 79 2e 0d 0d 49  |e completely...I|
00001050  66 20 6e 65 69 74 68 65  72 20 6e 75 6d 62 65 72  |f neither number|
00001060  20 69 73 20 7a 65 72 6f  20 77 65 20 6d 6f 76 65  | is zero we move|
00001070  20 6f 6e 2e 20 20 54 68  65 20 73 69 67 6e 20 62  | on.  The sign b|
00001080  69 74 20 69 73 0d 74 72  61 6e 73 66 65 72 72 65  |it is.transferre|
00001090  64 20 74 6f 20 61 6e 6f  74 68 65 72 20 62 79 74  |d to another byt|
000010a0  65 20 61 6e 64 20 74 68  65 20 74 6f 70 20 62 69  |e and the top bi|
000010b0  74 20 6f 66 20 74 68 65  20 6d 61 6e 74 69 73 73  |t of the mantiss|
000010c0  61 0d 63 6f 72 72 65 63  74 65 64 20 65 78 61 63  |a.corrected exac|
000010d0  74 6c 79 20 61 73 20 69  6e 20 74 68 65 20 6c 61  |tly as in the la|
000010e0  73 74 20 6d 6f 64 75 6c  65 2e 0d 0d 54 68 65 20  |st module...The |
000010f0  6d 75 6c 74 69 70 6c 79  69 6e 67 20 64 65 6e 6f  |multiplying deno|
00001100  72 6d 61 6c 69 73 61 74  69 6f 6e 20 72 6f 75 74  |rmalisation rout|
00001110  69 6e 65 20 72 6f 74 61  74 65 73 20 65 61 63 68  |ine rotates each|
00001120  0d 6d 61 6e 74 69 73 73  61 20 72 69 67 68 74 20  |.mantissa right |
00001130  62 79 20 74 77 6f 20 62  79 74 65 73 2e 20 20 57  |by two bytes.  W|
00001140  69 74 68 20 61 20 66 6f  75 72 20 62 79 74 65 20  |ith a four byte |
00001150  6d 61 6e 74 69 73 73 61  20 74 68 69 73 0d 65 66  |mantissa this.ef|
00001160  66 65 63 74 69 76 65 6c  79 20 67 69 76 65 73 20  |fectively gives |
00001170  75 73 20 74 77 6f 20 74  77 6f 20 62 79 74 65 20  |us two two byte |
00001180  6e 75 6d 62 65 72 73 20  77 68 69 63 68 2c 20 77  |numbers which, w|
00001190  68 65 6e 0d 6d 75 6c 74  69 70 6c 69 65 64 20 74  |hen.multiplied t|
000011a0  6f 67 65 74 68 65 72 2c  20 70 72 6f 64 75 63 65  |ogether, produce|
000011b0  20 61 20 66 6f 75 72 20  62 79 74 65 20 6e 75 6d  | a four byte num|
000011c0  62 65 72 2e 20 20 54 68  69 73 20 66 6f 75 72 0d  |ber.  This four.|
000011d0  62 79 74 65 20 6e 75 6d  62 65 72 20 74 68 65 6e  |byte number then|
000011e0  20 66 69 6c 6c 73 20 74  68 65 20 6d 61 6e 74 69  | fills the manti|
000011f0  73 73 61 20 77 6f 72 6b  20 73 70 61 63 65 20 61  |ssa work space a|
00001200  67 61 69 6e 2e 0d 0d 59  6f 75 20 6d 69 67 68 74  |gain...You might|
00001210  20 74 68 69 6e 6b 2c 20  61 73 20 49 20 6f 72 69  | think, as I ori|
00001220  67 69 6e 61 6c 6c 79 20  64 69 64 2c 20 74 68 61  |ginally did, tha|
00001230  74 20 77 68 65 6e 20 72  6f 74 61 74 69 6e 67 20  |t when rotating |
00001240  74 68 65 0d 6d 61 6e 74  69 73 73 61 65 20 79 6f  |the.mantissae yo|
00001250  75 20 73 68 6f 75 6c 64  20 61 6c 74 65 72 20 74  |u should alter t|
00001260  68 65 20 65 78 70 6f 6e  65 6e 74 73 20 74 6f 20  |he exponents to |
00001270  63 6f 6d 70 65 6e 73 61  74 65 2e 20 0d 54 68 69  |compensate. .Thi|
00001280  73 20 70 72 6f 64 75 63  65 73 20 69 6e 63 6f 72  |s produces incor|
