Home » Archimedes archive » Archimedes World » AW-1995-04-Disc1.adf » Disk1Apr95 » !AWApr95/Goodies/Calc/ManualTxt

!AWApr95/Goodies/Calc/ManualTxt

This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.

Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.

Tape/disk: Home » Archimedes archive » Archimedes World » AW-1995-04-Disc1.adf » Disk1Apr95
Filename: !AWApr95/Goodies/Calc/ManualTxt
Read OK:
File size: 4B58 bytes
Load address: 0000
Exec address: 0000
File contents
Reverse Polish Calculator - By Circle Software - � Jan 1995
===========================================================

This program is shareware.  
Please read the file Licence in this directory.

Introduction.
============

The Reverse Polish system is different from the way most calculators 
work, and although this is simple, you should not try to use it without
first reading these notes.

The nature and origin of Reverse Polish notation is explained at the 
end of this file.

Note that the !Help facility is fully implemented. Select Help from the
iconbar menu.

This manual is divided into  sections.

Conventions:           Describes the nomenclature used in the text.
A Quick Start:         Gives simple instructions without getting technical.
How to use RPCalc:     Explains the finer points of using the program.
Reverse Polish:        Describes the origin and nature of Reverse Polish.
The Functions:         Describes the use af all calculator functions.
More Complex Examples.
                       To find any function, search for the button as
                       [name]   e.g. [+]  or  [Sine]  etc.

N.B.                   To correctly display some button legends, your 
                       text editor should be set to display standard 
                       system font. e.g. [�] should appear as [down arrow].

Conventions
===========

Throughout this manual, references to button icons on the calculator
are shown between square brackets, e.g. [Enter].

The terms SELECT and ADJUST refer to the first and third mouse buttons,
as normally defined, and may be used to prefix a function button.

When not specifically stated, you should always use the SELECT button,
as in most cases, ADJUST will cause an alternative action.


A Quick Start
=============

First, see how easy it is to use by doing a simple addition calculation,
before going into details.  Press the following keys in order -

                [3] [Enter] [4] [+]

The value shown in the lower display is the result of adding 3 + 4, (7).
To multiply the result by 5, press -

                [5] [x]

And we get 35.00 as expected. Its as simple as that!  

Using this method you can always see exactly what values are about to be 
operated on, unlike ordinary calculators.

You can also now see why it is called 'Reverse' Polish.  On this calculator 
you press these buttons in the reverse order, compared to a normal one.

However, this simple example may illustrate how to use the machine, but 
does not show the real power of the system. For that, read on.


How to use RPCalc.
=================

The Displays.

The calculator has four display registers rather than the usual one.
The lower register, labelled 'X', is equivalent to the single display 
found on ordinary calculators. Above this, the Y register is used to
hold a second value to be operated on, while the remainder will
display intermediate calculation results, where appropriate.

These registers constitute a 'stack', where numbers are placed until
needed.

When you click on the [+] operator button, for example, the value
displayed in the X register will be added to the value in Y, and the
result displayed in X.

A few functions produce two results, and in these cases the second
result will be displayed in the Y register.


Entering Values.

You enter values into the X register in the normal way, by clicking
on the number buttons, or by using the keyboard number pad. (In the 
later case, the calculator must have the input focus. If not, click
in the calculator background, or the iconbar icon.)

To get a value into the Y register, first enter it into X, as above,
and then use the [Enter] key.  This will move the value in the X 
register up to the Y, and clear X ready for a new value. 

When [Enter] is used, any values in higher registers will also be moved
up, and any value in the top register will be lost. This should rarely
happen.


Adding Two Numbers.

Thus, to add two values, enter the first value into X, click [Enter] to
push this up to Y, enter the second number into X, then click [+].

This simple example does not show the advantages of Reverse Polish over
the more conventional calculator, so let's try something more complex.


Evaluating an Expression.

To evaluate the expression ( 2 + 4 ) * ( 7 - 3 ) follow the button
clicks in the first column below, and check the actions listed. 
In particular note the display contents as given in the last column.

     Button    Action                                          Stack
     ======    ==================================              ========
                                                                X  Y 
     [2]       '2' appears in X.                                2
     [Enter]   The 2 moves up to Y, and X clears.                  2
     [4]       '4' appears in X.                                4  2
     [+]       '4' and '2' are unstacked, and 6 placed in X     6  
     [7]       '7' appears in X, the 6 moves up to Y            7  6
     [Enter]   The 7 moves up to Y, and X clears.                  7  6
     [3]       '3' appears in X                                 3  7  6
     [-]       '3' and '7' are unstacked, and 4 placed in X      4  6
     [*]       '4' and '6' are unstacked, and 24 placed in X    24

Thus X contains the final result, which we can use in further 
calculations if required.  Note that it is not necessary to write down,
remember, or re-enter either intermediate result 6 or 4, as these 
remain on the stack until needed.  This calculation required 3 of
the 4 registers provided, which you will find sufficient for the most
complex calculations.


Another Example

Suppose you needed to calculate the VAT due and the total price of
an item costing �123.50  We will use a property of the [Enter] button
invoked by clicking with the ADJUST button. When you do this, the value
in X will be moved up as before, but X will not be cleared, so its value
may be used again.

Press the buttons shown in the first column, as before -
( Remember to use the ADJUST button for [Enter] ).

     Buttons           Action                              Stack
     =======           ==================================  =============
                                                           X       Y 
     [1][2][3][.][5]   123.5 appears in X                  123.50
     [Enter]           Use the ADJUST mouse button         123.50  123.50
     [1][7][.][5]      Stack rises & 17.5 appears in X     17.5    123.50  123.50
     [%]               X % of Y is computed in X           21.61   123.50
                       (This is the VAT due on 123.50)
     [+]               21.61 + 123.50 is computed in X     145.11
                       (This is the total due.)

Note how the final total was computed with a single key stroke, without
the need to re-enter any values at all.  This was because we had duplicated
the original 123.5 by clicking [Enter] with the ADJUST button.


The Storage Registers

In addition to the stack, the value in X may be stored in any of 10 special 
registers numbered from 0 to 9. To do this click on [Store] followed by the
single digit indicating the required store number. To retrieve the stored
number click on 'Store' with the Adjust button, followed by the store number.

Try this -

     Buttons   Action                               Stack
     =======   ==================================   =============
                                                    X      Y 
     [pi]      3.14 appears in X                    3.14
     [Store]   The store button stays 'in'.         3.14
     [7]       The value is stored.                 3.14
     [Clear]   The X register is cleared            0.00

Now prove the value is stored by (Use the ADJUST button) -

     [Store]   Use the Adjust button to 'fetch'     0.00
     [7]       Value stored in store 7 is shown     3.14

In the VAT example above, we could have stored the VAT rate, 17.5, in one
of these storage registers, and used it in repeated VAT calculations.


The Display Format

In the above example, the value of 'pi' was shown as 3.14 because the
calculator is initially set to display only 2 decimal places. The full
value of pi (to about 15 significant figures) is of course used internally, 
and may be displayed by increasing the decimal places using the adjuster
buttons at the top right of the calculator.

Other display modes are also available.


!Help

RPCalc supports the Acorn !help facility, which may be used to explore all
the functions on the calculator.  To invoke this, select 'Help' from
the iconbar menu, and move the pointer over the function buttons provided.
You will find that most of the buttons provide two separate functions. The
function displayed on the button is invoked using the SELECT mouse button,
while another, often the inverse function, is invoked using the ADJUST
button.


Reverse Polish
==============

Reverse Polish is a notation system for mathematical expressions 
invented by a Polish gentleman by the name of Lukasiewicz. 
Unfortunately for him, nobody could pronounce his name so the 
notation became known as Reverse Polish, and his name is all but 
forgotten.

It is possible that even the notation itself would have been
forgotten were it not for the arrival of computers, where it has
become probably one of the most often used systems, not for 
writing expressions, but for storing them for later computation,
as for example in compiled code. 

The Forth programming language is based upon the Reverse Polish
system, and Postscript also works this way.

The tag 'reverse' simply refers to the fact that operators, such
as '+' and '-' are written after the values on which they operate
rather than before, as in more conventional notation.

The advantage of the notation is that it permits an expression
to be written without the use of parentheses, while remaining
totally un-ambiguous. For example, the expression -

          ( 2 + 4 ) * ( 7 - 3 )

would be written, or stored as -

            2  4  +  7  3  -  * 

To evaluate this, the expression is scanned from left to right, and 
any values found removed and placed aside on a stack (i.e. a heap or 
pile). When an operator is found, the required number of values are 
retrieved from the stack (last on, first off), the operation carried 
out on them, and the result put back on the stack. This system is 
continued to the end of the expression.

Thus in the above case, 2 and then 4 are placed on the stack before 
the '+' operator is found. These values are then retrieved and the
addition carried out. The result, 6, is then placed back on the 
stack. 

Then 7 and 3 are found in turn and placed on top of the 6. At this 
point a '-' operator is found, so the last two values, 7 and 3, are
retrieved and the result of the subtraction, 4, is placed back on 
the stack, as before.

At this point the stack now has a 4 on top of 6, so when the last 
operator is found, the '*', these two numbers are multiplied together 
and the result, now the final answer, 24, is placed back on the 
stack.

Notice that whenever an operator is found, only the required number of
values are unstacked, so that the system works equally well for unary
operators such as x! or sin(x), as for binary ('+' '/' etc) or other 
operators.

The system may be extended to include multi-parameter functions, such
as function( a, b, c ). Which is simply written -

                       a  b  c  function

It is also possible to include programming constructs, such as
if-then-else, repeat, etc, as is done in Forth and Postscript.

Note also that the notation does not require any knowledge of operator
priority.  Operators are always executed when found, using however
many values are needed.

The Functions.
=============

This section gives full descriptions of each available function,
for each calculator button.   

In all cases, X, or X and Y where appropriate, are unstacked, and 
the result placed in X, unless otherwise stared.

Use of the SELECT mouse button is assumed where not stated.


The stack manipulations.

[Enter]  Causes the stack to rise.
         SELECT Clears the X register
         ADJUST Preserves the X register.

[�]      SELECT Rotates the stack downwards.
         ADJUST Rotates the stack upwards.
                In both cases end values are wrapped around.

[X� Y�]  Swaps the X and Y register values.  
         The stack does not rise.


Simple Arithmetic.

[-]  Subtract.  Computes Y - X

[+]  Add.       Computes Y + X

[�]  Multiply.  Computes Y * X

[�]  Divide.    Computes Y � X


Functions of X.

[x!]   Factorial. Computes  x * (x-1) * (x-2) * (x-3) ... * 2 * 1

       e.g.  to compute factorial 10, key in -
                [10] [x!]    result 3628800


[1/x]  Reciprocal.  Computes 1 � x

       e.g.  to compute 1 / e,  key in -
                [e] [1/x]    result  0.37


[x^y]  Powers.  ( Actual legend not reproducible here)
       SELECT   Computes X the the power of Y
       ADJUST   Computes Y the the power of X

[x�]   Squares. 
       SELECT   Computes x * x
       ADJUST   Computes the square root of x


Miscellaneous Functions.

[�]    Changes the sign of X.  i.e. -x becomes x, and x becomes -x

[Int]  Integer.
       SELECT   Computes the integer part of x, removing fractions.
       ADJUST   Computes the fractional part of x.

[Abs]  Absolute Computes |x| i.e. Removes any -ve sign.


Logarithms.

[Log]  SELECT  Computes the log to base 10.
       ADJUST  Computes the anti-log to base 10.

[Ln]   SELECT  Computes the log to base E.
       ADJUST  Computes the anti-log to base E.


Trig Functions.

[Sin]  SELECT  Computes sine(x)
       ADJUST  Computes angle whose sine is x

[Cos]  SELECT  Computes cos(x)
       ADJUST  Computes angle whose cosine is x

[Tan]  SELECT  Computes tan(x)
       ADJUST  Computes angle whose tangent is x


Hyperbolic Functions.

[Sinh] SELECT  Computes sinh(x)
       ADJUST  Computes inverse of sinh(x)

[Cosh] SELECT  Computes cosh(x)
       ADJUST  Computes inverse of cosh(x)

[Tanh] SELECT  Computes tanh(x)
       ADJUST  Computes inverse of tanh(x)


Other Functions.

[Polar]  This function produces two result values.

         SELECT Computes polar from cartesian co-ordinates.
                    X = Sqrt( x*x + y*y )
                    Y = angle whose tangent is Y � X

         e.g.   Given a 3, 4, 5 triangle, key in -
                   [3] [Enter] [4] [Polar]   results in -
                    X = 5,  the (hypotenuse)
                    Y = 36.87�

         ADJUST Computes cartesian from polar co-ordinates.
                    X = x * cos(y)
                    Y = x * sin(y)


[H.MS]   Hours, Minutes and Seconds Conversion.
         The display should be set to Fixed point, 4 decimal places
         to use this function.

         SELECT Computes hrs, mins, secs from decimal hrs.
                i.e. result X = H.MMSS  where MM == Minutes, SS == Seconds.

         e.g.   Given 12.56 hrs,  key in -
                [12.56] [H.MMSS]   results in 12.3336  
                i.e. 12 hrs 33 mins 36 secs.
   

         ADJUST Computes the inverse, converting hrs, mins, secs  to hrs.

         e.g. Map reference 12� 18', key in -

               [12.18]  ADJUST [H.MMSS]    results in 12.30�


[yCx]    Combinations and Permutations.

         SELECT Computes the number of possible combinations of Y objects
                taken X at a time, where order is unimportant.

         e.g.   To compute the number of ways to select 8 objects from a
                total of 12, key in -

                [12] [Enter] [8] [yCx],  result 495.

         N.B.   This is how to compute (so called) permutations on your
                Pools coupon. These are really Combinations, as order is
                not important.

         ADJUST Computes the number of possible permutations of Y objects
                taken X at a time, where order IS important.

         e.g.   Taking the above example, key in -

                [12] [Enter] [8] ADJUST [yCx],   result 19,958,400


More Complex Examples.
=====================

1.  A laser range finder gives the distance to the top of a building as
    97.66 meters at an elevation of 12� 25'. Compute the height of the
    building, and its horizontal distance.

    We must first convert the angle to decimal degrees, then enter the 
    angular distance and convert to cartesian co-ordinates.

    key in -   [12.25]  ADJUST [H.MS]  [97.66]  ADJUST [POLAR]

    Results are  X = 95.38,  the horizontal distance.
                 Y = 21.00,  the vertical height of the building.


2.  Compute the roots of the equation:  3x� - 9x + 6 = 0

    Given the equation  -b � �(b� - 4ac)   i.e.  a = 3,  b = -9,  c = 6
                        ----------------
                              2a
 
    This example demonstrates the use of the internal storage registers
    as well as some stack manipulation, all of which eliminates the 
    need to remember intermediate results, and the necessity to enter
    the same value more than once.

    The best way of tackling a problem like this is to start in the
    middle, with the most complex part, like the inner root function.

    Buttons          Action                    Stack
    =======          ======================    ======================
    [9]              value -b                   9
    [Store] [1]      We will need this later    0
    [x�]             compute b�                81
    [4]              enter 4                    4  81
    [Enter]          push the stack up              4  81
    [3]              value a                    3   4  81
    [Store] [2]      We will need this again    3   4  81
    [x]              compute 4a                12  81
    [6]              value c                    6  12  81
    [x]              compute 4ac               72  81
    [-]              compute b� - 4ac           9
    Adj [x�]         compute sqr root.          3
    Adj [Enter]      duplicate value            3   3
    Adj [Store] [1]  recall -b                  9   3   3
    [+]              compute -b + (b� - 4ac)   12   3
    Adj [Store] [2]  recall a                   3  12   3
    [2]              value 2                    2   3  12   3
    [x]              compute 2a                 6  12   3
    [�]              First result = 2           2   3
    [�]              loose result               3
    Adj [Store] [1]  recall -b                  9   3
    [x� y�]          swap values over           3   9
    [-]              compute -b - (b� - 4ac)    6
    Adj [Store] [2]  recall a                   3   6
    [2]              value 2                    2   3   6
    [x]              compute 2a                 6   6
    [�]              Second result = 1          1

Hence, the roots are x = 1 and x = 2.

There may be shorter ways of doing this. Note that we stored -b and a 
values for later use. In this simple contrived example this may have
been pointless, as they could easily be re-entered. However, in a real
example these values may have had 9 or more digits, so that storing
them would be a real time saver.

If the inner function had been negative indicating complex roots, we
would have had to proceed slightly differently.



End.

00000000  52 65 76 65 72 73 65 20  50 6f 6c 69 73 68 20 43  |Reverse Polish C|
00000010  61 6c 63 75 6c 61 74 6f  72 20 2d 20 42 79 20 43  |alculator - By C|
00000020  69 72 63 6c 65 20 53 6f  66 74 77 61 72 65 20 2d  |ircle Software -|
00000030  20 a9 20 4a 61 6e 20 31  39 39 35 0a 3d 3d 3d 3d  | . Jan 1995.====|
00000040  3d 3d 3d 3d 3d 3d 3d 3d  3d 3d 3d 3d 3d 3d 3d 3d  |================|
*
00000070  3d 3d 3d 3d 3d 3d 3d 0a  0a 54 68 69 73 20 70 72  |=======..This pr|
00000080  6f 67 72 61 6d 20 69 73  20 73 68 61 72 65 77 61  |ogram is sharewa|
00000090  72 65 2e 20 20 0a 50 6c  65 61 73 65 20 72 65 61  |re.  .Please rea|
000000a0  64 20 74 68 65 20 66 69  6c 65 20 4c 69 63 65 6e  |d the file Licen|
000000b0  63 65 20 69 6e 20 74 68  69 73 20 64 69 72 65 63  |ce in this direc|
000000c0  74 6f 72 79 2e 0a 0a 49  6e 74 72 6f 64 75 63 74  |tory...Introduct|
000000d0  69 6f 6e 2e 0a 3d 3d 3d  3d 3d 3d 3d 3d 3d 3d 3d  |ion..===========|
000000e0  3d 0a 0a 54 68 65 20 52  65 76 65 72 73 65 20 50  |=..The Reverse P|
000000f0  6f 6c 69 73 68 20 73 79  73 74 65 6d 20 69 73 20  |olish system is |
00000100  64 69 66 66 65 72 65 6e  74 20 66 72 6f 6d 20 74  |different from t|
00000110  68 65 20 77 61 79 20 6d  6f 73 74 20 63 61 6c 63  |he way most calc|
00000120  75 6c 61 74 6f 72 73 20  0a 77 6f 72 6b 2c 20 61  |ulators .work, a|
00000130  6e 64 20 61 6c 74 68 6f  75 67 68 20 74 68 69 73  |nd although this|
00000140  20 69 73 20 73 69 6d 70  6c 65 2c 20 79 6f 75 20  | is simple, you |
00000150  73 68 6f 75 6c 64 20 6e  6f 74 20 74 72 79 20 74  |should not try t|
00000160  6f 20 75 73 65 20 69 74  20 77 69 74 68 6f 75 74  |o use it without|
00000170  0a 66 69 72 73 74 20 72  65 61 64 69 6e 67 20 74  |.first reading t|
00000180  68 65 73 65 20 6e 6f 74  65 73 2e 0a 0a 54 68 65  |hese notes...The|
00000190  20 6e 61 74 75 72 65 20  61 6e 64 20 6f 72 69 67  | nature and orig|
000001a0  69 6e 20 6f 66 20 52 65  76 65 72 73 65 20 50 6f  |in of Reverse Po|
000001b0  6c 69 73 68 20 6e 6f 74  61 74 69 6f 6e 20 69 73  |lish notation is|
000001c0  20 65 78 70 6c 61 69 6e  65 64 20 61 74 20 74 68  | explained at th|
000001d0  65 20 0a 65 6e 64 20 6f  66 20 74 68 69 73 20 66  |e .end of this f|
000001e0  69 6c 65 2e 0a 0a 4e 6f  74 65 20 74 68 61 74 20  |ile...Note that |
000001f0  74 68 65 20 21 48 65 6c  70 20 66 61 63 69 6c 69  |the !Help facili|
00000200  74 79 20 69 73 20 66 75  6c 6c 79 20 69 6d 70 6c  |ty is fully impl|
00000210  65 6d 65 6e 74 65 64 2e  20 53 65 6c 65 63 74 20  |emented. Select |
00000220  48 65 6c 70 20 66 72 6f  6d 20 74 68 65 0a 69 63  |Help from the.ic|
00000230  6f 6e 62 61 72 20 6d 65  6e 75 2e 0a 0a 54 68 69  |onbar menu...Thi|
00000240  73 20 6d 61 6e 75 61 6c  20 69 73 20 64 69 76 69  |s manual is divi|
00000250  64 65 64 20 69 6e 74 6f  20 20 73 65 63 74 69 6f  |ded into  sectio|
00000260  6e 73 2e 0a 0a 43 6f 6e  76 65 6e 74 69 6f 6e 73  |ns...Conventions|
00000270  3a 20 20 20 20 20 20 20  20 20 20 20 44 65 73 63  |:           Desc|
00000280  72 69 62 65 73 20 74 68  65 20 6e 6f 6d 65 6e 63  |ribes the nomenc|
00000290  6c 61 74 75 72 65 20 75  73 65 64 20 69 6e 20 74  |lature used in t|
000002a0  68 65 20 74 65 78 74 2e  0a 41 20 51 75 69 63 6b  |he text..A Quick|
000002b0  20 53 74 61 72 74 3a 20  20 20 20 20 20 20 20 20  | Start:         |
000002c0  47 69 76 65 73 20 73 69  6d 70 6c 65 20 69 6e 73  |Gives simple ins|
000002d0  74 72 75 63 74 69 6f 6e  73 20 77 69 74 68 6f 75  |tructions withou|
000002e0  74 20 67 65 74 74 69 6e  67 20 74 65 63 68 6e 69  |t getting techni|
000002f0  63 61 6c 2e 0a 48 6f 77  20 74 6f 20 75 73 65 20  |cal..How to use |
00000300  52 50 43 61 6c 63 3a 20  20 20 20 20 45 78 70 6c  |RPCalc:     Expl|
00000310  61 69 6e 73 20 74 68 65  20 66 69 6e 65 72 20 70  |ains the finer p|
00000320  6f 69 6e 74 73 20 6f 66  20 75 73 69 6e 67 20 74  |oints of using t|
00000330  68 65 20 70 72 6f 67 72  61 6d 2e 0a 52 65 76 65  |he program..Reve|
00000340  72 73 65 20 50 6f 6c 69  73 68 3a 20 20 20 20 20  |rse Polish:     |
00000350  20 20 20 44 65 73 63 72  69 62 65 73 20 74 68 65  |   Describes the|
00000360  20 6f 72 69 67 69 6e 20  61 6e 64 20 6e 61 74 75  | origin and natu|
00000370  72 65 20 6f 66 20 52 65  76 65 72 73 65 20 50 6f  |re of Reverse Po|
00000380  6c 69 73 68 2e 0a 54 68  65 20 46 75 6e 63 74 69  |lish..The Functi|
00000390  6f 6e 73 3a 20 20 20 20  20 20 20 20 20 44 65 73  |ons:         Des|
000003a0  63 72 69 62 65 73 20 74  68 65 20 75 73 65 20 61  |cribes the use a|
000003b0  66 20 61 6c 6c 20 63 61  6c 63 75 6c 61 74 6f 72  |f all calculator|
000003c0  20 66 75 6e 63 74 69 6f  6e 73 2e 0a 4d 6f 72 65  | functions..More|
000003d0  20 43 6f 6d 70 6c 65 78  20 45 78 61 6d 70 6c 65  | Complex Example|
000003e0  73 2e 0a 20 20 20 20 20  20 20 20 20 20 20 20 20  |s..             |
000003f0  20 20 20 20 20 20 20 20  20 20 54 6f 20 66 69 6e  |          To fin|
00000400  64 20 61 6e 79 20 66 75  6e 63 74 69 6f 6e 2c 20  |d any function, |
00000410  73 65 61 72 63 68 20 66  6f 72 20 74 68 65 20 62  |search for the b|
00000420  75 74 74 6f 6e 20 61 73  0a 20 20 20 20 20 20 20  |utton as.       |
00000430  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00000440  5b 6e 61 6d 65 5d 20 20  20 65 2e 67 2e 20 5b 2b  |[name]   e.g. [+|
00000450  5d 20 20 6f 72 20 20 5b  53 69 6e 65 5d 20 20 65  |]  or  [Sine]  e|
00000460  74 63 2e 0a 0a 4e 2e 42  2e 20 20 20 20 20 20 20  |tc...N.B.       |
00000470  20 20 20 20 20 20 20 20  20 20 20 20 54 6f 20 63  |            To c|
00000480  6f 72 72 65 63 74 6c 79  20 64 69 73 70 6c 61 79  |orrectly display|
00000490  20 73 6f 6d 65 20 62 75  74 74 6f 6e 20 6c 65 67  | some button leg|
000004a0  65 6e 64 73 2c 20 79 6f  75 72 20 0a 20 20 20 20  |ends, your .    |
000004b0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
000004c0  20 20 20 74 65 78 74 20  65 64 69 74 6f 72 20 73  |   text editor s|
000004d0  68 6f 75 6c 64 20 62 65  20 73 65 74 20 74 6f 20  |hould be set to |
000004e0  64 69 73 70 6c 61 79 20  73 74 61 6e 64 61 72 64  |display standard|
000004f0  20 0a 20 20 20 20 20 20  20 20 20 20 20 20 20 20  | .              |
00000500  20 20 20 20 20 20 20 20  20 73 79 73 74 65 6d 20  |         system |
00000510  66 6f 6e 74 2e 20 65 2e  67 2e 20 5b 8a 5d 20 73  |font. e.g. [.] s|
00000520  68 6f 75 6c 64 20 61 70  70 65 61 72 20 61 73 20  |hould appear as |
00000530  5b 64 6f 77 6e 20 61 72  72 6f 77 5d 2e 0a 0a 43  |[down arrow]...C|
00000540  6f 6e 76 65 6e 74 69 6f  6e 73 0a 3d 3d 3d 3d 3d  |onventions.=====|
00000550  3d 3d 3d 3d 3d 3d 0a 0a  54 68 72 6f 75 67 68 6f  |======..Througho|
00000560  75 74 20 74 68 69 73 20  6d 61 6e 75 61 6c 2c 20  |ut this manual, |
00000570  72 65 66 65 72 65 6e 63  65 73 20 74 6f 20 62 75  |references to bu|
00000580  74 74 6f 6e 20 69 63 6f  6e 73 20 6f 6e 20 74 68  |tton icons on th|
00000590  65 20 63 61 6c 63 75 6c  61 74 6f 72 0a 61 72 65  |e calculator.are|
000005a0  20 73 68 6f 77 6e 20 62  65 74 77 65 65 6e 20 73  | shown between s|
000005b0  71 75 61 72 65 20 62 72  61 63 6b 65 74 73 2c 20  |quare brackets, |
000005c0  65 2e 67 2e 20 5b 45 6e  74 65 72 5d 2e 0a 0a 54  |e.g. [Enter]...T|
000005d0  68 65 20 74 65 72 6d 73  20 53 45 4c 45 43 54 20  |he terms SELECT |
000005e0  61 6e 64 20 41 44 4a 55  53 54 20 72 65 66 65 72  |and ADJUST refer|
000005f0  20 74 6f 20 74 68 65 20  66 69 72 73 74 20 61 6e  | to the first an|
00000600  64 20 74 68 69 72 64 20  6d 6f 75 73 65 20 62 75  |d third mouse bu|
00000610  74 74 6f 6e 73 2c 0a 61  73 20 6e 6f 72 6d 61 6c  |ttons,.as normal|
00000620  6c 79 20 64 65 66 69 6e  65 64 2c 20 61 6e 64 20  |ly defined, and |
00000630  6d 61 79 20 62 65 20 75  73 65 64 20 74 6f 20 70  |may be used to p|
00000640  72 65 66 69 78 20 61 20  66 75 6e 63 74 69 6f 6e  |refix a function|
00000650  20 62 75 74 74 6f 6e 2e  0a 0a 57 68 65 6e 20 6e  | button...When n|
00000660  6f 74 20 73 70 65 63 69  66 69 63 61 6c 6c 79 20  |ot specifically |
00000670  73 74 61 74 65 64 2c 20  79 6f 75 20 73 68 6f 75  |stated, you shou|
00000680  6c 64 20 61 6c 77 61 79  73 20 75 73 65 20 74 68  |ld always use th|
00000690  65 20 53 45 4c 45 43 54  20 62 75 74 74 6f 6e 2c  |e SELECT button,|
000006a0  0a 61 73 20 69 6e 20 6d  6f 73 74 20 63 61 73 65  |.as in most case|
000006b0  73 2c 20 41 44 4a 55 53  54 20 77 69 6c 6c 20 63  |s, ADJUST will c|
000006c0  61 75 73 65 20 61 6e 20  61 6c 74 65 72 6e 61 74  |ause an alternat|
000006d0  69 76 65 20 61 63 74 69  6f 6e 2e 0a 0a 0a 41 20  |ive action....A |
000006e0  51 75 69 63 6b 20 53 74  61 72 74 0a 3d 3d 3d 3d  |Quick Start.====|
000006f0  3d 3d 3d 3d 3d 3d 3d 3d  3d 0a 0a 46 69 72 73 74  |=========..First|
00000700  2c 20 73 65 65 20 68 6f  77 20 65 61 73 79 20 69  |, see how easy i|
00000710  74 20 69 73 20 74 6f 20  75 73 65 20 62 79 20 64  |t is to use by d|
00000720  6f 69 6e 67 20 61 20 73  69 6d 70 6c 65 20 61 64  |oing a simple ad|
00000730  64 69 74 69 6f 6e 20 63  61 6c 63 75 6c 61 74 69  |dition calculati|
00000740  6f 6e 2c 0a 62 65 66 6f  72 65 20 67 6f 69 6e 67  |on,.before going|
00000750  20 69 6e 74 6f 20 64 65  74 61 69 6c 73 2e 20 20  | into details.  |
00000760  50 72 65 73 73 20 74 68  65 20 66 6f 6c 6c 6f 77  |Press the follow|
00000770  69 6e 67 20 6b 65 79 73  20 69 6e 20 6f 72 64 65  |ing keys in orde|
00000780  72 20 2d 0a 0a 20 20 20  20 20 20 20 20 20 20 20  |r -..           |
00000790  20 20 20 20 20 5b 33 5d  20 5b 45 6e 74 65 72 5d  |     [3] [Enter]|
000007a0  20 5b 34 5d 20 5b 2b 5d  0a 0a 54 68 65 20 76 61  | [4] [+]..The va|
000007b0  6c 75 65 20 73 68 6f 77  6e 20 69 6e 20 74 68 65  |lue shown in the|
000007c0  20 6c 6f 77 65 72 20 64  69 73 70 6c 61 79 20 69  | lower display i|
000007d0  73 20 74 68 65 20 72 65  73 75 6c 74 20 6f 66 20  |s the result of |
000007e0  61 64 64 69 6e 67 20 33  20 2b 20 34 2c 20 28 37  |adding 3 + 4, (7|
000007f0  29 2e 0a 54 6f 20 6d 75  6c 74 69 70 6c 79 20 74  |)..To multiply t|
00000800  68 65 20 72 65 73 75 6c  74 20 62 79 20 35 2c 20  |he result by 5, |
00000810  70 72 65 73 73 20 2d 0a  0a 20 20 20 20 20 20 20  |press -..       |
00000820  20 20 20 20 20 20 20 20  20 5b 35 5d 20 5b 78 5d  |         [5] [x]|
00000830  0a 0a 41 6e 64 20 77 65  20 67 65 74 20 33 35 2e  |..And we get 35.|
00000840  30 30 20 61 73 20 65 78  70 65 63 74 65 64 2e 20  |00 as expected. |
00000850  49 74 73 20 61 73 20 73  69 6d 70 6c 65 20 61 73  |Its as simple as|
00000860  20 74 68 61 74 21 20 20  0a 0a 55 73 69 6e 67 20  | that!  ..Using |
00000870  74 68 69 73 20 6d 65 74  68 6f 64 20 79 6f 75 20  |this method you |
00000880  63 61 6e 20 61 6c 77 61  79 73 20 73 65 65 20 65  |can always see e|
00000890  78 61 63 74 6c 79 20 77  68 61 74 20 76 61 6c 75  |xactly what valu|
000008a0  65 73 20 61 72 65 20 61  62 6f 75 74 20 74 6f 20  |es are about to |
000008b0  62 65 20 0a 6f 70 65 72  61 74 65 64 20 6f 6e 2c  |be .operated on,|
000008c0  20 75 6e 6c 69 6b 65 20  6f 72 64 69 6e 61 72 79  | unlike ordinary|
000008d0  20 63 61 6c 63 75 6c 61  74 6f 72 73 2e 0a 0a 59  | calculators...Y|
000008e0  6f 75 20 63 61 6e 20 61  6c 73 6f 20 6e 6f 77 20  |ou can also now |
000008f0  73 65 65 20 77 68 79 20  69 74 20 69 73 20 63 61  |see why it is ca|
00000900  6c 6c 65 64 20 27 52 65  76 65 72 73 65 27 20 50  |lled 'Reverse' P|
00000910  6f 6c 69 73 68 2e 20 20  4f 6e 20 74 68 69 73 20  |olish.  On this |
00000920  63 61 6c 63 75 6c 61 74  6f 72 20 0a 79 6f 75 20  |calculator .you |
00000930  70 72 65 73 73 20 74 68  65 73 65 20 62 75 74 74  |press these butt|
00000940  6f 6e 73 20 69 6e 20 74  68 65 20 72 65 76 65 72  |ons in the rever|
00000950  73 65 20 6f 72 64 65 72  2c 20 63 6f 6d 70 61 72  |se order, compar|
00000960  65 64 20 74 6f 20 61 20  6e 6f 72 6d 61 6c 20 6f  |ed to a normal o|
00000970  6e 65 2e 0a 0a 48 6f 77  65 76 65 72 2c 20 74 68  |ne...However, th|
00000980  69 73 20 73 69 6d 70 6c  65 20 65 78 61 6d 70 6c  |is simple exampl|
00000990  65 20 6d 61 79 20 69 6c  6c 75 73 74 72 61 74 65  |e may illustrate|
000009a0  20 68 6f 77 20 74 6f 20  75 73 65 20 74 68 65 20  | how to use the |
000009b0  6d 61 63 68 69 6e 65 2c  20 62 75 74 20 0a 64 6f  |machine, but .do|
000009c0  65 73 20 6e 6f 74 20 73  68 6f 77 20 74 68 65 20  |es not show the |
000009d0  72 65 61 6c 20 70 6f 77  65 72 20 6f 66 20 74 68  |real power of th|
000009e0  65 20 73 79 73 74 65 6d  2e 20 46 6f 72 20 74 68  |e system. For th|
000009f0  61 74 2c 20 72 65 61 64  20 6f 6e 2e 0a 0a 0a 48  |at, read on....H|
00000a00  6f 77 20 74 6f 20 75 73  65 20 52 50 43 61 6c 63  |ow to use RPCalc|
00000a10  2e 0a 3d 3d 3d 3d 3d 3d  3d 3d 3d 3d 3d 3d 3d 3d  |..==============|
00000a20  3d 3d 3d 0a 0a 54 68 65  20 44 69 73 70 6c 61 79  |===..The Display|
00000a30  73 2e 0a 0a 54 68 65 20  63 61 6c 63 75 6c 61 74  |s...The calculat|
00000a40  6f 72 20 68 61 73 20 66  6f 75 72 20 64 69 73 70  |or has four disp|
00000a50  6c 61 79 20 72 65 67 69  73 74 65 72 73 20 72 61  |lay registers ra|