00001290  72 65 63 74 20 72 65 73  75 6c 74 73 20 61 6e 64  |rect results and|
000012a0  2c 20 61 66 74 65 72 20  6d 75 63 68 20 74 68 69  |, after much thi|
000012b0  6e 6b 69 6e 67 20 61 6e  64 0d 64 72 61 77 69 6e  |nking and.drawin|
000012c0  67 20 6f 66 20 64 69 61  67 72 61 6d 73 20 49 20  |g of diagrams I |
000012d0  63 61 6d 65 20 74 6f 20  74 68 65 20 66 6f 6c 6c  |came to the foll|
000012e0  6f 77 69 6e 67 20 63 6f  6e 63 6c 75 73 69 6f 6e  |owing conclusion|
000012f0  2e 20 20 57 65 0d 61 72  65 20 64 6f 20 6e 6f 74  |.  We.are do not|
00001300  20 68 61 76 65 20 74 6f  20 63 68 61 6e 67 65 20  | have to change |
00001310  74 68 65 20 65 78 70 6f  6e 65 6e 74 73 20 62 65  |the exponents be|
00001320  63 61 75 73 65 20 74 68  65 0d 6d 61 6e 74 69 73  |cause the.mantis|
00001330  73 61 65 20 61 72 65 2c  20 69 6e 20 66 61 63 74  |sae are, in fact|
00001340  2c 20 6a 75 73 74 20 6c  65 73 73 20 74 68 61 74  |, just less that|
00001350  20 31 20 69 6e 20 73 69  7a 65 2e 20 20 4e 6f 77  | 1 in size.  Now|
00001360  20 69 66 0d 79 6f 75 20  6d 75 6c 74 69 70 6c 79  | if.you multiply|
00001370  20 30 2e 39 20 62 79 20  30 2e 39 20 79 6f 75 20  | 0.9 by 0.9 you |
00001380  67 65 74 20 30 2e 38 31  20 61 6e 64 20 6d 75 6c  |get 0.81 and mul|
00001390  74 69 70 6c 79 69 6e 67  20 74 77 6f 0d 6d 61 6e  |tiplying two.man|
000013a0  74 69 73 73 61 65 2c 20  65 61 63 68 20 77 69 74  |tissae, each wit|
000013b0  68 20 69 74 73 20 74 6f  70 20 62 69 74 20 73 65  |h its top bit se|
000013c0  74 2c 20 69 73 20 6a 75  73 74 20 6c 69 6b 65 20  |t, is just like |
000013d0  74 68 69 73 2e 20 20 57  65 0d 67 65 74 20 61 20  |this.  We.get a |
000013e0  73 69 6d 69 6c 61 72 20  73 69 74 75 61 74 69 6f  |similar situatio|
000013f0  6e 20 77 69 74 68 20 64  69 76 69 73 69 6f 6e 2e  |n with division.|
00001400  0d 0d 27 6d 75 6c 74 5f  64 65 6e 6f 72 6d 61 6c  |..'mult_denormal|
00001410  69 73 65 27 20 61 6c 73  6f 20 63 61 6c 63 75 6c  |ise' also calcul|
00001420  61 74 65 73 20 74 68 65  20 69 6e 69 74 69 61 6c  |ates the initial|
00001430  20 6e 65 77 20 65 78 70  6f 6e 65 6e 74 2e 20 0d  | new exponent. .|
00001440  52 65 6d 65 6d 62 65 72  20 74 68 61 74 20 42 42  |Remember that BB|
00001450  43 20 42 41 53 49 43 20  61 64 64 73 20 26 38 30  |C BASIC adds &80|
00001460  20 74 6f 20 74 68 65 20  65 78 70 6f 6e 65 6e 74  | to the exponent|
00001470  73 20 69 6e 20 69 74 73  0d 66 6c 6f 61 74 69 6e  |s in its.floatin|
00001480  67 20 70 6f 69 6e 74 20  66 6f 72 6d 61 74 2e 20  |g point format. |
00001490  20 49 66 20 6f 6e 20 61  64 64 69 6e 67 20 74 68  | If on adding th|
000014a0  65 20 65 78 70 6f 6e 65  6e 74 73 20 77 65 20 63  |e exponents we c|
000014b0  68 61 6e 67 65 0d 74 68  65 20 32 27 73 20 63 6f  |hange.the 2's co|
000014c0  6d 70 6c 65 6d 65 6e 74  20 73 69 67 6e 20 6f 66  |mplement sign of|
000014d0  20 74 68 65 20 72 65 73  75 6c 74 20 74 68 65 6e  | the result then|
000014e0  20 74 68 65 20 72 65 73  75 6c 74 20 68 61 0d 6f  | the result ha.o|
000014f0  76 65 72 66 6c 6f 77 65  64 20 61 6e 64 20 69 73  |verflowed and is|
00001500  6d 6f 75 74 20 6f 66 20  72 61 6e 67 65 2e 20 20  |mout of range.  |
00001510  54 68 69 73 20 6d 69 67  68 74 20 68 61 70 70 65  |This might happe|
00001520  6e 20 69 66 2c 20 73 61  79 2c 0d 77 65 20 61 64  |n if, say,.we ad|
00001530  64 65 64 20 31 32 30 20  74 6f 20 32 30 2e 20 20  |ded 120 to 20.  |
00001540  31 34 30 20 69 73 20 61  63 74 75 61 6c 6c 79 20  |140 is actually |
00001550  61 20 6e 65 67 61 74 69  76 65 20 6e 75 6d 62 65  |a negative numbe|
00001560  72 20 69 6e 0d 32 27 73  20 63 6f 6d 70 6c 65 6d  |r in.2's complem|
00001570  65 6e 74 20 61 6e 64 20  73 6f 20 77 65 20 68 61  |ent and so we ha|
00001580  76 65 20 77 72 61 70 70  65 64 20 61 72 6f 75 6e  |ve wrapped aroun|
00001590  64 20 74 68 65 20 62 79  74 65 20 74 6f 0d 67 69  |d the byte to.gi|
000015a0  76 65 20 61 6e 20 69 6e  63 6f 72 72 65 63 74 20  |ve an incorrect |
000015b0  72 65 73 75 6c 74 2e 20  20 57 65 20 63 61 6e 20  |result.  We can |
000015c0  74 72 61 70 20 74 68 69  73 20 62 79 20 63 68 61  |trap this by cha|
000015d0  63 6b 69 6e 67 20 74 68  65 0d 6f 76 65 72 66 6c  |cking the.overfl|
000015e0  6f 77 20 66 6c 61 67 2e  20 20 54 68 69 73 20 66  |ow flag.  This f|
000015f0  6c 61 67 20 77 69 6c 6c  20 64 65 74 65 63 74 20  |lag will detect |
00001600  61 6e 20 61 6e 6f 6d 6f  6c 6f 75 73 20 6f 76 65  |an anomolous ove|
00001610  72 66 6c 6f 77 0d 61 6e  64 20 73 6f 20 77 65 20  |rflow.and so we |
00001620  63 61 6e 20 75 73 65 20  69 74 20 74 6f 20 62 72  |can use it to br|
00001630  61 6e 63 68 20 74 6f 20  61 6e 20 65 72 72 6f 72  |anch to an error|
00001640  20 72 6f 75 74 69 6e 65  2e 20 20 57 69 74 68 0d  | routine.  With.|
00001650  6d 75 6c 74 69 70 6c 69  63 61 74 69 6f 6e 2c 20  |multiplication, |
00001660  61 20 72 65 73 75 6c 74  20 74 68 61 74 20 68 61  |a result that ha|
00001670  73 20 6f 76 65 72 66 6c  6f 77 65 64 20 74 6f 6f  |s overflowed too|
00001680  20 6d 75 63 68 0d 6e 65  67 61 74 69 76 65 6c 79  | much.negatively|
00001690  20 6d 65 61 6e 73 20 74  68 61 74 20 74 68 65 20  | means that the |
000016a0  6e 75 6d 62 65 72 20 69  73 20 69 6e 20 66 61 63  |number is in fac|
000016b0  74 20 74 6f 6f 20 73 6d  61 6c 6c 20 66 6f 72 20  |t too small for |
000016c0  75 73 0d 74 6f 20 72 65  70 72 65 73 65 6e 74 20  |us.to represent |
000016d0  69 74 2e 20 20 54 68 69  73 20 69 73 20 6e 6f 74  |it.  This is not|
000016e0  20 74 72 65 61 74 65 64  20 61 73 20 61 6e 20 65  | treated as an e|
000016f0  72 72 6f 72 2c 20 62 75  74 0d 69 6e 73 74 65 61  |rror, but.instea|
00001700  64 20 6d 65 61 6e 73 20  74 68 61 74 20 77 65 20  |d means that we |
00001710  6d 75 73 74 20 73 65 74  20 74 68 65 20 72 65 73  |must set the res|