00000a60  74 68 65 72 20 74 68 61  6e 20 74 68 65 20 75 73  |ther than the us|
00000a70  75 61 6c 20 6f 6e 65 2e  0a 54 68 65 20 6c 6f 77  |ual one..The low|
00000a80  65 72 20 72 65 67 69 73  74 65 72 2c 20 6c 61 62  |er register, lab|
00000a90  65 6c 6c 65 64 20 27 58  27 2c 20 69 73 20 65 71  |elled 'X', is eq|
00000aa0  75 69 76 61 6c 65 6e 74  20 74 6f 20 74 68 65 20  |uivalent to the |
00000ab0  73 69 6e 67 6c 65 20 64  69 73 70 6c 61 79 20 0a  |single display .|
00000ac0  66 6f 75 6e 64 20 6f 6e  20 6f 72 64 69 6e 61 72  |found on ordinar|
00000ad0  79 20 63 61 6c 63 75 6c  61 74 6f 72 73 2e 20 41  |y calculators. A|
00000ae0  62 6f 76 65 20 74 68 69  73 2c 20 74 68 65 20 59  |bove this, the Y|
00000af0  20 72 65 67 69 73 74 65  72 20 69 73 20 75 73 65  | register is use|
00000b00  64 20 74 6f 0a 68 6f 6c  64 20 61 20 73 65 63 6f  |d to.hold a seco|
00000b10  6e 64 20 76 61 6c 75 65  20 74 6f 20 62 65 20 6f  |nd value to be o|
00000b20  70 65 72 61 74 65 64 20  6f 6e 2c 20 77 68 69 6c  |perated on, whil|
00000b30  65 20 74 68 65 20 72 65  6d 61 69 6e 64 65 72 20  |e the remainder |
00000b40  77 69 6c 6c 0a 64 69 73  70 6c 61 79 20 69 6e 74  |will.display int|
00000b50  65 72 6d 65 64 69 61 74  65 20 63 61 6c 63 75 6c  |ermediate calcul|
00000b60  61 74 69 6f 6e 20 72 65  73 75 6c 74 73 2c 20 77  |ation results, w|
00000b70  68 65 72 65 20 61 70 70  72 6f 70 72 69 61 74 65  |here appropriate|
00000b80  2e 0a 0a 54 68 65 73 65  20 72 65 67 69 73 74 65  |...These registe|
00000b90  72 73 20 63 6f 6e 73 74  69 74 75 74 65 20 61 20  |rs constitute a |
00000ba0  27 73 74 61 63 6b 27 2c  20 77 68 65 72 65 20 6e  |'stack', where n|
00000bb0  75 6d 62 65 72 73 20 61  72 65 20 70 6c 61 63 65  |umbers are place|
00000bc0  64 20 75 6e 74 69 6c 0a  6e 65 65 64 65 64 2e 0a  |d until.needed..|
00000bd0  0a 57 68 65 6e 20 79 6f  75 20 63 6c 69 63 6b 20  |.When you click |
00000be0  6f 6e 20 74 68 65 20 5b  2b 5d 20 6f 70 65 72 61  |on the [+] opera|
00000bf0  74 6f 72 20 62 75 74 74  6f 6e 2c 20 66 6f 72 20  |tor button, for |
00000c00  65 78 61 6d 70 6c 65 2c  20 74 68 65 20 76 61 6c  |example, the val|
00000c10  75 65 0a 64 69 73 70 6c  61 79 65 64 20 69 6e 20  |ue.displayed in |
00000c20  74 68 65 20 58 20 72 65  67 69 73 74 65 72 20 77  |the X register w|
00000c30  69 6c 6c 20 62 65 20 61  64 64 65 64 20 74 6f 20  |ill be added to |
00000c40  74 68 65 20 76 61 6c 75  65 20 69 6e 20 59 2c 20  |the value in Y, |
00000c50  61 6e 64 20 74 68 65 0a  72 65 73 75 6c 74 20 64  |and the.result d|
00000c60  69 73 70 6c 61 79 65 64  20 69 6e 20 58 2e 0a 0a  |isplayed in X...|
00000c70  41 20 66 65 77 20 66 75  6e 63 74 69 6f 6e 73 20  |A few functions |
00000c80  70 72 6f 64 75 63 65 20  74 77 6f 20 72 65 73 75  |produce two resu|
00000c90  6c 74 73 2c 20 61 6e 64  20 69 6e 20 74 68 65 73  |lts, and in thes|
00000ca0  65 20 63 61 73 65 73 20  74 68 65 20 73 65 63 6f  |e cases the seco|
00000cb0  6e 64 0a 72 65 73 75 6c  74 20 77 69 6c 6c 20 62  |nd.result will b|
00000cc0  65 20 64 69 73 70 6c 61  79 65 64 20 69 6e 20 74  |e displayed in t|
00000cd0  68 65 20 59 20 72 65 67  69 73 74 65 72 2e 0a 0a  |he Y register...|
00000ce0  0a 45 6e 74 65 72 69 6e  67 20 56 61 6c 75 65 73  |.Entering Values|
00000cf0  2e 0a 0a 59 6f 75 20 65  6e 74 65 72 20 76 61 6c  |...You enter val|
00000d00  75 65 73 20 69 6e 74 6f  20 74 68 65 20 58 20 72  |ues into the X r|
00000d10  65 67 69 73 74 65 72 20  69 6e 20 74 68 65 20 6e  |egister in the n|
00000d20  6f 72 6d 61 6c 20 77 61  79 2c 20 62 79 20 63 6c  |ormal way, by cl|
00000d30  69 63 6b 69 6e 67 0a 6f  6e 20 74 68 65 20 6e 75  |icking.on the nu|
00000d40  6d 62 65 72 20 62 75 74  74 6f 6e 73 2c 20 6f 72  |mber buttons, or|
00000d50  20 62 79 20 75 73 69 6e  67 20 74 68 65 20 6b 65  | by using the ke|
00000d60  79 62 6f 61 72 64 20 6e  75 6d 62 65 72 20 70 61  |yboard number pa|
00000d70  64 2e 20 28 49 6e 20 74  68 65 20 0a 6c 61 74 65  |d. (In the .late|
00000d80  72 20 63 61 73 65 2c 20  74 68 65 20 63 61 6c 63  |r case, the calc|
00000d90  75 6c 61 74 6f 72 20 6d  75 73 74 20 68 61 76 65  |ulator must have|
00000da0  20 74 68 65 20 69 6e 70  75 74 20 66 6f 63 75 73  | the input focus|
00000db0  2e 20 49 66 20 6e 6f 74  2c 20 63 6c 69 63 6b 0a  |. If not, click.|
00000dc0  69 6e 20 74 68 65 20 63  61 6c 63 75 6c 61 74 6f  |in the calculato|
00000dd0  72 20 62 61 63 6b 67 72  6f 75 6e 64 2c 20 6f 72  |r background, or|
00000de0  20 74 68 65 20 69 63 6f  6e 62 61 72 20 69 63 6f  | the iconbar ico|
00000df0  6e 2e 29 0a 0a 54 6f 20  67 65 74 20 61 20 76 61  |n.)..To get a va|
00000e00  6c 75 65 20 69 6e 74 6f  20 74 68 65 20 59 20 72  |lue into the Y r|
00000e10  65 67 69 73 74 65 72 2c  20 66 69 72 73 74 20 65  |egister, first e|
00000e20  6e 74 65 72 20 69 74 20  69 6e 74 6f 20 58 2c 20  |nter it into X, |
00000e30  61 73 20 61 62 6f 76 65  2c 0a 61 6e 64 20 74 68  |as above,.and th|
00000e40  65 6e 20 75 73 65 20 74  68 65 20 5b 45 6e 74 65  |en use the [Ente|
00000e50  72 5d 20 6b 65 79 2e 20  20 54 68 69 73 20 77 69  |r] key.  This wi|
00000e60  6c 6c 20 6d 6f 76 65 20  74 68 65 20 76 61 6c 75  |ll move the valu|
00000e70  65 20 69 6e 20 74 68 65  20 58 20 0a 72 65 67 69  |e in the X .regi|
00000e80  73 74 65 72 20 75 70 20  74 6f 20 74 68 65 20 59  |ster up to the Y|
00000e90  2c 20 61 6e 64 20 63 6c  65 61 72 20 58 20 72 65  |, and clear X re|
00000ea0  61 64 79 20 66 6f 72 20  61 20 6e 65 77 20 76 61  |ady for a new va|
00000eb0  6c 75 65 2e 20 0a 0a 57  68 65 6e 20 5b 45 6e 74  |lue. ..When [Ent|
00000ec0  65 72 5d 20 69 73 20 75  73 65 64 2c 20 61 6e 79  |er] is used, any|
00000ed0  20 76 61 6c 75 65 73 20  69 6e 20 68 69 67 68 65  | values in highe|
00000ee0  72 20 72 65 67 69 73 74  65 72 73 20 77 69 6c 6c  |r registers will|
00000ef0  20 61 6c 73 6f 20 62 65  20 6d 6f 76 65 64 0a 75  | also be moved.u|
00000f00  70 2c 20 61 6e 64 20 61  6e 79 20 76 61 6c 75 65  |p, and any value|
00000f10  20 69 6e 20 74 68 65 20  74 6f 70 20 72 65 67 69  | in the top regi|
00000f20  73 74 65 72 20 77 69 6c  6c 20 62 65 20 6c 6f 73  |ster will be los|
00000f30  74 2e 20 54 68 69 73 20  73 68 6f 75 6c 64 20 72  |t. This should r|
00000f40  61 72 65 6c 79 0a 68 61  70 70 65 6e 2e 0a 0a 0a  |arely.happen....|
00000f50  41 64 64 69 6e 67 20 54  77 6f 20 4e 75 6d 62 65  |Adding Two Numbe|
00000f60  72 73 2e 0a 0a 54 68 75  73 2c 20 74 6f 20 61 64  |rs...Thus, to ad|
00000f70  64 20 74 77 6f 20 76 61  6c 75 65 73 2c 20 65 6e  |d two values, en|
00000f80  74 65 72 20 74 68 65 20  66 69 72 73 74 20 76 61  |ter the first va|
00000f90  6c 75 65 20 69 6e 74 6f  20 58 2c 20 63 6c 69 63  |lue into X, clic|
00000fa0  6b 20 5b 45 6e 74 65 72  5d 20 74 6f 0a 70 75 73  |k [Enter] to.pus|
00000fb0  68 20 74 68 69 73 20 75  70 20 74 6f 20 59 2c 20  |h this up to Y, |
00000fc0  65 6e 74 65 72 20 74 68  65 20 73 65 63 6f 6e 64  |enter the second|
00000fd0  20 6e 75 6d 62 65 72 20  69 6e 74 6f 20 58 2c 20  | number into X, |
00000fe0  74 68 65 6e 20 63 6c 69  63 6b 20 5b 2b 5d 2e 0a  |then click [+]..|
00000ff0  0a 54 68 69 73 20 73 69  6d 70 6c 65 20 65 78 61  |.This simple exa|
00001000  6d 70 6c 65 20 64 6f 65  73 20 6e 6f 74 20 73 68  |mple does not sh|
00001010  6f 77 20 74 68 65 20 61  64 76 61 6e 74 61 67 65  |ow the advantage|
00001020  73 20 6f 66 20 52 65 76  65 72 73 65 20 50 6f 6c  |s of Reverse Pol|
00001030  69 73 68 20 6f 76 65 72  0a 74 68 65 20 6d 6f 72  |ish over.the mor|
00001040  65 20 63 6f 6e 76 65 6e  74 69 6f 6e 61 6c 20 63  |e conventional c|
00001050  61 6c 63 75 6c 61 74 6f  72 2c 20 73 6f 20 6c 65  |alculator, so le|
00001060  74 27 73 20 74 72 79 20  73 6f 6d 65 74 68 69 6e  |t's try somethin|
00001070  67 20 6d 6f 72 65 20 63  6f 6d 70 6c 65 78 2e 0a  |g more complex..|
00001080  0a 0a 45 76 61 6c 75 61  74 69 6e 67 20 61 6e 20  |..Evaluating an |
00001090  45 78 70 72 65 73 73 69  6f 6e 2e 0a 0a 54 6f 20  |Expression...To |
000010a0  65 76 61 6c 75 61 74 65  20 74 68 65 20 65 78 70  |evaluate the exp|
000010b0  72 65 73 73 69 6f 6e 20  28 20 32 20 2b 20 34 20  |ression ( 2 + 4 |
000010c0  29 20 2a 20 28 20 37 20  2d 20 33 20 29 20 66 6f  |) * ( 7 - 3 ) fo|
000010d0  6c 6c 6f 77 20 74 68 65  20 62 75 74 74 6f 6e 0a  |llow the button.|
000010e0  63 6c 69 63 6b 73 20 69  6e 20 74 68 65 20 66 69  |clicks in the fi|
000010f0  72 73 74 20 63 6f 6c 75  6d 6e 20 62 65 6c 6f 77  |rst column below|
00001100  2c 20 61 6e 64 20 63 68  65 63 6b 20 74 68 65 20  |, and check the |
00001110  61 63 74 69 6f 6e 73 20  6c 69 73 74 65 64 2e 20  |actions listed. |
00001120  0a 49 6e 20 70 61 72 74  69 63 75 6c 61 72 20 6e  |.In particular n|
00001130  6f 74 65 20 74 68 65 20  64 69 73 70 6c 61 79 20  |ote the display |
00001140  63 6f 6e 74 65 6e 74 73  20 61 73 20 67 69 76 65  |contents as give|
00001150  6e 20 69 6e 20 74 68 65  20 6c 61 73 74 20 63 6f  |n in the last co|
00001160  6c 75 6d 6e 2e 0a 0a 20  20 20 20 20 42 75 74 74  |lumn...     Butt|
00001170  6f 6e 20 20 20 20 41 63  74 69 6f 6e 20 20 20 20  |on    Action    |
00001180  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
*
000011a0  20 20 20 20 20 20 53 74  61 63 6b 0a 20 20 20 20  |      Stack.    |
000011b0  20 3d 3d 3d 3d 3d 3d 20  20 20 20 3d 3d 3d 3d 3d  | ======    =====|
000011c0  3d 3d 3d 3d 3d 3d 3d 3d  3d 3d 3d 3d 3d 3d 3d 3d  |================|
000011d0  3d 3d 3d 3d 3d 3d 3d 3d  3d 3d 3d 3d 3d 20 20 20  |=============   |
000011e0  20 20 20 20 20 20 20 20  20 20 20 3d 3d 3d 3d 3d  |           =====|
000011f0  3d 3d 3d 0a 20 20 20 20  20 20 20 20 20 20 20 20  |===.            |
00001200  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
*
00001230  20 20 20 20 58 20 20 59  20 0a 20 20 20 20 20 5b  |    X  Y .     [|
00001240  32 5d 20 20 20 20 20 20  20 27 32 27 20 61 70 70  |2]       '2' app|
00001250  65 61 72 73 20 69 6e 20  58 2e 20 20 20 20 20 20  |ears in X.      |
00001260  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00001270  20 20 20 20 20 20 20 20  20 20 32 0a 20 20 20 20  |          2.    |
00001280  20 5b 45 6e 74 65 72 5d  20 20 20 54 68 65 20 32  | [Enter]   The 2|
00001290  20 6d 6f 76 65 73 20 75  70 20 74 6f 20 59 2c 20  | moves up to Y, |
000012a0  61 6e 64 20 58 20 63 6c  65 61 72 73 2e 20 20 20  |and X clears.   |
000012b0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 32  |               2|
000012c0  0a 20 20 20 20 20 5b 34  5d 20 20 20 20 20 20 20  |.     [4]       |
000012d0  27 34 27 20 61 70 70 65  61 72 73 20 69 6e 20 58  |'4' appears in X|
000012e0  2e 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |.               |
000012f0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00001300  20 34 20 20 32 0a 20 20  20 20 20 5b 2b 5d 20 20  | 4  2.     [+]  |
00001310  20 20 20 20 20 27 34 27  20 61 6e 64 20 27 32 27  |     '4' and '2'|
00001320  20 61 72 65 20 75 6e 73  74 61 63 6b 65 64 2c 20  | are unstacked, |
00001330  61 6e 64 20 36 20 70 6c  61 63 65 64 20 69 6e 20  |and 6 placed in |
00001340  58 20 20 20 20 20 36 20  20 0a 20 20 20 20 20 5b  |X     6  .     [|
00001350  37 5d 20 20 20 20 20 20  20 27 37 27 20 61 70 70  |7]       '7' app|
00001360  65 61 72 73 20 69 6e 20  58 2c 20 74 68 65 20 36  |ears in X, the 6|
00001370  20 6d 6f 76 65 73 20 75  70 20 74 6f 20 59 20 20  | moves up to Y  |
00001380  20 20 20 20 20 20 20 20  20 20 37 20 20 36 0a 20  |          7  6. |
00001390  20 20 20 20 5b 45 6e 74  65 72 5d 20 20 20 54 68  |    [Enter]   Th|
000013a0  65 20 37 20 6d 6f 76 65  73 20 75 70 20 74 6f 20  |e 7 moves up to |
000013b0  59 2c 20 61 6e 64 20 58  20 63 6c 65 61 72 73 2e  |Y, and X clears.|
000013c0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
000013d0  20 20 37 20 20 36 0a 20  20 20 20 20 5b 33 5d 20  |  7  6.     [3] |
000013e0  20 20 20 20 20 20 27 33  27 20 61 70 70 65 61 72  |      '3' appear|
000013f0  73 20 69 6e 20 58 20 20  20 20 20 20 20 20 20 20  |s in X          |
00001400  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00001410  20 20 20 20 20 20 20 33  20 20 37 20 20 36 0a 20  |       3  7  6. |
00001420  20 20 20 20 5b 2d 5d 20  20 20 20 20 20 20 27 33  |    [-]       '3|
00001430  27 20 61 6e 64 20 27 37  27 20 61 72 65 20 75 6e  |' and '7' are un|
00001440  73 74 61 63 6b 65 64 2c  20 61 6e 64 20 34 20 70  |stacked, and 4 p|
00001450  6c 61 63 65 64 20 69 6e  20 58 20 20 20 20 20 20  |laced in X      |
00001460  34 20 20 36 0a 20 20 20  20 20 5b 2a 5d 20 20 20  |4  6.     [*]   |
00001470  20 20 20 20 27 34 27 20  61 6e 64 20 27 36 27 20  |    '4' and '6' |
00001480  61 72 65 20 75 6e 73 74  61 63 6b 65 64 2c 20 61  |are unstacked, a|
00001490  6e 64 20 32 34 20 70 6c  61 63 65 64 20 69 6e 20  |nd 24 placed in |
000014a0  58 20 20 20 20 32 34 0a  0a 54 68 75 73 20 58 20  |X    24..Thus X |
000014b0  63 6f 6e 74 61 69 6e 73  20 74 68 65 20 66 69 6e  |contains the fin|
000014c0  61 6c 20 72 65 73 75 6c  74 2c 20 77 68 69 63 68  |al result, which|
000014d0  20 77 65 20 63 61 6e 20  75 73 65 20 69 6e 20 66  | we can use in f|
000014e0  75 72 74 68 65 72 20 0a  63 61 6c 63 75 6c 61 74  |urther .calculat|
000014f0  69 6f 6e 73 20 69 66 20  72 65 71 75 69 72 65 64  |ions if required|
00001500  2e 20 20 4e 6f 74 65 20  74 68 61 74 20 69 74 20  |.  Note that it |
00001510  69 73 20 6e 6f 74 20 6e  65 63 65 73 73 61 72 79  |is not necessary|
00001520  20 74 6f 20 77 72 69 74  65 20 64 6f 77 6e 2c 0a  | to write down,.|
00001530  72 65 6d 65 6d 62 65 72  2c 20 6f 72 20 72 65 2d  |remember, or re-|
00001540  65 6e 74 65 72 20 65 69  74 68 65 72 20 69 6e 74  |enter either int|
00001550  65 72 6d 65 64 69 61 74  65 20 72 65 73 75 6c 74  |ermediate result|
00001560  20 36 20 6f 72 20 34 2c  20 61 73 20 74 68 65 73  | 6 or 4, as thes|
00001570  65 20 0a 72 65 6d 61 69  6e 20 6f 6e 20 74 68 65  |e .remain on the|
00001580  20 73 74 61 63 6b 20 75  6e 74 69 6c 20 6e 65 65  | stack until nee|
00001590  64 65 64 2e 20 20 54 68  69 73 20 63 61 6c 63 75  |ded.  This calcu|
000015a0  6c 61 74 69 6f 6e 20 72  65 71 75 69 72 65 64 20  |lation required |
000015b0  33 20 6f 66 0a 74 68 65  20 34 20 72 65 67 69 73  |3 of.the 4 regis|
000015c0  74 65 72 73 20 70 72 6f  76 69 64 65 64 2c 20 77  |ters provided, w|
000015d0  68 69 63 68 20 79 6f 75  20 77 69 6c 6c 20 66 69  |hich you will fi|
000015e0  6e 64 20 73 75 66 66 69  63 69 65 6e 74 20 66 6f  |nd sufficient fo|
000015f0  72 20 74 68 65 20 6d 6f  73 74 0a 63 6f 6d 70 6c  |r the most.compl|
00001600  65 78 20 63 61 6c 63 75  6c 61 74 69 6f 6e 73 2e  |ex calculations.|
00001610  0a 0a 0a 41 6e 6f 74 68  65 72 20 45 78 61 6d 70  |...Another Examp|
00001620  6c 65 0a 0a 53 75 70 70  6f 73 65 20 79 6f 75 20  |le..Suppose you |
00001630  6e 65 65 64 65 64 20 74  6f 20 63 61 6c 63 75 6c  |needed to calcul|
00001640  61 74 65 20 74 68 65 20  56 41 54 20 64 75 65 20  |ate the VAT due |
00001650  61 6e 64 20 74 68 65 20  74 6f 74 61 6c 20 70 72  |and the total pr|
00001660  69 63 65 20 6f 66 0a 61  6e 20 69 74 65 6d 20 63  |ice of.an item c|
00001670  6f 73 74 69 6e 67 20 a3  31 32 33 2e 35 30 20 20  |osting .123.50  |
00001680  57 65 20 77 69 6c 6c 20  75 73 65 20 61 20 70 72  |We will use a pr|
00001690  6f 70 65 72 74 79 20 6f  66 20 74 68 65 20 5b 45  |operty of the [E|
000016a0  6e 74 65 72 5d 20 62 75  74 74 6f 6e 0a 69 6e 76  |nter] button.inv|
000016b0  6f 6b 65 64 20 62 79 20  63 6c 69 63 6b 69 6e 67  |oked by clicking|
000016c0  20 77 69 74 68 20 74 68  65 20 41 44 4a 55 53 54  | with the ADJUST|
000016d0  20 62 75 74 74 6f 6e 2e  20 57 68 65 6e 20 79 6f  | button. When yo|
000016e0  75 20 64 6f 20 74 68 69  73 2c 20 74 68 65 20 76  |u do this, the v|
000016f0  61 6c 75 65 0a 69 6e 20  58 20 77 69 6c 6c 20 62  |alue.in X will b|
00001700  65 20 6d 6f 76 65 64 20  75 70 20 61 73 20 62 65  |e moved up as be|
00001710  66 6f 72 65 2c 20 62 75  74 20 58 20 77 69 6c 6c  |fore, but X will|
00001720  20 6e 6f 74 20 62 65 20  63 6c 65 61 72 65 64 2c  | not be cleared,|
00001730  20 73 6f 20 69 74 73 20  76 61 6c 75 65 0a 6d 61  | so its value.ma|
00001740  79 20 62 65 20 75 73 65  64 20 61 67 61 69 6e 2e  |y be used again.|
00001750  0a 0a 50 72 65 73 73 20  74 68 65 20 62 75 74 74  |..Press the butt|
00001760  6f 6e 73 20 73 68 6f 77  6e 20 69 6e 20 74 68 65  |ons shown in the|
00001770  20 66 69 72 73 74 20 63  6f 6c 75 6d 6e 2c 20 61  | first column, a|
00001780  73 20 62 65 66 6f 72 65  20 2d 0a 28 20 52 65 6d  |s before -.( Rem|
00001790  65 6d 62 65 72 20 74 6f  20 75 73 65 20 74 68 65  |ember to use the|
000017a0  20 41 44 4a 55 53 54 20  62 75 74 74 6f 6e 20 66  | ADJUST button f|
000017b0  6f 72 20 5b 45 6e 74 65  72 5d 20 29 2e 0a 0a 20  |or [Enter] )... |
000017c0  20 20 20 20 42 75 74 74  6f 6e 73 20 20 20 20 20  |    Buttons     |
000017d0  20 20 20 20 20 20 41 63  74 69 6f 6e 20 20 20 20  |      Action    |
000017e0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
000017f0  20 20 20 20 20 20 20 20  20 20 53 74 61 63 6b 0a  |          Stack.|
00001800  20 20 20 20 20 3d 3d 3d  3d 3d 3d 3d 20 20 20 20  |     =======    |
00001810  20 20 20 20 20 20 20 3d  3d 3d 3d 3d 3d 3d 3d 3d  |       =========|
00001820  3d 3d 3d 3d 3d 3d 3d 3d  3d 3d 3d 3d 3d 3d 3d 3d  |================|
00001830  3d 3d 3d 3d 3d 3d 3d 3d  3d 20 20 3d 3d 3d 3d 3d  |=========  =====|
00001840  3d 3d 3d 3d 3d 3d 3d 3d  0a 20 20 20 20 20 20 20  |========.       |
00001850  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
*
00001880  20 20 20 20 58 20 20 20  20 20 20 20 59 20 0a 20  |    X       Y . |
00001890  20 20 20 20 5b 31 5d 5b  32 5d 5b 33 5d 5b 2e 5d  |    [1][2][3][.]|
000018a0  5b 35 5d 20 20 20 31 32  33 2e 35 20 61 70 70 65  |[5]   123.5 appe|
000018b0  61 72 73 20 69 6e 20 58  20 20 20 20 20 20 20 20  |ars in X        |
000018c0  20 20 20 20 20 20 20 20  20 20 31 32 33 2e 35 30  |          123.50|
000018d0  0a 20 20 20 20 20 5b 45  6e 74 65 72 5d 20 20 20  |.     [Enter]   |
000018e0  20 20 20 20 20 20 20 20  55 73 65 20 74 68 65 20  |        Use the |
000018f0  41 44 4a 55 53 54 20 6d  6f 75 73 65 20 62 75 74  |ADJUST mouse but|
00001900  74 6f 6e 20 20 20 20 20  20 20 20 20 31 32 33 2e  |ton         123.|
00001910  35 30 20 20 31 32 33 2e  35 30 0a 20 20 20 20 20  |50  123.50.     |
00001920  5b 31 5d 5b 37 5d 5b 2e  5d 5b 35 5d 20 20 20 20  |[1][7][.][5]    |
00001930  20 20 53 74 61 63 6b 20  72 69 73 65 73 20 26 20  |  Stack rises & |
00001940  31 37 2e 35 20 61 70 70  65 61 72 73 20 69 6e 20  |17.5 appears in |
00001950  58 20 20 20 20 20 31 37  2e 35 20 20 20 20 31 32  |X     17.5    12|
00001960  33 2e 35 30 20 20 31 32  33 2e 35 30 0a 20 20 20  |3.50  123.50.   |
00001970  20 20 5b 25 5d 20 20 20  20 20 20 20 20 20 20 20  |  [%]           |
00001980  20 20 20 20 58 20 25 20  6f 66 20 59 20 69 73 20  |    X % of Y is |
00001990  63 6f 6d 70 75 74 65 64  20 69 6e 20 58 20 20 20  |computed in X   |
000019a0  20 20 20 20 20 20 20 20  32 31 2e 36 31 20 20 20  |        21.61   |
000019b0  31 32 33 2e 35 30 0a 20  20 20 20 20 20 20 20 20  |123.50.         |
000019c0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 28 54  |              (T|
000019d0  68 69 73 20 69 73 20 74  68 65 20 56 41 54 20 64  |his is the VAT d|
000019e0  75 65 20 6f 6e 20 31 32  33 2e 35 30 29 0a 20 20  |ue on 123.50).  |
000019f0  20 20 20 5b 2b 5d 20 20  20 20 20 20 20 20 20 20  |   [+]          |
00001a00  20 20 20 20 20 32 31 2e  36 31 20 2b 20 31 32 33  |     21.61 + 123|
00001a10  2e 35 30 20 69 73 20 63  6f 6d 70 75 74 65 64 20  |.50 is computed |
00001a20  69 6e 20 58 20 20 20 20  20 31 34 35 2e 31 31 0a  |in X     145.11.|
00001a30  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00001a40  20 20 20 20 20 20 20 28  54 68 69 73 20 69 73 20  |       (This is |
00001a50  74 68 65 20 74 6f 74 61  6c 20 64 75 65 2e 29 0a  |the total due.).|
00001a60  0a 4e 6f 74 65 20 68 6f  77 20 74 68 65 20 66 69  |.Note how the fi|
00001a70  6e 61 6c 20 74 6f 74 61  6c 20 77 61 73 20 63 6f  |nal total was co|
00001a80  6d 70 75 74 65 64 20 77  69 74 68 20 61 20 73 69  |mputed with a si|
00001a90  6e 67 6c 65 20 6b 65 79  20 73 74 72 6f 6b 65 2c  |ngle key stroke,|
00001aa0  20 77 69 74 68 6f 75 74  0a 74 68 65 20 6e 65 65  | without.the nee|
00001ab0  64 20 74 6f 20 72 65 2d  65 6e 74 65 72 20 61 6e  |d to re-enter an|
00001ac0  79 20 76 61 6c 75 65 73  20 61 74 20 61 6c 6c 2e  |y values at all.|
00001ad0  20 20 54 68 69 73 20 77  61 73 20 62 65 63 61 75  |  This was becau|
00001ae0  73 65 20 77 65 20 68 61  64 20 64 75 70 6c 69 63  |se we had duplic|
00001af0  61 74 65 64 0a 74 68 65  20 6f 72 69 67 69 6e 61  |ated.the origina|
00001b00  6c 20 31 32 33 2e 35 20  62 79 20 63 6c 69 63 6b  |l 123.5 by click|
00001b10  69 6e 67 20 5b 45 6e 74  65 72 5d 20 77 69 74 68  |ing [Enter] with|
00001b20  20 74 68 65 20 41 44 4a  55 53 54 20 62 75 74 74  | the ADJUST butt|
00001b30  6f 6e 2e 0a 0a 0a 54 68  65 20 53 74 6f 72 61 67  |on....The Storag|
00001b40  65 20 52 65 67 69 73 74  65 72 73 0a 0a 49 6e 20  |e Registers..In |
00001b50  61 64 64 69 74 69 6f 6e  20 74 6f 20 74 68 65 20  |addition to the |
00001b60  73 74 61 63 6b 2c 20 74  68 65 20 76 61 6c 75 65  |stack, the value|
00001b70  20 69 6e 20 58 20 6d 61  79 20 62 65 20 73 74 6f  | in X may be sto|
00001b80  72 65 64 20 69 6e 20 61  6e 79 20 6f 66 20 31 30  |red in any of 10|
00001b90  20 73 70 65 63 69 61 6c  20 0a 72 65 67 69 73 74  | special .regist|
00001ba0  65 72 73 20 6e 75 6d 62  65 72 65 64 20 66 72 6f  |ers numbered fro|
00001bb0  6d 20 30 20 74 6f 20 39  2e 20 54 6f 20 64 6f 20  |m 0 to 9. To do |
00001bc0  74 68 69 73 20 63 6c 69  63 6b 20 6f 6e 20 5b 53  |this click on [S|
00001bd0  74 6f 72 65 5d 20 66 6f  6c 6c 6f 77 65 64 20 62  |tore] followed b|
00001be0  79 20 74 68 65 0a 73 69  6e 67 6c 65 20 64 69 67  |y the.single dig|
00001bf0  69 74 20 69 6e 64 69 63  61 74 69 6e 67 20 74 68  |it indicating th|
00001c00  65 20 72 65 71 75 69 72  65 64 20 73 74 6f 72 65  |e required store|
00001c10  20 6e 75 6d 62 65 72 2e  20 54 6f 20 72 65 74 72  | number. To retr|
00001c20  69 65 76 65 20 74 68 65  20 73 74 6f 72 65 64 0a  |ieve the stored.|
00001c30  6e 75 6d 62 65 72 20 63  6c 69 63 6b 20 6f 6e 20  |number click on |
00001c40  27 53 74 6f 72 65 27 20  77 69 74 68 20 74 68 65  |'Store' with the|
00001c50  20 41 64 6a 75 73 74 20  62 75 74 74 6f 6e 2c 20  | Adjust button, |
00001c60  66 6f 6c 6c 6f 77 65 64  20 62 79 20 74 68 65 20  |followed by the |
00001c70  73 74 6f 72 65 20 6e 75  6d 62 65 72 2e 0a 0a 54  |store number...T|
00001c80  72 79 20 74 68 69 73 20  2d 0a 0a 20 20 20 20 20  |ry this -..     |
00001c90  42 75 74 74 6f 6e 73 20  20 20 41 63 74 69 6f 6e  |Buttons   Action|
00001ca0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00001cb0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 53  |               S|
00001cc0  74 61 63 6b 0a 20 20 20  20 20 3d 3d 3d 3d 3d 3d  |tack.     ======|
00001cd0  3d 20 20 20 3d 3d 3d 3d  3d 3d 3d 3d 3d 3d 3d 3d  |=   ============|
00001ce0  3d 3d 3d 3d 3d 3d 3d 3d  3d 3d 3d 3d 3d 3d 3d 3d  |================|
00001cf0  3d 3d 3d 3d 3d 3d 20 20  20 3d 3d 3d 3d 3d 3d 3d  |======   =======|
00001d00  3d 3d 3d 3d 3d 3d 0a 20  20 20 20 20 20 20 20 20  |======.         |
00001d10  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
*
00001d30  20 20 20 20 20 20 20 20  20 20 20 58 20 20 20 20  |           X    |
00001d40  20 20 59 20 0a 20 20 20  20 20 5b 70 69 5d 20 20  |  Y .     [pi]  |
00001d50  20 20 20 20 33 2e 31 34  20 61 70 70 65 61 72 73  |    3.14 appears|
00001d60  20 69 6e 20 58 20 20 20  20 20 20 20 20 20 20 20  | in X           |
00001d70  20 20 20 20 20 20 20 20  20 33 2e 31 34 0a 20 20  |         3.14.  |
00001d80  20 20 20 5b 53 74 6f 72  65 5d 20 20 20 54 68 65  |   [Store]   The|
00001d90  20 73 74 6f 72 65 20 62  75 74 74 6f 6e 20 73 74  | store button st|
00001da0  61 79 73 20 27 69 6e 27  2e 20 20 20 20 20 20 20  |ays 'in'.       |
00001db0  20 20 33 2e 31 34 0a 20  20 20 20 20 5b 37 5d 20  |  3.14.     [7] |
00001dc0  20 20 20 20 20 20 54 68  65 20 76 61 6c 75 65 20  |      The value |
00001dd0  69 73 20 73 74 6f 72 65  64 2e 20 20 20 20 20 20  |is stored.      |
00001de0  20 20 20 20 20 20 20 20  20 20 20 33 2e 31 34 0a  |           3.14.|
00001df0  20 20 20 20 20 5b 43 6c  65 61 72 5d 20 20 20 54  |     [Clear]   T|
00001e00  68 65 20 58 20 72 65 67  69 73 74 65 72 20 69 73  |he X register is|
00001e10  20 63 6c 65 61 72 65 64  20 20 20 20 20 20 20 20  | cleared        |
00001e20  20 20 20 20 30 2e 30 30  0a 0a 4e 6f 77 20 70 72  |    0.00..Now pr|
00001e30  6f 76 65 20 74 68 65 20  76 61 6c 75 65 20 69 73  |ove the value is|
00001e40  20 73 74 6f 72 65 64 20  62 79 20 28 55 73 65 20  | stored by (Use |
00001e50  74 68 65 20 41 44 4a 55  53 54 20 62 75 74 74 6f  |the ADJUST butto|
00001e60  6e 29 20 2d 0a 0a 20 20  20 20 20 5b 53 74 6f 72  |n) -..     [Stor|
00001e70  65 5d 20 20 20 55 73 65  20 74 68 65 20 41 64 6a  |e]   Use the Adj|
00001e80  75 73 74 20 62 75 74 74  6f 6e 20 74 6f 20 27 66  |ust button to 'f|
00001e90  65 74 63 68 27 20 20 20  20 20 30 2e 30 30 0a 20  |etch'     0.00. |
00001ea0  20 20 20 20 5b 37 5d 20  20 20 20 20 20 20 56 61  |    [7]       Va|
00001eb0  6c 75 65 20 73 74 6f 72  65 64 20 69 6e 20 73 74  |lue stored in st|
00001ec0  6f 72 65 20 37 20 69 73  20 73 68 6f 77 6e 20 20  |ore 7 is shown  |
00001ed0  20 20 20 33 2e 31 34 0a  0a 49 6e 20 74 68 65 20  |   3.14..In the |
00001ee0  56 41 54 20 65 78 61 6d  70 6c 65 20 61 62 6f 76  |VAT example abov|
00001ef0  65 2c 20 77 65 20 63 6f  75 6c 64 20 68 61 76 65  |e, we could have|
00001f00  20 73 74 6f 72 65 64 20  74 68 65 20 56 41 54 20  | stored the VAT |
00001f10  72 61 74 65 2c 20 31 37  2e 35 2c 20 69 6e 20 6f  |rate, 17.5, in o|
00001f20  6e 65 0a 6f 66 20 74 68  65 73 65 20 73 74 6f 72  |ne.of these stor|
00001f30  61 67 65 20 72 65 67 69  73 74 65 72 73 2c 20 61  |age registers, a|
00001f40  6e 64 20 75 73 65 64 20  69 74 20 69 6e 20 72 65  |nd used it in re|
00001f50  70 65 61 74 65 64 20 56  41 54 20 63 61 6c 63 75  |peated VAT calcu|
00001f60  6c 61 74 69 6f 6e 73 2e  0a 0a 0a 54 68 65 20 44  |lations....The D|