00001720  75 6c 74 20 74 6f 20 7a  65 72 6f 2e 20 20 46 6f  |ult to zero.  Fo|
00001730  72 20 61 0d 76 61 6c 75  65 20 74 68 61 74 20 69  |r a.value that i|
00001740  73 20 74 6f 6f 20 62 69  67 20 49 20 68 61 76 65  |s too big I have|
00001750  20 75 73 65 64 20 45 72  72 6f 72 20 32 30 2c 20  | used Error 20, |
00001760  62 75 74 20 67 69 76 65  6e 20 69 74 0d 73 6c 69  |but given it.sli|
00001770  67 68 74 6c 79 20 64 69  66 66 65 72 65 6e 74 20  |ghtly different |
00001780  6d 65 73 73 61 67 65 73  20 74 6f 20 42 41 53 49  |messages to BASI|
00001790  43 20 61 73 20 79 6f 75  20 63 61 6e 20 73 65 65  |C as you can see|
000017a0  20 69 6e 20 74 68 65 0d  6c 69 73 74 69 6e 67 2e  | in the.listing.|
000017b0  0d 0d 49 20 6d 75 6c 74  69 70 6c 69 65 64 20 74  |..I multiplied t|
000017c0  68 65 20 74 77 6f 20 6e  75 6d 62 65 72 73 20 75  |he two numbers u|
000017d0  73 69 6e 67 20 61 20 6d  6f 64 69 66 69 65 64 20  |sing a modified |
000017e0  76 65 72 73 69 6f 6e 20  6f 66 20 74 68 65 0d 6d  |version of the.m|
000017f0  75 6c 74 69 2d 62 79 74  65 20 6d 75 74 6c 69 70  |ulti-byte mutlip|
00001800  6c 69 63 61 74 69 6f 6e  20 72 6f 75 74 69 6e 65  |lication routine|
00001810  20 66 72 6f 6d 20 6d 6f  64 75 6c 65 20 31 33 2e  | from module 13.|
00001820  20 20 54 68 65 20 6d 61  69 6e 0d 64 69 66 66 65  |  The main.diffe|
00001830  72 65 6e 63 65 20 69 73  20 74 68 61 74 20 74 68  |rence is that th|
00001840  65 20 66 6c 6f 61 74 69  6e 67 20 70 6f 69 6e 74  |e floating point|
00001850  20 6d 61 6e 74 69 73 73  61 20 69 73 20 73 74 6f  | mantissa is sto|
00001860  72 65 64 0d 62 61 63 6b  20 74 6f 20 66 72 6f 6e  |red.back to fron|
00001870  74 20 63 6f 6d 70 61 72  65 64 20 74 6f 20 74 68  |t compared to th|
00001880  65 20 69 6e 74 65 67 65  72 73 2c 20 77 69 74 68  |e integers, with|
00001890  20 74 68 65 20 6c 65 61  73 74 0d 73 69 67 6e 69  | the least.signi|
000018a0  66 69 63 61 6e 74 20 62  79 74 65 20 69 6e 20 74  |ficant byte in t|
000018b0  68 65 20 6c 6f 77 65 73  74 20 6d 65 6d 6f 72 79  |he lowest memory|
000018c0  20 6c 6f 63 61 74 69 6f  6e 2e 20 20 4e 6f 74 65  | location.  Note|
000018d0  20 74 68 61 74 2c 0d 61  73 20 74 68 65 20 70 61  | that,.as the pa|
000018e0  72 74 69 61 6c 20 70 72  6f 64 75 63 74 20 77 6f  |rtial product wo|
000018f0  72 6b 73 70 61 63 65 20  64 6f 65 73 20 6e 6f 74  |rkspace does not|
00001900  20 75 73 65 20 74 68 65  20 65 78 70 6f 6e 65 6e  | use the exponen|
00001910  74 2c 0d 69 74 20 69 73  20 6f 6e 6c 79 20 66 6f  |t,.it is only fo|
00001920  75 72 20 62 79 74 65 73  20 6c 6f 6e 67 20 6e 6f  |ur bytes long no|
00001930  74 20 66 69 76 65 2e 0d  0d 41 66 74 65 72 20 6d  |t five...After m|
00001940  75 6c 74 69 70 6c 79 69  6e 67 20 77 65 20 72 65  |ultiplying we re|
00001950  6e 6f 72 6d 61 6c 69 73  65 20 74 68 65 20 6d 61  |normalise the ma|
00001960  6e 74 69 73 73 61 20 62  79 20 72 6f 74 61 74 69  |ntissa by rotati|
00001970  6e 67 20 69 74 0d 6c 65  66 74 20 75 6e 74 69 6c  |ng it.left until|
00001980  20 74 68 65 20 74 6f 70  20 62 69 74 20 69 73 20  | the top bit is |
00001990  73 65 74 2e 20 20 42 79  20 63 6f 6e 76 65 72 74  |set.  By convert|
000019a0  69 6e 67 20 74 6f 20 74  77 6f 20 74 77 6f 0d 62  |ing to two two.b|
000019b0  79 74 65 20 6e 75 6d 62  65 72 73 20 77 65 20 63  |yte numbers we c|
000019c0  61 6e 6e 6f 74 20 68 61  76 65 20 61 6e 20 6f 76  |annot have an ov|
000019d0  65 72 66 6c 6f 77 20 68  65 72 65 20 73 6f 20 77  |erflow here so w|
000019e0  65 20 6f 6e 6c 79 20 68  61 76 65 0d 74 6f 20 63  |e only have.to c|
000019f0  68 65 63 6b 20 66 6f 72  20 61 20 6e 75 6d 62 65  |heck for a numbe|
00001a00  72 20 74 68 61 74 20 69  73 20 74 6f 6f 20 73 6d  |r that is too sm|
00001a10  61 6c 6c 2e 20 20 41 20  7a 65 72 6f 20 72 65 73  |all.  A zero res|
00001a20  75 6c 74 20 69 73 0d 74  72 61 70 70 65 64 20 68  |ult is.trapped h|
00001a30  65 72 65 20 62 65 63 61  75 73 65 20 69 74 20 77  |ere because it w|
00001a40  6f 75 6c 64 20 6f 74 68  65 72 77 69 73 65 20 73  |ould otherwise s|
00001a50  65 6e 64 20 74 68 65 20  72 6f 75 74 69 6e 65 0d  |end the routine.|
00001a60  69 6e 74 6f 20 61 6e 20  65 6e 64 6c 65 73 73 20  |into an endless |
00001a70  6c 6f 6f 70 2e 0d 0d 46  69 6e 61 6c 6c 79 20 74  |loop...Finally t|
00001a80  68 65 20 73 69 67 6e 20  62 69 74 20 69 73 20 72  |he sign bit is r|
00001a90  65 70 6c 61 63 65 64 2e  20 20 54 68 65 20 73 69  |eplaced.  The si|
00001aa0  67 6e 20 62 75 73 69 6e  65 73 73 20 69 73 20 61  |gn business is a|
00001ab0  0d 67 72 65 61 74 20 64  65 61 6c 20 65 61 73 69  |.great deal easi|
00001ac0  65 72 20 77 69 74 68 20  6d 75 6c 74 69 70 6c 63  |er with multiplc|
00001ad0  61 74 69 6f 6e 20 61 6e  64 20 64 69 76 69 73 69  |ation and divisi|
00001ae0  6f 6e 20 74 68 61 74 20  69 74 0d 77 61 73 20 77  |on that it.was w|
00001af0  69 74 68 20 61 64 64 69  74 69 6f 6e 20 61 6e 64  |ith addition and|
00001b00  20 73 75 62 74 72 61 63  74 69 6f 6e 2e 20 20 49  | subtraction.  I|
00001b10  66 20 79 6f 75 20 45 4f  52 20 74 68 65 20 74 77  |f you EOR the tw|
00001b20  6f 20 73 69 67 6e 0d 62  69 74 73 20 74 6f 67 65  |o sign.bits toge|
00001b30  74 68 65 72 20 79 6f 75  20 67 65 74 20 74 68 65  |ther you get the|
00001b40  20 72 65 73 75 6c 74 3b  20 73 69 6d 70 6c 65 20  | result; simple |
00001b50  61 73 20 74 68 61 74 2e  0d 0d 57 68 65 72 65 20  |as that...Where |
00001b60  64 69 76 69 73 69 6f 6e  20 69 73 20 63 6f 6e 63  |division is conc|
00001b70  65 72 6e 65 64 20 6d 75  63 68 20 6f 66 20 74 68  |erned much of th|
00001b80  65 20 70 72 6f 63 65 64  75 72 65 20 69 73 20 74  |e procedure is t|
00001b90  68 65 0d 73 61 6d 65 2e  20 20 48 65 72 65 20 61  |he.same.  Here a|
00001ba0  20 7a 65 72 6f 20 61 73  20 74 68 65 20 73 65 63  | zero as the sec|
00001bb0  6f 6e 64 20 6e 75 6d 62  65 72 20 69 73 20 61 20  |ond number is a |