00001f70  69 73 70 6c 61 79 20 46  6f 72 6d 61 74 0a 0a 49  |isplay Format..I|
00001f80  6e 20 74 68 65 20 61 62  6f 76 65 20 65 78 61 6d  |n the above exam|
00001f90  70 6c 65 2c 20 74 68 65  20 76 61 6c 75 65 20 6f  |ple, the value o|
00001fa0  66 20 27 70 69 27 20 77  61 73 20 73 68 6f 77 6e  |f 'pi' was shown|
00001fb0  20 61 73 20 33 2e 31 34  20 62 65 63 61 75 73 65  | as 3.14 because|
00001fc0  20 74 68 65 0a 63 61 6c  63 75 6c 61 74 6f 72 20  | the.calculator |
00001fd0  69 73 20 69 6e 69 74 69  61 6c 6c 79 20 73 65 74  |is initially set|
00001fe0  20 74 6f 20 64 69 73 70  6c 61 79 20 6f 6e 6c 79  | to display only|
00001ff0  20 32 20 64 65 63 69 6d  61 6c 20 70 6c 61 63 65  | 2 decimal place|
00002000  73 2e 20 54 68 65 20 66  75 6c 6c 0a 76 61 6c 75  |s. The full.valu|
00002010  65 20 6f 66 20 70 69 20  28 74 6f 20 61 62 6f 75  |e of pi (to abou|
00002020  74 20 31 35 20 73 69 67  6e 69 66 69 63 61 6e 74  |t 15 significant|
00002030  20 66 69 67 75 72 65 73  29 20 69 73 20 6f 66 20  | figures) is of |
00002040  63 6f 75 72 73 65 20 75  73 65 64 20 69 6e 74 65  |course used inte|
00002050  72 6e 61 6c 6c 79 2c 20  0a 61 6e 64 20 6d 61 79  |rnally, .and may|
00002060  20 62 65 20 64 69 73 70  6c 61 79 65 64 20 62 79  | be displayed by|
00002070  20 69 6e 63 72 65 61 73  69 6e 67 20 74 68 65 20  | increasing the |
00002080  64 65 63 69 6d 61 6c 20  70 6c 61 63 65 73 20 75  |decimal places u|
00002090  73 69 6e 67 20 74 68 65  20 61 64 6a 75 73 74 65  |sing the adjuste|
000020a0  72 0a 62 75 74 74 6f 6e  73 20 61 74 20 74 68 65  |r.buttons at the|
000020b0  20 74 6f 70 20 72 69 67  68 74 20 6f 66 20 74 68  | top right of th|
000020c0  65 20 63 61 6c 63 75 6c  61 74 6f 72 2e 0a 0a 4f  |e calculator...O|
000020d0  74 68 65 72 20 64 69 73  70 6c 61 79 20 6d 6f 64  |ther display mod|
000020e0  65 73 20 61 72 65 20 61  6c 73 6f 20 61 76 61 69  |es are also avai|
000020f0  6c 61 62 6c 65 2e 0a 0a  0a 21 48 65 6c 70 0a 0a  |lable....!Help..|
00002100  52 50 43 61 6c 63 20 73  75 70 70 6f 72 74 73 20  |RPCalc supports |
00002110  74 68 65 20 41 63 6f 72  6e 20 21 68 65 6c 70 20  |the Acorn !help |
00002120  66 61 63 69 6c 69 74 79  2c 20 77 68 69 63 68 20  |facility, which |
00002130  6d 61 79 20 62 65 20 75  73 65 64 20 74 6f 20 65  |may be used to e|
00002140  78 70 6c 6f 72 65 20 61  6c 6c 0a 74 68 65 20 66  |xplore all.the f|
00002150  75 6e 63 74 69 6f 6e 73  20 6f 6e 20 74 68 65 20  |unctions on the |
00002160  63 61 6c 63 75 6c 61 74  6f 72 2e 20 20 54 6f 20  |calculator.  To |
00002170  69 6e 76 6f 6b 65 20 74  68 69 73 2c 20 73 65 6c  |invoke this, sel|
00002180  65 63 74 20 27 48 65 6c  70 27 20 66 72 6f 6d 0a  |ect 'Help' from.|
00002190  74 68 65 20 69 63 6f 6e  62 61 72 20 6d 65 6e 75  |the iconbar menu|
000021a0  2c 20 61 6e 64 20 6d 6f  76 65 20 74 68 65 20 70  |, and move the p|
000021b0  6f 69 6e 74 65 72 20 6f  76 65 72 20 74 68 65 20  |ointer over the |
000021c0  66 75 6e 63 74 69 6f 6e  20 62 75 74 74 6f 6e 73  |function buttons|
000021d0  20 70 72 6f 76 69 64 65  64 2e 0a 59 6f 75 20 77  | provided..You w|
000021e0  69 6c 6c 20 66 69 6e 64  20 74 68 61 74 20 6d 6f  |ill find that mo|
000021f0  73 74 20 6f 66 20 74 68  65 20 62 75 74 74 6f 6e  |st of the button|
00002200  73 20 70 72 6f 76 69 64  65 20 74 77 6f 20 73 65  |s provide two se|
00002210  70 61 72 61 74 65 20 66  75 6e 63 74 69 6f 6e 73  |parate functions|
00002220  2e 20 54 68 65 0a 66 75  6e 63 74 69 6f 6e 20 64  |. The.function d|
00002230  69 73 70 6c 61 79 65 64  20 6f 6e 20 74 68 65 20  |isplayed on the |
00002240  62 75 74 74 6f 6e 20 69  73 20 69 6e 76 6f 6b 65  |button is invoke|
00002250  64 20 75 73 69 6e 67 20  74 68 65 20 53 45 4c 45  |d using the SELE|
00002260  43 54 20 6d 6f 75 73 65  20 62 75 74 74 6f 6e 2c  |CT mouse button,|
00002270  0a 77 68 69 6c 65 20 61  6e 6f 74 68 65 72 2c 20  |.while another, |
00002280  6f 66 74 65 6e 20 74 68  65 20 69 6e 76 65 72 73  |often the invers|
00002290  65 20 66 75 6e 63 74 69  6f 6e 2c 20 69 73 20 69  |e function, is i|
000022a0  6e 76 6f 6b 65 64 20 75  73 69 6e 67 20 74 68 65  |nvoked using the|
000022b0  20 41 44 4a 55 53 54 0a  62 75 74 74 6f 6e 2e 0a  | ADJUST.button..|
000022c0  0a 0a 52 65 76 65 72 73  65 20 50 6f 6c 69 73 68  |..Reverse Polish|
000022d0  0a 3d 3d 3d 3d 3d 3d 3d  3d 3d 3d 3d 3d 3d 3d 0a  |.==============.|
000022e0  0a 52 65 76 65 72 73 65  20 50 6f 6c 69 73 68 20  |.Reverse Polish |
000022f0  69 73 20 61 20 6e 6f 74  61 74 69 6f 6e 20 73 79  |is a notation sy|
00002300  73 74 65 6d 20 66 6f 72  20 6d 61 74 68 65 6d 61  |stem for mathema|
00002310  74 69 63 61 6c 20 65 78  70 72 65 73 73 69 6f 6e  |tical expression|
00002320  73 20 0a 69 6e 76 65 6e  74 65 64 20 62 79 20 61  |s .invented by a|
00002330  20 50 6f 6c 69 73 68 20  67 65 6e 74 6c 65 6d 61  | Polish gentlema|
00002340  6e 20 62 79 20 74 68 65  20 6e 61 6d 65 20 6f 66  |n by the name of|
00002350  20 4c 75 6b 61 73 69 65  77 69 63 7a 2e 20 0a 55  | Lukasiewicz. .U|
00002360  6e 66 6f 72 74 75 6e 61  74 65 6c 79 20 66 6f 72  |nfortunately for|
00002370  20 68 69 6d 2c 20 6e 6f  62 6f 64 79 20 63 6f 75  | him, nobody cou|
00002380  6c 64 20 70 72 6f 6e 6f  75 6e 63 65 20 68 69 73  |ld pronounce his|
00002390  20 6e 61 6d 65 20 73 6f  20 74 68 65 20 0a 6e 6f  | name so the .no|
000023a0  74 61 74 69 6f 6e 20 62  65 63 61 6d 65 20 6b 6e  |tation became kn|
000023b0  6f 77 6e 20 61 73 20 52  65 76 65 72 73 65 20 50  |own as Reverse P|
000023c0  6f 6c 69 73 68 2c 20 61  6e 64 20 68 69 73 20 6e  |olish, and his n|
000023d0  61 6d 65 20 69 73 20 61  6c 6c 20 62 75 74 20 0a  |ame is all but .|
000023e0  66 6f 72 67 6f 74 74 65  6e 2e 0a 0a 49 74 20 69  |forgotten...It i|
000023f0  73 20 70 6f 73 73 69 62  6c 65 20 74 68 61 74 20  |s possible that |
00002400  65 76 65 6e 20 74 68 65  20 6e 6f 74 61 74 69 6f  |even the notatio|
00002410  6e 20 69 74 73 65 6c 66  20 77 6f 75 6c 64 20 68  |n itself would h|
00002420  61 76 65 20 62 65 65 6e  0a 66 6f 72 67 6f 74 74  |ave been.forgott|
00002430  65 6e 20 77 65 72 65 20  69 74 20 6e 6f 74 20 66  |en were it not f|
00002440  6f 72 20 74 68 65 20 61  72 72 69 76 61 6c 20 6f  |or the arrival o|
00002450  66 20 63 6f 6d 70 75 74  65 72 73 2c 20 77 68 65  |f computers, whe|
00002460  72 65 20 69 74 20 68 61  73 0a 62 65 63 6f 6d 65  |re it has.become|
00002470  20 70 72 6f 62 61 62 6c  79 20 6f 6e 65 20 6f 66  | probably one of|
00002480  20 74 68 65 20 6d 6f 73  74 20 6f 66 74 65 6e 20  | the most often |
00002490  75 73 65 64 20 73 79 73  74 65 6d 73 2c 20 6e 6f  |used systems, no|
000024a0  74 20 66 6f 72 20 0a 77  72 69 74 69 6e 67 20 65  |t for .writing e|
000024b0  78 70 72 65 73 73 69 6f  6e 73 2c 20 62 75 74 20  |xpressions, but |
000024c0  66 6f 72 20 73 74 6f 72  69 6e 67 20 74 68 65 6d  |for storing them|
000024d0  20 66 6f 72 20 6c 61 74  65 72 20 63 6f 6d 70 75  | for later compu|
000024e0  74 61 74 69 6f 6e 2c 0a  61 73 20 66 6f 72 20 65  |tation,.as for e|
000024f0  78 61 6d 70 6c 65 20 69  6e 20 63 6f 6d 70 69 6c  |xample in compil|
00002500  65 64 20 63 6f 64 65 2e  20 0a 0a 54 68 65 20 46  |ed code. ..The F|
00002510  6f 72 74 68 20 70 72 6f  67 72 61 6d 6d 69 6e 67  |orth programming|
00002520  20 6c 61 6e 67 75 61 67  65 20 69 73 20 62 61 73  | language is bas|
00002530  65 64 20 75 70 6f 6e 20  74 68 65 20 52 65 76 65  |ed upon the Reve|
00002540  72 73 65 20 50 6f 6c 69  73 68 0a 73 79 73 74 65  |rse Polish.syste|
00002550  6d 2c 20 61 6e 64 20 50  6f 73 74 73 63 72 69 70  |m, and Postscrip|
00002560  74 20 61 6c 73 6f 20 77  6f 72 6b 73 20 74 68 69  |t also works thi|
00002570  73 20 77 61 79 2e 0a 0a  54 68 65 20 74 61 67 20  |s way...The tag |
00002580  27 72 65 76 65 72 73 65  27 20 73 69 6d 70 6c 79  |'reverse' simply|
00002590  20 72 65 66 65 72 73 20  74 6f 20 74 68 65 20 66  | refers to the f|
000025a0  61 63 74 20 74 68 61 74  20 6f 70 65 72 61 74 6f  |act that operato|
000025b0  72 73 2c 20 73 75 63 68  0a 61 73 20 27 2b 27 20  |rs, such.as '+' |
000025c0  61 6e 64 20 27 2d 27 20  61 72 65 20 77 72 69 74  |and '-' are writ|
000025d0  74 65 6e 20 61 66 74 65  72 20 74 68 65 20 76 61  |ten after the va|
000025e0  6c 75 65 73 20 6f 6e 20  77 68 69 63 68 20 74 68  |lues on which th|
000025f0  65 79 20 6f 70 65 72 61  74 65 0a 72 61 74 68 65  |ey operate.rathe|
00002600  72 20 74 68 61 6e 20 62  65 66 6f 72 65 2c 20 61  |r than before, a|
00002610  73 20 69 6e 20 6d 6f 72  65 20 63 6f 6e 76 65 6e  |s in more conven|
00002620  74 69 6f 6e 61 6c 20 6e  6f 74 61 74 69 6f 6e 2e  |tional notation.|
00002630  0a 0a 54 68 65 20 61 64  76 61 6e 74 61 67 65 20  |..The advantage |
00002640  6f 66 20 74 68 65 20 6e  6f 74 61 74 69 6f 6e 20  |of the notation |
00002650  69 73 20 74 68 61 74 20  69 74 20 70 65 72 6d 69  |is that it permi|
00002660  74 73 20 61 6e 20 65 78  70 72 65 73 73 69 6f 6e  |ts an expression|
00002670  0a 74 6f 20 62 65 20 77  72 69 74 74 65 6e 20 77  |.to be written w|
00002680  69 74 68 6f 75 74 20 74  68 65 20 75 73 65 20 6f  |ithout the use o|
00002690  66 20 70 61 72 65 6e 74  68 65 73 65 73 2c 20 77  |f parentheses, w|
000026a0  68 69 6c 65 20 72 65 6d  61 69 6e 69 6e 67 0a 74  |hile remaining.t|
000026b0  6f 74 61 6c 6c 79 20 75  6e 2d 61 6d 62 69 67 75  |otally un-ambigu|
000026c0  6f 75 73 2e 20 46 6f 72  20 65 78 61 6d 70 6c 65  |ous. For example|
000026d0  2c 20 74 68 65 20 65 78  70 72 65 73 73 69 6f 6e  |, the expression|
000026e0  20 2d 0a 0a 20 20 20 20  20 20 20 20 20 20 28 20  | -..          ( |
000026f0  32 20 2b 20 34 20 29 20  2a 20 28 20 37 20 2d 20  |2 + 4 ) * ( 7 - |
00002700  33 20 29 0a 0a 77 6f 75  6c 64 20 62 65 20 77 72  |3 )..would be wr|
00002710  69 74 74 65 6e 2c 20 6f  72 20 73 74 6f 72 65 64  |itten, or stored|
00002720  20 61 73 20 2d 0a 0a 20  20 20 20 20 20 20 20 20  | as -..         |
00002730  20 20 20 32 20 20 34 20  20 2b 20 20 37 20 20 33  |   2  4  +  7  3|
00002740  20 20 2d 20 20 2a 20 0a  0a 54 6f 20 65 76 61 6c  |  -  * ..To eval|
00002750  75 61 74 65 20 74 68 69  73 2c 20 74 68 65 20 65  |uate this, the e|
00002760  78 70 72 65 73 73 69 6f  6e 20 69 73 20 73 63 61  |xpression is sca|
00002770  6e 6e 65 64 20 66 72 6f  6d 20 6c 65 66 74 20 74  |nned from left t|
00002780  6f 20 72 69 67 68 74 2c  20 61 6e 64 20 0a 61 6e  |o right, and .an|
00002790  79 20 76 61 6c 75 65 73  20 66 6f 75 6e 64 20 72  |y values found r|
000027a0  65 6d 6f 76 65 64 20 61  6e 64 20 70 6c 61 63 65  |emoved and place|
000027b0  64 20 61 73 69 64 65 20  6f 6e 20 61 20 73 74 61  |d aside on a sta|
000027c0  63 6b 20 28 69 2e 65 2e  20 61 20 68 65 61 70 20  |ck (i.e. a heap |
000027d0  6f 72 20 0a 70 69 6c 65  29 2e 20 57 68 65 6e 20  |or .pile). When |
000027e0  61 6e 20 6f 70 65 72 61  74 6f 72 20 69 73 20 66  |an operator is f|
000027f0  6f 75 6e 64 2c 20 74 68  65 20 72 65 71 75 69 72  |ound, the requir|
00002800  65 64 20 6e 75 6d 62 65  72 20 6f 66 20 76 61 6c  |ed number of val|
00002810  75 65 73 20 61 72 65 20  0a 72 65 74 72 69 65 76  |ues are .retriev|
00002820  65 64 20 66 72 6f 6d 20  74 68 65 20 73 74 61 63  |ed from the stac|
00002830  6b 20 28 6c 61 73 74 20  6f 6e 2c 20 66 69 72 73  |k (last on, firs|
00002840  74 20 6f 66 66 29 2c 20  74 68 65 20 6f 70 65 72  |t off), the oper|
00002850  61 74 69 6f 6e 20 63 61  72 72 69 65 64 20 0a 6f  |ation carried .o|
00002860  75 74 20 6f 6e 20 74 68  65 6d 2c 20 61 6e 64 20  |ut on them, and |
00002870  74 68 65 20 72 65 73 75  6c 74 20 70 75 74 20 62  |the result put b|
00002880  61 63 6b 20 6f 6e 20 74  68 65 20 73 74 61 63 6b  |ack on the stack|
00002890  2e 20 54 68 69 73 20 73  79 73 74 65 6d 20 69 73  |. This system is|
000028a0  20 0a 63 6f 6e 74 69 6e  75 65 64 20 74 6f 20 74  | .continued to t|
000028b0  68 65 20 65 6e 64 20 6f  66 20 74 68 65 20 65 78  |he end of the ex|
000028c0  70 72 65 73 73 69 6f 6e  2e 0a 0a 54 68 75 73 20  |pression...Thus |
000028d0  69 6e 20 74 68 65 20 61  62 6f 76 65 20 63 61 73  |in the above cas|
000028e0  65 2c 20 32 20 61 6e 64  20 74 68 65 6e 20 34 20  |e, 2 and then 4 |
000028f0  61 72 65 20 70 6c 61 63  65 64 20 6f 6e 20 74 68  |are placed on th|
00002900  65 20 73 74 61 63 6b 20  62 65 66 6f 72 65 20 0a  |e stack before .|
00002910  74 68 65 20 27 2b 27 20  6f 70 65 72 61 74 6f 72  |the '+' operator|
00002920  20 69 73 20 66 6f 75 6e  64 2e 20 54 68 65 73 65  | is found. These|
00002930  20 76 61 6c 75 65 73 20  61 72 65 20 74 68 65 6e  | values are then|
00002940  20 72 65 74 72 69 65 76  65 64 20 61 6e 64 20 74  | retrieved and t|
00002950  68 65 0a 61 64 64 69 74  69 6f 6e 20 63 61 72 72  |he.addition carr|
00002960  69 65 64 20 6f 75 74 2e  20 54 68 65 20 72 65 73  |ied out. The res|
00002970  75 6c 74 2c 20 36 2c 20  69 73 20 74 68 65 6e 20  |ult, 6, is then |
00002980  70 6c 61 63 65 64 20 62  61 63 6b 20 6f 6e 20 74  |placed back on t|
00002990  68 65 20 0a 73 74 61 63  6b 2e 20 0a 0a 54 68 65  |he .stack. ..The|
000029a0  6e 20 37 20 61 6e 64 20  33 20 61 72 65 20 66 6f  |n 7 and 3 are fo|
000029b0  75 6e 64 20 69 6e 20 74  75 72 6e 20 61 6e 64 20  |und in turn and |
000029c0  70 6c 61 63 65 64 20 6f  6e 20 74 6f 70 20 6f 66  |placed on top of|
000029d0  20 74 68 65 20 36 2e 20  41 74 20 74 68 69 73 20  | the 6. At this |
000029e0  0a 70 6f 69 6e 74 20 61  20 27 2d 27 20 6f 70 65  |.point a '-' ope|
000029f0  72 61 74 6f 72 20 69 73  20 66 6f 75 6e 64 2c 20  |rator is found, |
00002a00  73 6f 20 74 68 65 20 6c  61 73 74 20 74 77 6f 20  |so the last two |
00002a10  76 61 6c 75 65 73 2c 20  37 20 61 6e 64 20 33 2c  |values, 7 and 3,|
00002a20  20 61 72 65 0a 72 65 74  72 69 65 76 65 64 20 61  | are.retrieved a|
00002a30  6e 64 20 74 68 65 20 72  65 73 75 6c 74 20 6f 66  |nd the result of|
00002a40  20 74 68 65 20 73 75 62  74 72 61 63 74 69 6f 6e  | the subtraction|
00002a50  2c 20 34 2c 20 69 73 20  70 6c 61 63 65 64 20 62  |, 4, is placed b|
00002a60  61 63 6b 20 6f 6e 20 0a  74 68 65 20 73 74 61 63  |ack on .the stac|
00002a70  6b 2c 20 61 73 20 62 65  66 6f 72 65 2e 0a 0a 41  |k, as before...A|
00002a80  74 20 74 68 69 73 20 70  6f 69 6e 74 20 74 68 65  |t this point the|
00002a90  20 73 74 61 63 6b 20 6e  6f 77 20 68 61 73 20 61  | stack now has a|
00002aa0  20 34 20 6f 6e 20 74 6f  70 20 6f 66 20 36 2c 20  | 4 on top of 6, |
00002ab0  73 6f 20 77 68 65 6e 20  74 68 65 20 6c 61 73 74  |so when the last|
00002ac0  20 0a 6f 70 65 72 61 74  6f 72 20 69 73 20 66 6f  | .operator is fo|
00002ad0  75 6e 64 2c 20 74 68 65  20 27 2a 27 2c 20 74 68  |und, the '*', th|
00002ae0  65 73 65 20 74 77 6f 20  6e 75 6d 62 65 72 73 20  |ese two numbers |
00002af0  61 72 65 20 6d 75 6c 74  69 70 6c 69 65 64 20 74  |are multiplied t|
00002b00  6f 67 65 74 68 65 72 20  0a 61 6e 64 20 74 68 65  |ogether .and the|
00002b10  20 72 65 73 75 6c 74 2c  20 6e 6f 77 20 74 68 65  | result, now the|
00002b20  20 66 69 6e 61 6c 20 61  6e 73 77 65 72 2c 20 32  | final answer, 2|
00002b30  34 2c 20 69 73 20 70 6c  61 63 65 64 20 62 61 63  |4, is placed bac|
00002b40  6b 20 6f 6e 20 74 68 65  20 0a 73 74 61 63 6b 2e  |k on the .stack.|
00002b50  0a 0a 4e 6f 74 69 63 65  20 74 68 61 74 20 77 68  |..Notice that wh|
00002b60  65 6e 65 76 65 72 20 61  6e 20 6f 70 65 72 61 74  |enever an operat|
00002b70  6f 72 20 69 73 20 66 6f  75 6e 64 2c 20 6f 6e 6c  |or is found, onl|
00002b80  79 20 74 68 65 20 72 65  71 75 69 72 65 64 20 6e  |y the required n|
00002b90  75 6d 62 65 72 20 6f 66  0a 76 61 6c 75 65 73 20  |umber of.values |
00002ba0  61 72 65 20 75 6e 73 74  61 63 6b 65 64 2c 20 73  |are unstacked, s|
00002bb0  6f 20 74 68 61 74 20 74  68 65 20 73 79 73 74 65  |o that the syste|
00002bc0  6d 20 77 6f 72 6b 73 20  65 71 75 61 6c 6c 79 20  |m works equally |
00002bd0  77 65 6c 6c 20 66 6f 72  20 75 6e 61 72 79 0a 6f  |well for unary.o|
00002be0  70 65 72 61 74 6f 72 73  20 73 75 63 68 20 61 73  |perators such as|
00002bf0  20 78 21 20 6f 72 20 73  69 6e 28 78 29 2c 20 61  | x! or sin(x), a|
00002c00  73 20 66 6f 72 20 62 69  6e 61 72 79 20 28 27 2b  |s for binary ('+|
00002c10  27 20 27 2f 27 20 65 74  63 29 20 6f 72 20 6f 74  |' '/' etc) or ot|
00002c20  68 65 72 20 0a 6f 70 65  72 61 74 6f 72 73 2e 0a  |her .operators..|
00002c30  0a 54 68 65 20 73 79 73  74 65 6d 20 6d 61 79 20  |.The system may |
00002c40  62 65 20 65 78 74 65 6e  64 65 64 20 74 6f 20 69  |be extended to i|
00002c50  6e 63 6c 75 64 65 20 6d  75 6c 74 69 2d 70 61 72  |nclude multi-par|
00002c60  61 6d 65 74 65 72 20 66  75 6e 63 74 69 6f 6e 73  |ameter functions|
00002c70  2c 20 73 75 63 68 0a 61  73 20 66 75 6e 63 74 69  |, such.as functi|
00002c80  6f 6e 28 20 61 2c 20 62  2c 20 63 20 29 2e 20 57  |on( a, b, c ). W|
00002c90  68 69 63 68 20 69 73 20  73 69 6d 70 6c 79 20 77  |hich is simply w|
00002ca0  72 69 74 74 65 6e 20 2d  0a 0a 20 20 20 20 20 20  |ritten -..      |
00002cb0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00002cc0  20 61 20 20 62 20 20 63  20 20 66 75 6e 63 74 69  | a  b  c  functi|
00002cd0  6f 6e 0a 0a 49 74 20 69  73 20 61 6c 73 6f 20 70  |on..It is also p|
00002ce0  6f 73 73 69 62 6c 65 20  74 6f 20 69 6e 63 6c 75  |ossible to inclu|
00002cf0  64 65 20 70 72 6f 67 72  61 6d 6d 69 6e 67 20 63  |de programming c|
00002d00  6f 6e 73 74 72 75 63 74  73 2c 20 73 75 63 68 20  |onstructs, such |
00002d10  61 73 0a 69 66 2d 74 68  65 6e 2d 65 6c 73 65 2c  |as.if-then-else,|
00002d20  20 72 65 70 65 61 74 2c  20 65 74 63 2c 20 61 73  | repeat, etc, as|
00002d30  20 69 73 20 64 6f 6e 65  20 69 6e 20 46 6f 72 74  | is done in Fort|
00002d40  68 20 61 6e 64 20 50 6f  73 74 73 63 72 69 70 74  |h and Postscript|
00002d50  2e 0a 0a 4e 6f 74 65 20  61 6c 73 6f 20 74 68 61  |...Note also tha|
00002d60  74 20 74 68 65 20 6e 6f  74 61 74 69 6f 6e 20 64  |t the notation d|
00002d70  6f 65 73 20 6e 6f 74 20  72 65 71 75 69 72 65 20  |oes not require |
00002d80  61 6e 79 20 6b 6e 6f 77  6c 65 64 67 65 20 6f 66  |any knowledge of|
00002d90  20 6f 70 65 72 61 74 6f  72 0a 70 72 69 6f 72 69  | operator.priori|
00002da0  74 79 2e 20 20 4f 70 65  72 61 74 6f 72 73 20 61  |ty.  Operators a|
00002db0  72 65 20 61 6c 77 61 79  73 20 65 78 65 63 75 74  |re always execut|
00002dc0  65 64 20 77 68 65 6e 20  66 6f 75 6e 64 2c 20 75  |ed when found, u|
00002dd0  73 69 6e 67 20 68 6f 77  65 76 65 72 0a 6d 61 6e  |sing however.man|
00002de0  79 20 76 61 6c 75 65 73  20 61 72 65 20 6e 65 65  |y values are nee|
00002df0  64 65 64 2e 0a 0a 54 68  65 20 46 75 6e 63 74 69  |ded...The Functi|
00002e00  6f 6e 73 2e 0a 3d 3d 3d  3d 3d 3d 3d 3d 3d 3d 3d  |ons..===========|
00002e10  3d 3d 0a 0a 54 68 69 73  20 73 65 63 74 69 6f 6e  |==..This section|
00002e20  20 67 69 76 65 73 20 66  75 6c 6c 20 64 65 73 63  | gives full desc|
00002e30  72 69 70 74 69 6f 6e 73  20 6f 66 20 65 61 63 68  |riptions of each|
00002e40  20 61 76 61 69 6c 61 62  6c 65 20 66 75 6e 63 74  | available funct|
00002e50  69 6f 6e 2c 0a 66 6f 72  20 65 61 63 68 20 63 61  |ion,.for each ca|
00002e60  6c 63 75 6c 61 74 6f 72  20 62 75 74 74 6f 6e 2e  |lculator button.|
00002e70  20 20 20 0a 0a 49 6e 20  61 6c 6c 20 63 61 73 65  |   ..In all case|
00002e80  73 2c 20 58 2c 20 6f 72  20 58 20 61 6e 64 20 59  |s, X, or X and Y|
00002e90  20 77 68 65 72 65 20 61  70 70 72 6f 70 72 69 61  | where appropria|
00002ea0  74 65 2c 20 61 72 65 20  75 6e 73 74 61 63 6b 65  |te, are unstacke|
00002eb0  64 2c 20 61 6e 64 20 0a  74 68 65 20 72 65 73 75  |d, and .the resu|
00002ec0  6c 74 20 70 6c 61 63 65  64 20 69 6e 20 58 2c 20  |lt placed in X, |
00002ed0  75 6e 6c 65 73 73 20 6f  74 68 65 72 77 69 73 65  |unless otherwise|
00002ee0  20 73 74 61 72 65 64 2e  0a 0a 55 73 65 20 6f 66  | stared...Use of|
00002ef0  20 74 68 65 20 53 45 4c  45 43 54 20 6d 6f 75 73  | the SELECT mous|
00002f00  65 20 62 75 74 74 6f 6e  20 69 73 20 61 73 73 75  |e button is assu|
00002f10  6d 65 64 20 77 68 65 72  65 20 6e 6f 74 20 73 74  |med where not st|
00002f20  61 74 65 64 2e 0a 0a 0a  54 68 65 20 73 74 61 63  |ated....The stac|
00002f30  6b 20 6d 61 6e 69 70 75  6c 61 74 69 6f 6e 73 2e  |k manipulations.|
00002f40  0a 0a 5b 45 6e 74 65 72  5d 20 20 43 61 75 73 65  |..[Enter]  Cause|
00002f50  73 20 74 68 65 20 73 74  61 63 6b 20 74 6f 20 72  |s the stack to r|
00002f60  69 73 65 2e 0a 20 20 20  20 20 20 20 20 20 53 45  |ise..         SE|
00002f70  4c 45 43 54 20 43 6c 65  61 72 73 20 74 68 65 20  |LECT Clears the |
00002f80  58 20 72 65 67 69 73 74  65 72 0a 20 20 20 20 20  |X register.     |
00002f90  20 20 20 20 41 44 4a 55  53 54 20 50 72 65 73 65  |    ADJUST Prese|
00002fa0  72 76 65 73 20 74 68 65  20 58 20 72 65 67 69 73  |rves the X regis|
00002fb0  74 65 72 2e 0a 0a 5b 8a  5d 20 20 20 20 20 20 53  |ter...[.]      S|
00002fc0  45 4c 45 43 54 20 52 6f  74 61 74 65 73 20 74 68  |ELECT Rotates th|
00002fd0  65 20 73 74 61 63 6b 20  64 6f 77 6e 77 61 72 64  |e stack downward|
00002fe0  73 2e 0a 20 20 20 20 20  20 20 20 20 41 44 4a 55  |s..         ADJU|
00002ff0  53 54 20 52 6f 74 61 74  65 73 20 74 68 65 20 73  |ST Rotates the s|
00003000  74 61 63 6b 20 75 70 77  61 72 64 73 2e 0a 20 20  |tack upwards..  |
00003010  20 20 20 20 20 20 20 20  20 20 20 20 20 20 49 6e  |              In|
00003020  20 62 6f 74 68 20 63 61  73 65 73 20 65 6e 64 20  | both cases end |
00003030  76 61 6c 75 65 73 20 61  72 65 20 77 72 61 70 70  |values are wrapp|
00003040  65 64 20 61 72 6f 75 6e  64 2e 0a 0a 5b 58 8b 20  |ed around...[X. |
00003050  59 8a 5d 20 20 53 77 61  70 73 20 74 68 65 20 58  |Y.]  Swaps the X|
00003060  20 61 6e 64 20 59 20 72  65 67 69 73 74 65 72 20  | and Y register |
00003070  76 61 6c 75 65 73 2e 20  20 0a 20 20 20 20 20 20  |values.  .      |
00003080  20 20 20 54 68 65 20 73  74 61 63 6b 20 64 6f 65  |   The stack doe|
00003090  73 20 6e 6f 74 20 72 69  73 65 2e 0a 0a 0a 53 69  |s not rise....Si|
000030a0  6d 70 6c 65 20 41 72 69  74 68 6d 65 74 69 63 2e  |mple Arithmetic.|
000030b0  0a 0a 5b 2d 5d 20 20 53  75 62 74 72 61 63 74 2e  |..[-]  Subtract.|
000030c0  20 20 43 6f 6d 70 75 74  65 73 20 59 20 2d 20 58  |  Computes Y - X|
000030d0  0a 0a 5b 2b 5d 20 20 41  64 64 2e 20 20 20 20 20  |..[+]  Add.     |
000030e0  20 20 43 6f 6d 70 75 74  65 73 20 59 20 2b 20 58  |  Computes Y + X|
000030f0  0a 0a 5b d7 5d 20 20 4d  75 6c 74 69 70 6c 79 2e  |..[.]  Multiply.|
00003100  20 20 43 6f 6d 70 75 74  65 73 20 59 20 2a 20 58  |  Computes Y * X|
00003110  0a 0a 5b f7 5d 20 20 44  69 76 69 64 65 2e 20 20  |..[.]  Divide.  |
00003120  20 20 43 6f 6d 70 75 74  65 73 20 59 20 f7 20 58  |  Computes Y . X|
00003130  0a 0a 0a 46 75 6e 63 74  69 6f 6e 73 20 6f 66 20  |...Functions of |
00003140  58 2e 0a 0a 5b 78 21 5d  20 20 20 46 61 63 74 6f  |X...[x!]   Facto|
00003150  72 69 61 6c 2e 20 43 6f  6d 70 75 74 65 73 20 20  |rial. Computes  |
00003160  78 20 2a 20 28 78 2d 31  29 20 2a 20 28 78 2d 32  |x * (x-1) * (x-2|
00003170  29 20 2a 20 28 78 2d 33  29 20 2e 2e 2e 20 2a 20  |) * (x-3) ... * |
00003180  32 20 2a 20 31 0a 0a 20  20 20 20 20 20 20 65 2e  |2 * 1..       e.|
00003190  67 2e 20 20 74 6f 20 63  6f 6d 70 75 74 65 20 66  |g.  to compute f|
000031a0  61 63 74 6f 72 69 61 6c  20 31 30 2c 20 6b 65 79  |actorial 10, key|
000031b0  20 69 6e 20 2d 0a 20 20  20 20 20 20 20 20 20 20  | in -.          |
000031c0  20 20 20 20 20 20 5b 31  30 5d 20 5b 78 21 5d 20  |      [10] [x!] |
000031d0  20 20 20 72 65 73 75 6c  74 20 33 36 32 38 38 30  |   result 362880|
000031e0  30 0a 0a 0a 5b 31 2f 78  5d 20 20 52 65 63 69 70  |0...[1/x]  Recip|
000031f0  72 6f 63 61 6c 2e 20 20  43 6f 6d 70 75 74 65 73  |rocal.  Computes|
00003200  20 31 20 f7 20 78 0a 0a  20 20 20 20 20 20 20 65  | 1 . x..       e|
00003210  2e 67 2e 20 20 74 6f 20  63 6f 6d 70 75 74 65 20  |.g.  to compute |
00003220  31 20 2f 20 65 2c 20 20  6b 65 79 20 69 6e 20 2d  |1 / e,  key in -|
00003230  0a 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |.               |
00003240  20 5b 65 5d 20 5b 31 2f  78 5d 20 20 20 20 72 65  | [e] [1/x]    re|
00003250  73 75 6c 74 20 20 30 2e  33 37 0a 0a 0a 5b 78 5e  |sult  0.37...[x^|
00003260  79 5d 20 20 50 6f 77 65  72 73 2e 20 20 28 20 41  |y]  Powers.  ( A|
00003270  63 74 75 61 6c 20 6c 65  67 65 6e 64 20 6e 6f 74  |ctual legend not|
00003280  20 72 65 70 72 6f 64 75  63 69 62 6c 65 20 68 65  | reproducible he|
00003290  72 65 29 0a 20 20 20 20  20 20 20 53 45 4c 45 43  |re).       SELEC|
000032a0  54 20 20 20 43 6f 6d 70  75 74 65 73 20 58 20 74  |T   Computes X t|
000032b0  68 65 20 74 68 65 20 70  6f 77 65 72 20 6f 66 20  |he the power of |
000032c0  59 0a 20 20 20 20 20 20  20 41 44 4a 55 53 54 20  |Y.       ADJUST |
000032d0  20 20 43 6f 6d 70 75 74  65 73 20 59 20 74 68 65  |  Computes Y the|
000032e0  20 74 68 65 20 70 6f 77  65 72 20 6f 66 20 58 0a  | the power of X.|
000032f0  0a 5b 78 b2 5d 20 20 20  53 71 75 61 72 65 73 2e  |.[x.]   Squares.|
00003300  20 0a 20 20 20 20 20 20  20 53 45 4c 45 43 54 20  | .       SELECT |
00003310  20 20 43 6f 6d 70 75 74  65 73 20 78 20 2a 20 78  |  Computes x * x|
00003320  0a 20 20 20 20 20 20 20  41 44 4a 55 53 54 20 20  |.       ADJUST  |
00003330  20 43 6f 6d 70 75 74 65  73 20 74 68 65 20 73 71  | Computes the sq|
00003340  75 61 72 65 20 72 6f 6f  74 20 6f 66 20 78 0a 0a  |uare root of x..|
00003350  0a 4d 69 73 63 65 6c 6c  61 6e 65 6f 75 73 20 46  |.Miscellaneous F|
00003360  75 6e 63 74 69 6f 6e 73  2e 0a 0a 5b b1 5d 20 20  |unctions...[.]  |
00003370  20 20 43 68 61 6e 67 65  73 20 74 68 65 20 73 69  |  Changes the si|
00003380  67 6e 20 6f 66 20 58 2e  20 20 69 2e 65 2e 20 2d  |gn of X.  i.e. -|
00003390  78 20 62 65 63 6f 6d 65  73 20 78 2c 20 61 6e 64  |x becomes x, and|
000033a0  20 78 20 62 65 63 6f 6d  65 73 20 2d 78 0a 0a 5b  | x becomes -x..[|
000033b0  49 6e 74 5d 20 20 49 6e  74 65 67 65 72 2e 0a 20  |Int]  Integer.. |
000033c0  20 20 20 20 20 20 53 45  4c 45 43 54 20 20 20 43  |      SELECT   C|
000033d0  6f 6d 70 75 74 65 73 20  74 68 65 20 69 6e 74 65  |omputes the inte|
000033e0  67 65 72 20 70 61 72 74  20 6f 66 20 78 2c 20 72  |ger part of x, r|