00001bc0  66 61 74 61 6c 20 65 72  72 6f 72 0d 73 69 6e 63  |fatal error.sinc|
00001bd0  65 20 77 65 20 63 61 6e  6e 6f 74 20 64 69 76 69  |e we cannot divi|
00001be0  64 65 20 62 79 20 7a 65  72 6f 2e 20 20 41 20 7a  |de by zero.  A z|
00001bf0  65 72 6f 20 66 6f 72 20  66 69 72 73 74 20 6e 75  |ero for first nu|
00001c00  6d 62 65 72 0d 6a 75 73  74 20 6c 65 61 64 73 20  |mber.just leads |
00001c10  74 6f 20 61 20 7a 65 72  6f 20 72 65 73 75 6c 74  |to a zero result|
00001c20  2e 0d 0d 44 65 6e 6f 72  6d 61 6c 69 73 61 74 69  |...Denormalisati|
00001c30  6f 6e 20 66 6f 72 20 64  69 76 69 73 69 6f 6e 2c  |on for division,|
00001c40  20 69 6e 20 6d 79 20 69  6d 70 6c 69 6d 65 6e 74  | in my impliment|
00001c50  61 74 69 6f 6e 2c 20 69  6e 76 6f 6c 76 65 73 0d  |ation, involves.|
00001c60  72 6f 74 61 74 69 6e 67  20 74 68 65 20 64 69 76  |rotating the div|
00001c70  69 73 6f 72 20 72 69 67  68 74 20 62 79 20 74 77  |isor right by tw|
00001c80  6f 20 62 79 74 65 73 2e  20 20 54 68 69 73 20 65  |o bytes.  This e|
00001c90  66 66 65 63 74 69 76 65  6c 79 0d 6d 65 61 6e 73  |ffectively.means|
00001ca0  20 74 68 61 74 20 77 65  20 68 61 76 65 20 61 20  | that we have a |
00001cb0  66 6f 75 72 20 62 79 74  65 20 6e 75 6d 62 65 72  |four byte number|
00001cc0  20 64 69 76 69 64 65 64  20 62 79 20 61 20 74 77  | divided by a tw|
00001cd0  6f 20 62 79 74 65 0d 6f  6e 65 2c 20 61 6c 74 68  |o byte.one, alth|
00001ce0  6f 75 67 68 20 74 68 65  20 74 77 6f 20 62 79 74  |ough the two byt|
00001cf0  65 20 6f 6e 65 20 68 61  73 20 74 77 6f 20 6f 74  |e one has two ot|
00001d00  68 65 72 20 62 79 74 65  73 20 62 65 79 6f 6e 65  |her bytes beyone|
00001d10  0d 74 68 65 20 27 62 69  6e 61 72 79 20 70 6f 69  |.the 'binary poi|
00001d20  6e 74 27 20 61 6e 64 20  74 68 65 20 64 69 76 69  |nt' and the divi|
00001d30  73 69 6f 6e 20 72 6f 75  74 69 6e 65 20 74 68 65  |sion routine the|
00001d40  72 65 66 6f 72 65 20 77  6f 72 6b 73 0d 6f 76 65  |refore works.ove|
00001d50  72 20 34 38 20 62 69 74  73 2e 0d 0d 49 6e 20 63  |r 48 bits...In c|
00001d60  61 6c 63 75 6c 61 74 69  6e 67 20 74 68 65 20 69  |alculating the i|
00001d70  6e 69 74 69 61 6c 20 65  78 70 6f 6e 65 6e 74 20  |nitial exponent |
00001d80  6f 66 20 74 68 65 20 72  65 73 75 6c 74 20 49 20  |of the result I |
00001d90  66 6f 75 6e 64 0d 74 68  61 74 20 74 6f 20 63 6f  |found.that to co|
00001da0  6d 70 65 6e 73 61 74 65  20 66 6f 72 20 74 68 65  |mpensate for the|
00001db0  20 72 6f 74 61 74 69 6f  6e 2c 20 61 6e 64 20 62  | rotation, and b|
00001dc0  65 63 61 75 73 65 20 62  6f 74 68 20 6f 75 72 0d  |ecause both our.|
00001dd0  6e 75 6d 62 65 72 73 20  77 65 72 65 20 6a 75 73  |numbers were jus|
00001de0  74 20 75 6e 64 65 72 20  31 20 69 6e 20 73 69 7a  |t under 1 in siz|
00001df0  65 20 61 67 61 69 6e 2c  20 49 20 68 61 64 20 74  |e again, I had t|