000033f0  65 6d 6f 76 69 6e 67 20  66 72 61 63 74 69 6f 6e  |emoving fraction|
00003400  73 2e 0a 20 20 20 20 20  20 20 41 44 4a 55 53 54  |s..       ADJUST|
00003410  20 20 20 43 6f 6d 70 75  74 65 73 20 74 68 65 20  |   Computes the |
00003420  66 72 61 63 74 69 6f 6e  61 6c 20 70 61 72 74 20  |fractional part |
00003430  6f 66 20 78 2e 0a 0a 5b  41 62 73 5d 20 20 41 62  |of x...[Abs]  Ab|
00003440  73 6f 6c 75 74 65 20 43  6f 6d 70 75 74 65 73 20  |solute Computes |
00003450  7c 78 7c 20 69 2e 65 2e  20 52 65 6d 6f 76 65 73  ||x| i.e. Removes|
00003460  20 61 6e 79 20 2d 76 65  20 73 69 67 6e 2e 0a 0a  | any -ve sign...|
00003470  0a 4c 6f 67 61 72 69 74  68 6d 73 2e 0a 0a 5b 4c  |.Logarithms...[L|
00003480  6f 67 5d 20 20 53 45 4c  45 43 54 20 20 43 6f 6d  |og]  SELECT  Com|
00003490  70 75 74 65 73 20 74 68  65 20 6c 6f 67 20 74 6f  |putes the log to|
000034a0  20 62 61 73 65 20 31 30  2e 0a 20 20 20 20 20 20  | base 10..      |
000034b0  20 41 44 4a 55 53 54 20  20 43 6f 6d 70 75 74 65  | ADJUST  Compute|
000034c0  73 20 74 68 65 20 61 6e  74 69 2d 6c 6f 67 20 74  |s the anti-log t|
000034d0  6f 20 62 61 73 65 20 31  30 2e 0a 0a 5b 4c 6e 5d  |o base 10...[Ln]|
000034e0  20 20 20 53 45 4c 45 43  54 20 20 43 6f 6d 70 75  |   SELECT  Compu|
000034f0  74 65 73 20 74 68 65 20  6c 6f 67 20 74 6f 20 62  |tes the log to b|
00003500  61 73 65 20 45 2e 0a 20  20 20 20 20 20 20 41 44  |ase E..       AD|
00003510  4a 55 53 54 20 20 43 6f  6d 70 75 74 65 73 20 74  |JUST  Computes t|
00003520  68 65 20 61 6e 74 69 2d  6c 6f 67 20 74 6f 20 62  |he anti-log to b|
00003530  61 73 65 20 45 2e 0a 0a  0a 54 72 69 67 20 46 75  |ase E....Trig Fu|
00003540  6e 63 74 69 6f 6e 73 2e  0a 0a 5b 53 69 6e 5d 20  |nctions...[Sin] |
00003550  20 53 45 4c 45 43 54 20  20 43 6f 6d 70 75 74 65  | SELECT  Compute|
00003560  73 20 73 69 6e 65 28 78  29 0a 20 20 20 20 20 20  |s sine(x).      |
00003570  20 41 44 4a 55 53 54 20  20 43 6f 6d 70 75 74 65  | ADJUST  Compute|
00003580  73 20 61 6e 67 6c 65 20  77 68 6f 73 65 20 73 69  |s angle whose si|
00003590  6e 65 20 69 73 20 78 0a  0a 5b 43 6f 73 5d 20 20  |ne is x..[Cos]  |
000035a0  53 45 4c 45 43 54 20 20  43 6f 6d 70 75 74 65 73  |SELECT  Computes|
000035b0  20 63 6f 73 28 78 29 0a  20 20 20 20 20 20 20 41  | cos(x).       A|
000035c0  44 4a 55 53 54 20 20 43  6f 6d 70 75 74 65 73 20  |DJUST  Computes |
000035d0  61 6e 67 6c 65 20 77 68  6f 73 65 20 63 6f 73 69  |angle whose cosi|
000035e0  6e 65 20 69 73 20 78 0a  0a 5b 54 61 6e 5d 20 20  |ne is x..[Tan]  |
000035f0  53 45 4c 45 43 54 20 20  43 6f 6d 70 75 74 65 73  |SELECT  Computes|
00003600  20 74 61 6e 28 78 29 0a  20 20 20 20 20 20 20 41  | tan(x).       A|
00003610  44 4a 55 53 54 20 20 43  6f 6d 70 75 74 65 73 20  |DJUST  Computes |
00003620  61 6e 67 6c 65 20 77 68  6f 73 65 20 74 61 6e 67  |angle whose tang|
00003630  65 6e 74 20 69 73 20 78  0a 0a 0a 48 79 70 65 72  |ent is x...Hyper|
00003640  62 6f 6c 69 63 20 46 75  6e 63 74 69 6f 6e 73 2e  |bolic Functions.|
00003650  0a 0a 5b 53 69 6e 68 5d  20 53 45 4c 45 43 54 20  |..[Sinh] SELECT |
00003660  20 43 6f 6d 70 75 74 65  73 20 73 69 6e 68 28 78  | Computes sinh(x|
00003670  29 0a 20 20 20 20 20 20  20 41 44 4a 55 53 54 20  |).       ADJUST |
00003680  20 43 6f 6d 70 75 74 65  73 20 69 6e 76 65 72 73  | Computes invers|
00003690  65 20 6f 66 20 73 69 6e  68 28 78 29 0a 0a 5b 43  |e of sinh(x)..[C|
000036a0  6f 73 68 5d 20 53 45 4c  45 43 54 20 20 43 6f 6d  |osh] SELECT  Com|
000036b0  70 75 74 65 73 20 63 6f  73 68 28 78 29 0a 20 20  |putes cosh(x).  |
000036c0  20 20 20 20 20 41 44 4a  55 53 54 20 20 43 6f 6d  |     ADJUST  Com|
000036d0  70 75 74 65 73 20 69 6e  76 65 72 73 65 20 6f 66  |putes inverse of|
000036e0  20 63 6f 73 68 28 78 29  0a 0a 5b 54 61 6e 68 5d  | cosh(x)..[Tanh]|
000036f0  20 53 45 4c 45 43 54 20  20 43 6f 6d 70 75 74 65  | SELECT  Compute|
00003700  73 20 74 61 6e 68 28 78  29 0a 20 20 20 20 20 20  |s tanh(x).      |
00003710  20 41 44 4a 55 53 54 20  20 43 6f 6d 70 75 74 65  | ADJUST  Compute|
00003720  73 20 69 6e 76 65 72 73  65 20 6f 66 20 74 61 6e  |s inverse of tan|
00003730  68 28 78 29 0a 0a 0a 4f  74 68 65 72 20 46 75 6e  |h(x)...Other Fun|
00003740  63 74 69 6f 6e 73 2e 0a  0a 5b 50 6f 6c 61 72 5d  |ctions...[Polar]|
00003750  20 20 54 68 69 73 20 66  75 6e 63 74 69 6f 6e 20  |  This function |
00003760  70 72 6f 64 75 63 65 73  20 74 77 6f 20 72 65 73  |produces two res|
00003770  75 6c 74 20 76 61 6c 75  65 73 2e 0a 0a 20 20 20  |ult values...   |
00003780  20 20 20 20 20 20 53 45  4c 45 43 54 20 43 6f 6d  |      SELECT Com|
00003790  70 75 74 65 73 20 70 6f  6c 61 72 20 66 72 6f 6d  |putes polar from|
000037a0  20 63 61 72 74 65 73 69  61 6e 20 63 6f 2d 6f 72  | cartesian co-or|
000037b0  64 69 6e 61 74 65 73 2e  0a 20 20 20 20 20 20 20  |dinates..       |
000037c0  20 20 20 20 20 20 20 20  20 20 20 20 20 58 20 3d  |             X =|
000037d0  20 53 71 72 74 28 20 78  2a 78 20 2b 20 79 2a 79  | Sqrt( x*x + y*y|
000037e0  20 29 0a 20 20 20 20 20  20 20 20 20 20 20 20 20  | ).             |
000037f0  20 20 20 20 20 20 20 59  20 3d 20 61 6e 67 6c 65  |       Y = angle|
00003800  20 77 68 6f 73 65 20 74  61 6e 67 65 6e 74 20 69  | whose tangent i|
00003810  73 20 59 20 f7 20 58 0a  0a 20 20 20 20 20 20 20  |s Y . X..       |
00003820  20 20 65 2e 67 2e 20 20  20 47 69 76 65 6e 20 61  |  e.g.   Given a|
00003830  20 33 2c 20 34 2c 20 35  20 74 72 69 61 6e 67 6c  | 3, 4, 5 triangl|
00003840  65 2c 20 6b 65 79 20 69  6e 20 2d 0a 20 20 20 20  |e, key in -.    |
00003850  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 5b  |               [|
00003860  33 5d 20 5b 45 6e 74 65  72 5d 20 5b 34 5d 20 5b  |3] [Enter] [4] [|
00003870  50 6f 6c 61 72 5d 20 20  20 72 65 73 75 6c 74 73  |Polar]   results|
00003880  20 69 6e 20 2d 0a 20 20  20 20 20 20 20 20 20 20  | in -.          |
00003890  20 20 20 20 20 20 20 20  20 20 58 20 3d 20 35 2c  |          X = 5,|
000038a0  20 20 74 68 65 20 28 68  79 70 6f 74 65 6e 75 73  |  the (hypotenus|
000038b0  65 29 0a 20 20 20 20 20  20 20 20 20 20 20 20 20  |e).             |
000038c0  20 20 20 20 20 20 20 59  20 3d 20 33 36 2e 38 37  |       Y = 36.87|
000038d0  b0 0a 0a 20 20 20 20 20  20 20 20 20 41 44 4a 55  |...         ADJU|
000038e0  53 54 20 43 6f 6d 70 75  74 65 73 20 63 61 72 74  |ST Computes cart|
000038f0  65 73 69 61 6e 20 66 72  6f 6d 20 70 6f 6c 61 72  |esian from polar|
00003900  20 63 6f 2d 6f 72 64 69  6e 61 74 65 73 2e 0a 20  | co-ordinates.. |
00003910  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00003920  20 20 20 58 20 3d 20 78  20 2a 20 63 6f 73 28 79  |   X = x * cos(y|
00003930  29 0a 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |).              |
00003940  20 20 20 20 20 20 59 20  3d 20 78 20 2a 20 73 69  |      Y = x * si|
00003950  6e 28 79 29 0a 0a 0a 5b  48 2e 4d 53 5d 20 20 20  |n(y)...[H.MS]   |
00003960  48 6f 75 72 73 2c 20 4d  69 6e 75 74 65 73 20 61  |Hours, Minutes a|
00003970  6e 64 20 53 65 63 6f 6e  64 73 20 43 6f 6e 76 65  |nd Seconds Conve|
00003980  72 73 69 6f 6e 2e 0a 20  20 20 20 20 20 20 20 20  |rsion..         |
00003990  54 68 65 20 64 69 73 70  6c 61 79 20 73 68 6f 75  |The display shou|
000039a0  6c 64 20 62 65 20 73 65  74 20 74 6f 20 46 69 78  |ld be set to Fix|
000039b0  65 64 20 70 6f 69 6e 74  2c 20 34 20 64 65 63 69  |ed point, 4 deci|
000039c0  6d 61 6c 20 70 6c 61 63  65 73 0a 20 20 20 20 20  |mal places.     |
000039d0  20 20 20 20 74 6f 20 75  73 65 20 74 68 69 73 20  |    to use this |
000039e0  66 75 6e 63 74 69 6f 6e  2e 0a 0a 20 20 20 20 20  |function...     |
000039f0  20 20 20 20 53 45 4c 45  43 54 20 43 6f 6d 70 75  |    SELECT Compu|
00003a00  74 65 73 20 68 72 73 2c  20 6d 69 6e 73 2c 20 73  |tes hrs, mins, s|
00003a10  65 63 73 20 66 72 6f 6d  20 64 65 63 69 6d 61 6c  |ecs from decimal|
00003a20  20 68 72 73 2e 0a 20 20  20 20 20 20 20 20 20 20  | hrs..          |
00003a30  20 20 20 20 20 20 69 2e  65 2e 20 72 65 73 75 6c  |      i.e. resul|
00003a40  74 20 58 20 3d 20 48 2e  4d 4d 53 53 20 20 77 68  |t X = H.MMSS  wh|
00003a50  65 72 65 20 4d 4d 20 3d  3d 20 4d 69 6e 75 74 65  |ere MM == Minute|
00003a60  73 2c 20 53 53 20 3d 3d  20 53 65 63 6f 6e 64 73  |s, SS == Seconds|
00003a70  2e 0a 0a 20 20 20 20 20  20 20 20 20 65 2e 67 2e  |...         e.g.|
00003a80  20 20 20 47 69 76 65 6e  20 31 32 2e 35 36 20 68  |   Given 12.56 h|
00003a90  72 73 2c 20 20 6b 65 79  20 69 6e 20 2d 0a 20 20  |rs,  key in -.  |
00003aa0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 5b 31  |              [1|
00003ab0  32 2e 35 36 5d 20 5b 48  2e 4d 4d 53 53 5d 20 20  |2.56] [H.MMSS]  |
00003ac0  20 72 65 73 75 6c 74 73  20 69 6e 20 31 32 2e 33  | results in 12.3|
00003ad0  33 33 36 20 20 0a 20 20  20 20 20 20 20 20 20 20  |336  .          |
00003ae0  20 20 20 20 20 20 69 2e  65 2e 20 31 32 20 68 72  |      i.e. 12 hr|
00003af0  73 20 33 33 20 6d 69 6e  73 20 33 36 20 73 65 63  |s 33 mins 36 sec|
00003b00  73 2e 0a 20 20 20 0a 0a  20 20 20 20 20 20 20 20  |s..   ..        |
00003b10  20 41 44 4a 55 53 54 20  43 6f 6d 70 75 74 65 73  | ADJUST Computes|
00003b20  20 74 68 65 20 69 6e 76  65 72 73 65 2c 20 63 6f  | the inverse, co|
00003b30  6e 76 65 72 74 69 6e 67  20 68 72 73 2c 20 6d 69  |nverting hrs, mi|
00003b40  6e 73 2c 20 73 65 63 73  20 20 74 6f 20 68 72 73  |ns, secs  to hrs|
00003b50  2e 0a 0a 20 20 20 20 20  20 20 20 20 65 2e 67 2e  |...         e.g.|
00003b60  20 4d 61 70 20 72 65 66  65 72 65 6e 63 65 20 31  | Map reference 1|
00003b70  32 b0 20 31 38 27 2c 20  6b 65 79 20 69 6e 20 2d  |2. 18', key in -|
00003b80  0a 0a 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |..              |
00003b90  20 5b 31 32 2e 31 38 5d  20 20 41 44 4a 55 53 54  | [12.18]  ADJUST|
00003ba0  20 5b 48 2e 4d 4d 53 53  5d 20 20 20 20 72 65 73  | [H.MMSS]    res|
00003bb0  75 6c 74 73 20 69 6e 20  31 32 2e 33 30 b0 0a 0a  |ults in 12.30...|
00003bc0  0a 5b 79 43 78 5d 20 20  20 20 43 6f 6d 62 69 6e  |.[yCx]    Combin|
00003bd0  61 74 69 6f 6e 73 20 61  6e 64 20 50 65 72 6d 75  |ations and Permu|
00003be0  74 61 74 69 6f 6e 73 2e  0a 0a 20 20 20 20 20 20  |tations...      |
00003bf0  20 20 20 53 45 4c 45 43  54 20 43 6f 6d 70 75 74  |   SELECT Comput|
00003c00  65 73 20 74 68 65 20 6e  75 6d 62 65 72 20 6f 66  |es the number of|
00003c10  20 70 6f 73 73 69 62 6c  65 20 63 6f 6d 62 69 6e  | possible combin|
00003c20  61 74 69 6f 6e 73 20 6f  66 20 59 20 6f 62 6a 65  |ations of Y obje|
00003c30  63 74 73 0a 20 20 20 20  20 20 20 20 20 20 20 20  |cts.            |
00003c40  20 20 20 20 74 61 6b 65  6e 20 58 20 61 74 20 61  |    taken X at a|
00003c50  20 74 69 6d 65 2c 20 77  68 65 72 65 20 6f 72 64  | time, where ord|
00003c60  65 72 20 69 73 20 75 6e  69 6d 70 6f 72 74 61 6e  |er is unimportan|
00003c70  74 2e 0a 0a 20 20 20 20  20 20 20 20 20 65 2e 67  |t...         e.g|
00003c80  2e 20 20 20 54 6f 20 63  6f 6d 70 75 74 65 20 74  |.   To compute t|
00003c90  68 65 20 6e 75 6d 62 65  72 20 6f 66 20 77 61 79  |he number of way|
00003ca0  73 20 74 6f 20 73 65 6c  65 63 74 20 38 20 6f 62  |s to select 8 ob|
00003cb0  6a 65 63 74 73 20 66 72  6f 6d 20 61 0a 20 20 20  |jects from a.   |
00003cc0  20 20 20 20 20 20 20 20  20 20 20 20 20 74 6f 74  |             tot|
00003cd0  61 6c 20 6f 66 20 31 32  2c 20 6b 65 79 20 69 6e  |al of 12, key in|
00003ce0  20 2d 0a 0a 20 20 20 20  20 20 20 20 20 20 20 20  | -..            |
00003cf0  20 20 20 20 5b 31 32 5d  20 5b 45 6e 74 65 72 5d  |    [12] [Enter]|
00003d00  20 5b 38 5d 20 5b 79 43  78 5d 2c 20 20 72 65 73  | [8] [yCx],  res|
00003d10  75 6c 74 20 34 39 35 2e  0a 0a 20 20 20 20 20 20  |ult 495...      |
00003d20  20 20 20 4e 2e 42 2e 20  20 20 54 68 69 73 20 69  |   N.B.   This i|
00003d30  73 20 68 6f 77 20 74 6f  20 63 6f 6d 70 75 74 65  |s how to compute|
00003d40  20 28 73 6f 20 63 61 6c  6c 65 64 29 20 70 65 72  | (so called) per|
00003d50  6d 75 74 61 74 69 6f 6e  73 20 6f 6e 20 79 6f 75  |mutations on you|
00003d60  72 0a 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |r.              |
00003d70  20 20 50 6f 6f 6c 73 20  63 6f 75 70 6f 6e 2e 20  |  Pools coupon. |
00003d80  54 68 65 73 65 20 61 72  65 20 72 65 61 6c 6c 79  |These are really|
00003d90  20 43 6f 6d 62 69 6e 61  74 69 6f 6e 73 2c 20 61  | Combinations, a|
00003da0  73 20 6f 72 64 65 72 20  69 73 0a 20 20 20 20 20  |s order is.     |
00003db0  20 20 20 20 20 20 20 20  20 20 20 6e 6f 74 20 69  |           not i|
00003dc0  6d 70 6f 72 74 61 6e 74  2e 0a 0a 20 20 20 20 20  |mportant...     |
00003dd0  20 20 20 20 41 44 4a 55  53 54 20 43 6f 6d 70 75  |    ADJUST Compu|
00003de0  74 65 73 20 74 68 65 20  6e 75 6d 62 65 72 20 6f  |tes the number o|
00003df0  66 20 70 6f 73 73 69 62  6c 65 20 70 65 72 6d 75  |f possible permu|
00003e00  74 61 74 69 6f 6e 73 20  6f 66 20 59 20 6f 62 6a  |tations of Y obj|
00003e10  65 63 74 73 0a 20 20 20  20 20 20 20 20 20 20 20  |ects.           |
00003e20  20 20 20 20 20 74 61 6b  65 6e 20 58 20 61 74 20  |     taken X at |