00001e00  6f 20 69 6e 63 72 65 61  73 65 0d 74 68 65 20 73  |o increase.the s|
00001e10  69 7a 65 20 6f 66 20 74  68 65 20 65 78 70 6f 6e  |ize of the expon|
00001e20  65 6e 74 20 62 79 20 33  32 20 28 26 32 30 29 20  |ent by 32 (&20) |
00001e30  77 68 69 63 68 20 69 73  20 64 6f 6e 65 20 61 66  |which is done af|
00001e40  74 65 72 20 74 68 65 0d  73 65 63 6f 6e 64 20 65  |ter the.second e|
00001e50  78 70 6f 6e 65 6e 74 20  68 61 73 20 62 65 65 6e  |xponent has been|
00001e60  20 73 75 62 74 72 61 63  74 65 64 20 66 72 6f 6d  | subtracted from|
00001e70  20 74 68 65 20 66 69 72  73 74 2e 20 20 5b 49 20  | the first.  [I |
00001e80  77 69 73 68 0d 49 20 75  6e 64 65 72 73 74 6f 6f  |wish.I understoo|
00001e90  64 20 74 68 65 73 65 20  27 66 75 64 67 65 27 20  |d these 'fudge' |
00001ea0  66 61 63 74 6f 72 73 20  6d 6f 72 65 20 63 6c 65  |factors more cle|
00001eb0  61 72 6c 79 2c 20 74 68  65 6e 20 49 0d 63 6f 75  |arly, then I.cou|
00001ec0  6c 64 20 65 78 70 6c 61  69 6e 20 74 68 65 6d 20  |ld explain them |
00001ed0  6d 6f 72 65 20 63 6c 65  61 72 6c 79 2e 5d 0d 0d  |more clearly.]..|
00001ee0  4a 75 73 74 20 61 73 20  74 68 65 20 65 78 70 6f  |Just as the expo|
00001ef0  6e 65 6e 74 73 20 63 6f  75 6c 64 20 6f 76 65 72  |nents could over|
00001f00  66 6c 6f 77 20 64 75 72  69 6e 67 20 6d 75 6c 74  |flow during mult|
00001f10  69 70 6c 69 63 61 74 69  6f 6e 2c 0d 73 6f 20 74  |iplication,.so t|
00001f20  68 65 79 20 63 61 6e 20  64 75 72 69 6e 67 20 64  |hey can during d|
00001f30  69 76 69 73 69 6f 6e 2c  20 61 6e 64 20 74 68 61  |ivision, and tha|
00001f40  74 20 69 73 20 74 72 61  70 70 65 64 20 61 74 20  |t is trapped at |
00001f50  74 68 65 20 65 6e 64 0d  6f 66 20 74 68 65 20 27  |the end.of the '|
00001f60  64 69 76 5f 64 65 6e 6f  72 6d 61 6c 69 73 65 27  |div_denormalise'|
00001f70  20 72 6f 75 74 69 6e 65  2e 0d 0d 54 68 65 20 64  | routine...The d|
00001f80  69 76 69 73 69 6f 6e 20  73 75 62 72 6f 75 74 69  |ivision subrouti|
00001f90  6e 65 20 69 73 20 61 20  73 74 72 61 69 67 68 74  |ne is a straight|
00001fa0  66 6f 72 77 61 72 64 20  6d 6f 64 69 66 69 63 61  |forward modifica|
00001fb0  74 69 6f 6e 20 6f 66 0d  74 68 65 20 6d 75 6c 74  |tion of.the mult|
00001fc0  69 2d 62 79 74 65 20 69  6e 74 65 67 65 72 20 64  |i-byte integer d|
00001fd0  69 76 69 73 69 6f 6e 20  72 6f 75 74 69 6e 65 20  |ivision routine |
00001fe0  69 6e 20 6d 6f 64 75 6c  65 20 31 35 2e 20 20 49  |in module 15.  I|
00001ff0  6e 0d 74 68 69 73 20 63  61 73 65 20 77 65 20 63  |n.this case we c|
00002000  61 6c 63 75 6c 61 74 65  20 6f 76 65 72 20 34 38  |alculate over 48|
00002010  20 62 69 74 73 20 69 6e  73 74 65 61 64 20 6f 66  | bits instead of|
00002020  20 33 32 2c 20 61 6e 64  20 74 68 65 0d 77 6f 72  | 32, and the.wor|
00002030  6b 73 70 61 63 65 20 69  73 20 62 61 63 6b 20 74  |kspace is back t|
00002040  6f 20 66 72 6f 6e 74 20  62 65 63 61 75 73 65 20  |o front because |
00002050  6f 66 20 74 68 65 20 77  61 79 20 74 68 65 20 66  |of the way the f|
00002060  6c 6f 61 74 69 6e 67 0d  70 6f 69 6e 74 20 6d 61  |loating.point ma|
00002070  6e 74 69 73 73 61 65 20  61 72 65 20 73 74 6f 72  |ntissae are stor|
00002080  65 64 2e 0d 0d 52 65 6e  6f 72 6d 61 6c 69 73 61  |ed...Renormalisa|
00002090  74 69 6f 6e 20 61 6e 64  20 66 69 78 69 6e 67 20  |tion and fixing |
000020a0  74 68 65 20 73 69 67 6e  20 62 69 74 20 6f 70 65  |the sign bit ope|
000020b0  72 61 74 65 20 65 78 61  63 74 6c 79 20 61 73 0d  |rate exactly as.|
000020c0  77 69 74 68 20 6d 75 6c  74 69 70 6c 69 63 61 74  |with multiplicat|
000020d0  69 6f 6e 2c 20 75 73 69  6e 67 20 74 68 65 20 73  |ion, using the s|
000020e0  61 6d 65 20 73 75 62 72  6f 75 74 69 6e 65 73 2e  |ame subroutines.|
000020f0  0d 0d 54 68 65 73 65 20  66 6c 6f 61 74 69 6e 67  |..These floating|
00002100  20 70 6f 69 6e 74 20 72  6f 75 74 69 6e 65 73 20  | point routines |
00002110  61 72 65 20 62 79 20 6e  6f 20 6d 65 61 6e 73 20  |are by no means |
00002120  73 69 6d 70 6c 65 2e 20  20 54 6f 0d 6d 61 6b 65  |simple.  To.make|
00002130  20 74 68 65 6d 20 6d 6f  72 65 20 61 63 63 75 72  | them more accur|
00002140  61 74 65 20 77 6f 75 6c  64 20 6d 61 6b 65 20 74  |ate would make t|
00002150  68 65 6d 20 6d 6f 72 65  20 6f 62 73 63 75 72 65  |hem more obscure|
00002160  2c 20 62 75 74 0d 74 68  65 20 70 72 69 6e 63 69  |, but.the princi|
00002170  70 6c 65 73 20 62 65 68  69 6e 64 20 74 68 65 6d  |ples behind them|
00002180  20 61 72 65 20 73 74 72  61 69 67 68 74 66 6f 72  | are straightfor|
00002190  77 61 72 64 20 65 6e 6f  75 67 68 2e 20 0d 4d 61  |ward enough. .Ma|
000021a0  79 62 65 20 79 6f 75 27  64 20 6c 69 6b 65 20 74  |ybe you'd like t|
000021b0  6f 20 74 72 79 20 6d 61  6b 69 6e 67 20 74 68 61  |o try making tha|
000021c0  74 20 4d 61 6e 64 65 6c  62 72 6f 74 20 70 72 6f  |t Mandelbrot pro|
000021d0  67 72 61 6d 20 66 72 6f  6d 0d 6d 6f 64 75 6c 65  |gram from.module|
000021e0  20 32 31 20 77 6f 72 6b  20 75 73 69 6e 67 20 66  | 21 work using f|
000021f0  6c 6f 61 74 69 6e 67 20  70 6f 69 6e 74 3f 0d 0d  |loating point?..|
00002200  57 68 69 6c 65 20 79 6f  75 27 72 65 20 74 68 69  |While you're thi|
00002210  6e 6b 69 6e 67 20 61 62  6f 75 74 20 74 68 61 74  |nking about that|
00002220  20 49 20 77 69 6c 6c 20  6d 6f 76 65 20 6f 6e 20  | I will move on |
00002230  74 6f 20 73 69 64 65 77  61 79 73 0d 52 4f 4d 73  |to sideways.ROMs|
00002240  2c 20 61 20 73 75 62 6a  65 63 74 20 76 65 72 79  |, a subject very|
00002250  20 73 70 65 63 69 66 69  63 20 74 6f 20 74 68 65  | specific to the|
00002260  20 42 42 43 20 4d 69 63  72 6f 2c 20 69 6e 20 74  | BBC Micro, in t|
00002270  68 65 20 6e 65 78 74 0d  6d 6f 64 75 6c 65 2e 0d  |he next.module..|
00002280
22-04-88/T\OSB23.m0
22-04-88/T\OSB23.m1
22-04-88/T\OSB23.m2
22-04-88/T\OSB23.m4
22-04-88/T\OSB23.m5