00003e30  61 20 74 69 6d 65 2c 20  77 68 65 72 65 20 6f 72  |a time, where or|
00003e40  64 65 72 20 49 53 20 69  6d 70 6f 72 74 61 6e 74  |der IS important|
00003e50  2e 0a 0a 20 20 20 20 20  20 20 20 20 65 2e 67 2e  |...         e.g.|
00003e60  20 20 20 54 61 6b 69 6e  67 20 74 68 65 20 61 62  |   Taking the ab|
00003e70  6f 76 65 20 65 78 61 6d  70 6c 65 2c 20 6b 65 79  |ove example, key|
00003e80  20 69 6e 20 2d 0a 0a 20  20 20 20 20 20 20 20 20  | in -..         |
00003e90  20 20 20 20 20 20 20 5b  31 32 5d 20 5b 45 6e 74  |       [12] [Ent|
00003ea0  65 72 5d 20 5b 38 5d 20  41 44 4a 55 53 54 20 5b  |er] [8] ADJUST [|
00003eb0  79 43 78 5d 2c 20 20 20  72 65 73 75 6c 74 20 31  |yCx],   result 1|
00003ec0  39 2c 39 35 38 2c 34 30  30 0a 0a 0a 4d 6f 72 65  |9,958,400...More|
00003ed0  20 43 6f 6d 70 6c 65 78  20 45 78 61 6d 70 6c 65  | Complex Example|
00003ee0  73 2e 0a 3d 3d 3d 3d 3d  3d 3d 3d 3d 3d 3d 3d 3d  |s..=============|
00003ef0  3d 3d 3d 3d 3d 3d 3d 3d  0a 0a 31 2e 20 20 41 20  |========..1.  A |
00003f00  6c 61 73 65 72 20 72 61  6e 67 65 20 66 69 6e 64  |laser range find|
00003f10  65 72 20 67 69 76 65 73  20 74 68 65 20 64 69 73  |er gives the dis|
00003f20  74 61 6e 63 65 20 74 6f  20 74 68 65 20 74 6f 70  |tance to the top|
00003f30  20 6f 66 20 61 20 62 75  69 6c 64 69 6e 67 20 61  | of a building a|
00003f40  73 0a 20 20 20 20 39 37  2e 36 36 20 6d 65 74 65  |s.    97.66 mete|
00003f50  72 73 20 61 74 20 61 6e  20 65 6c 65 76 61 74 69  |rs at an elevati|
00003f60  6f 6e 20 6f 66 20 31 32  b0 20 32 35 27 2e 20 43  |on of 12. 25'. C|
00003f70  6f 6d 70 75 74 65 20 74  68 65 20 68 65 69 67 68  |ompute the heigh|
00003f80  74 20 6f 66 20 74 68 65  0a 20 20 20 20 62 75 69  |t of the.    bui|
00003f90  6c 64 69 6e 67 2c 20 61  6e 64 20 69 74 73 20 68  |lding, and its h|
00003fa0  6f 72 69 7a 6f 6e 74 61  6c 20 64 69 73 74 61 6e  |orizontal distan|
00003fb0  63 65 2e 0a 0a 20 20 20  20 57 65 20 6d 75 73 74  |ce...    We must|
00003fc0  20 66 69 72 73 74 20 63  6f 6e 76 65 72 74 20 74  | first convert t|
00003fd0  68 65 20 61 6e 67 6c 65  20 74 6f 20 64 65 63 69  |he angle to deci|
00003fe0  6d 61 6c 20 64 65 67 72  65 65 73 2c 20 74 68 65  |mal degrees, the|
00003ff0  6e 20 65 6e 74 65 72 20  74 68 65 20 0a 20 20 20  |n enter the .   |
00004000  20 61 6e 67 75 6c 61 72  20 64 69 73 74 61 6e 63  | angular distanc|
00004010  65 20 61 6e 64 20 63 6f  6e 76 65 72 74 20 74 6f  |e and convert to|
00004020  20 63 61 72 74 65 73 69  61 6e 20 63 6f 2d 6f 72  | cartesian co-or|
00004030  64 69 6e 61 74 65 73 2e  0a 0a 20 20 20 20 6b 65  |dinates...    ke|
00004040  79 20 69 6e 20 2d 20 20  20 5b 31 32 2e 32 35 5d  |y in -   [12.25]|
00004050  20 20 41 44 4a 55 53 54  20 5b 48 2e 4d 53 5d 20  |  ADJUST [H.MS] |
00004060  20 5b 39 37 2e 36 36 5d  20 20 41 44 4a 55 53 54  | [97.66]  ADJUST|
00004070  20 5b 50 4f 4c 41 52 5d  0a 0a 20 20 20 20 52 65  | [POLAR]..    Re|
00004080  73 75 6c 74 73 20 61 72  65 20 20 58 20 3d 20 39  |sults are  X = 9|
00004090  35 2e 33 38 2c 20 20 74  68 65 20 68 6f 72 69 7a  |5.38,  the horiz|
000040a0  6f 6e 74 61 6c 20 64 69  73 74 61 6e 63 65 2e 0a  |ontal distance..|
000040b0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
000040c0  20 59 20 3d 20 32 31 2e  30 30 2c 20 20 74 68 65  | Y = 21.00,  the|
000040d0  20 76 65 72 74 69 63 61  6c 20 68 65 69 67 68 74  | vertical height|
000040e0  20 6f 66 20 74 68 65 20  62 75 69 6c 64 69 6e 67  | of the building|
000040f0  2e 0a 0a 0a 32 2e 20 20  43 6f 6d 70 75 74 65 20  |....2.  Compute |
00004100  74 68 65 20 72 6f 6f 74  73 20 6f 66 20 74 68 65  |the roots of the|
00004110  20 65 71 75 61 74 69 6f  6e 3a 20 20 33 78 b2 20  | equation:  3x. |
00004120  2d 20 39 78 20 2b 20 36  20 3d 20 30 0a 0a 20 20  |- 9x + 6 = 0..  |
00004130  20 20 47 69 76 65 6e 20  74 68 65 20 65 71 75 61  |  Given the equa|
00004140  74 69 6f 6e 20 20 2d 62  20 b1 20 80 28 62 b2 20  |tion  -b . .(b. |
00004150  2d 20 34 61 63 29 20 20  20 69 2e 65 2e 20 20 61  |- 4ac)   i.e.  a|
00004160  20 3d 20 33 2c 20 20 62  20 3d 20 2d 39 2c 20 20  | = 3,  b = -9,  |
00004170  63 20 3d 20 36 0a 20 20  20 20 20 20 20 20 20 20  |c = 6.          |
00004180  20 20 20 20 20 20 20 20  20 20 20 20 20 20 2d 2d  |              --|
00004190  2d 2d 2d 2d 2d 2d 2d 2d  2d 2d 2d 2d 2d 2d 0a 20  |--------------. |
000041a0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
000041b0  20 20 20 20 20 20 20 20  20 20 20 20 20 32 61 0a  |             2a.|
000041c0  20 0a 20 20 20 20 54 68  69 73 20 65 78 61 6d 70  | .    This examp|
000041d0  6c 65 20 64 65 6d 6f 6e  73 74 72 61 74 65 73 20  |le demonstrates |
000041e0  74 68 65 20 75 73 65 20  6f 66 20 74 68 65 20 69  |the use of the i|
000041f0  6e 74 65 72 6e 61 6c 20  73 74 6f 72 61 67 65 20  |nternal storage |
00004200  72 65 67 69 73 74 65 72  73 0a 20 20 20 20 61 73  |registers.    as|
00004210  20 77 65 6c 6c 20 61 73  20 73 6f 6d 65 20 73 74  | well as some st|
00004220  61 63 6b 20 6d 61 6e 69  70 75 6c 61 74 69 6f 6e  |ack manipulation|
00004230  2c 20 61 6c 6c 20 6f 66  20 77 68 69 63 68 20 65  |, all of which e|
00004240  6c 69 6d 69 6e 61 74 65  73 20 74 68 65 20 0a 20  |liminates the . |
00004250  20 20 20 6e 65 65 64 20  74 6f 20 72 65 6d 65 6d  |   need to remem|
00004260  62 65 72 20 69 6e 74 65  72 6d 65 64 69 61 74 65  |ber intermediate|
00004270  20 72 65 73 75 6c 74 73  2c 20 61 6e 64 20 74 68  | results, and th|
00004280  65 20 6e 65 63 65 73 73  69 74 79 20 74 6f 20 65  |e necessity to e|
00004290  6e 74 65 72 0a 20 20 20  20 74 68 65 20 73 61 6d  |nter.    the sam|
000042a0  65 20 76 61 6c 75 65 20  6d 6f 72 65 20 74 68 61  |e value more tha|
000042b0  6e 20 6f 6e 63 65 2e 0a  0a 20 20 20 20 54 68 65  |n once...    The|
000042c0  20 62 65 73 74 20 77 61  79 20 6f 66 20 74 61 63  | best way of tac|
000042d0  6b 6c 69 6e 67 20 61 20  70 72 6f 62 6c 65 6d 20  |kling a problem |
000042e0  6c 69 6b 65 20 74 68 69  73 20 69 73 20 74 6f 20  |like this is to |
000042f0  73 74 61 72 74 20 69 6e  20 74 68 65 0a 20 20 20  |start in the.   |
00004300  20 6d 69 64 64 6c 65 2c  20 77 69 74 68 20 74 68  | middle, with th|
00004310  65 20 6d 6f 73 74 20 63  6f 6d 70 6c 65 78 20 70  |e most complex p|
00004320  61 72 74 2c 20 6c 69 6b  65 20 74 68 65 20 69 6e  |art, like the in|
00004330  6e 65 72 20 72 6f 6f 74  20 66 75 6e 63 74 69 6f  |ner root functio|
00004340  6e 2e 0a 0a 20 20 20 20  42 75 74 74 6f 6e 73 20  |n...    Buttons |
00004350  20 20 20 20 20 20 20 20  20 41 63 74 69 6f 6e 20  |         Action |
00004360  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00004370  20 20 20 53 74 61 63 6b  0a 20 20 20 20 3d 3d 3d  |   Stack.    ===|
00004380  3d 3d 3d 3d 20 20 20 20  20 20 20 20 20 20 3d 3d  |====          ==|
00004390  3d 3d 3d 3d 3d 3d 3d 3d  3d 3d 3d 3d 3d 3d 3d 3d  |================|
000043a0  3d 3d 3d 3d 20 20 20 20  3d 3d 3d 3d 3d 3d 3d 3d  |====    ========|
000043b0  3d 3d 3d 3d 3d 3d 3d 3d  3d 3d 3d 3d 3d 3d 0a 20  |==============. |
000043c0  20 20 20 5b 39 5d 20 20  20 20 20 20 20 20 20 20  |   [9]          |
000043d0  20 20 20 20 76 61 6c 75  65 20 2d 62 20 20 20 20  |    value -b    |
000043e0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 39  |               9|
000043f0  0a 20 20 20 20 5b 53 74  6f 72 65 5d 20 5b 31 5d  |.    [Store] [1]|
00004400  20 20 20 20 20 20 57 65  20 77 69 6c 6c 20 6e 65  |      We will ne|
00004410  65 64 20 74 68 69 73 20  6c 61 74 65 72 20 20 20  |ed this later   |
00004420  20 30 0a 20 20 20 20 5b  78 b2 5d 20 20 20 20 20  | 0.    [x.]     |
00004430  20 20 20 20 20 20 20 20  63 6f 6d 70 75 74 65 20  |        compute |
00004440  62 b2 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |b.              |
00004450  20 20 38 31 0a 20 20 20  20 5b 34 5d 20 20 20 20  |  81.    [4]    |
00004460  20 20 20 20 20 20 20 20  20 20 65 6e 74 65 72 20  |          enter |
00004470  34 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |4               |
00004480  20 20 20 20 20 34 20 20  38 31 0a 20 20 20 20 5b  |     4  81.    [|
00004490  45 6e 74 65 72 5d 20 20  20 20 20 20 20 20 20 20  |Enter]          |
000044a0  70 75 73 68 20 74 68 65  20 73 74 61 63 6b 20 75  |push the stack u|
000044b0  70 20 20 20 20 20 20 20  20 20 20 20 20 20 20 34  |p              4|
000044c0  20 20 38 31 0a 20 20 20  20 5b 33 5d 20 20 20 20  |  81.    [3]    |
000044d0  20 20 20 20 20 20 20 20  20 20 76 61 6c 75 65 20  |          value |
000044e0  61 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |a               |
000044f0  20 20 20 20 20 33 20 20  20 34 20 20 38 31 0a 20  |     3   4  81. |
00004500  20 20 20 5b 53 74 6f 72  65 5d 20 5b 32 5d 20 20  |   [Store] [2]  |
00004510  20 20 20 20 57 65 20 77  69 6c 6c 20 6e 65 65 64  |    We will need|
00004520  20 74 68 69 73 20 61 67  61 69 6e 20 20 20 20 33  | this again    3|
00004530  20 20 20 34 20 20 38 31  0a 20 20 20 20 5b 78 5d  |   4  81.    [x]|
00004540  20 20 20 20 20 20 20 20  20 20 20 20 20 20 63 6f  |              co|
00004550  6d 70 75 74 65 20 34 61  20 20 20 20 20 20 20 20  |mpute 4a        |
00004560  20 20 20 20 20 20 20 20  31 32 20 20 38 31 0a 20  |        12  81. |
00004570  20 20 20 5b 36 5d 20 20  20 20 20 20 20 20 20 20  |   [6]          |
00004580  20 20 20 20 76 61 6c 75  65 20 63 20 20 20 20 20  |    value c     |
00004590  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 36  |               6|
000045a0  20 20 31 32 20 20 38 31  0a 20 20 20 20 5b 78 5d  |  12  81.    [x]|
000045b0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 63 6f  |              co|
000045c0  6d 70 75 74 65 20 34 61  63 20 20 20 20 20 20 20  |mpute 4ac       |
000045d0  20 20 20 20 20 20 20 20  37 32 20 20 38 31 0a 20  |        72  81. |
000045e0  20 20 20 5b 2d 5d 20 20  20 20 20 20 20 20 20 20  |   [-]          |
000045f0  20 20 20 20 63 6f 6d 70  75 74 65 20 62 b2 20 2d  |    compute b. -|
00004600  20 34 61 63 20 20 20 20  20 20 20 20 20 20 20 39  | 4ac           9|
00004610  0a 20 20 20 20 41 64 6a  20 5b 78 b2 5d 20 20 20  |.    Adj [x.]   |
00004620  20 20 20 20 20 20 63 6f  6d 70 75 74 65 20 73 71  |      compute sq|
00004630  72 20 72 6f 6f 74 2e 20  20 20 20 20 20 20 20 20  |r root.         |
00004640  20 33 0a 20 20 20 20 41  64 6a 20 5b 45 6e 74 65  | 3.    Adj [Ente|
00004650  72 5d 20 20 20 20 20 20  64 75 70 6c 69 63 61 74  |r]      duplicat|
00004660  65 20 76 61 6c 75 65 20  20 20 20 20 20 20 20 20  |e value         |
00004670  20 20 20 33 20 20 20 33  0a 20 20 20 20 41 64 6a  |   3   3.    Adj|
00004680  20 5b 53 74 6f 72 65 5d  20 5b 31 5d 20 20 72 65  | [Store] [1]  re|
00004690  63 61 6c 6c 20 2d 62 20  20 20 20 20 20 20 20 20  |call -b         |
000046a0  20 20 20 20 20 20 20 20  20 39 20 20 20 33 20 20  |         9   3  |
000046b0  20 33 0a 20 20 20 20 5b  2b 5d 20 20 20 20 20 20  | 3.    [+]      |
000046c0  20 20 20 20 20 20 20 20  63 6f 6d 70 75 74 65 20  |        compute |
000046d0  2d 62 20 2b 20 28 62 b2  20 2d 20 34 61 63 29 20  |-b + (b. - 4ac) |
000046e0  20 20 31 32 20 20 20 33  0a 20 20 20 20 41 64 6a  |  12   3.    Adj|
000046f0  20 5b 53 74 6f 72 65 5d  20 5b 32 5d 20 20 72 65  | [Store] [2]  re|
00004700  63 61 6c 6c 20 61 20 20  20 20 20 20 20 20 20 20  |call a          |
00004710  20 20 20 20 20 20 20 20  20 33 20 20 31 32 20 20  |         3  12  |
00004720  20 33 0a 20 20 20 20 5b  32 5d 20 20 20 20 20 20  | 3.    [2]      |
00004730  20 20 20 20 20 20 20 20  76 61 6c 75 65 20 32 20  |        value 2 |
00004740  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00004750  20 20 20 32 20 20 20 33  20 20 31 32 20 20 20 33  |   2   3  12   3|
00004760  0a 20 20 20 20 5b 78 5d  20 20 20 20 20 20 20 20  |.    [x]        |
00004770  20 20 20 20 20 20 63 6f  6d 70 75 74 65 20 32 61  |      compute 2a|
00004780  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00004790  20 36 20 20 31 32 20 20  20 33 0a 20 20 20 20 5b  | 6  12   3.    [|
000047a0  f7 5d 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |.]              |
000047b0  46 69 72 73 74 20 72 65  73 75 6c 74 20 3d 20 32  |First result = 2|
000047c0  20 20 20 20 20 20 20 20  20 20 20 32 20 20 20 33  |           2   3|
000047d0  0a 20 20 20 20 5b 8a 5d  20 20 20 20 20 20 20 20  |.    [.]        |
000047e0  20 20 20 20 20 20 6c 6f  6f 73 65 20 72 65 73 75  |      loose resu|
000047f0  6c 74 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |lt              |
00004800  20 33 0a 20 20 20 20 41  64 6a 20 5b 53 74 6f 72  | 3.    Adj [Stor|
00004810  65 5d 20 5b 31 5d 20 20  72 65 63 61 6c 6c 20 2d  |e] [1]  recall -|
00004820  62 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |b               |
00004830  20 20 20 39 20 20 20 33  0a 20 20 20 20 5b 78 8b  |   9   3.    [x.|
00004840  20 79 8a 5d 20 20 20 20  20 20 20 20 20 20 73 77  | y.]          sw|
00004850  61 70 20 76 61 6c 75 65  73 20 6f 76 65 72 20 20  |ap values over  |
00004860  20 20 20 20 20 20 20 20  20 33 20 20 20 39 0a 20  |         3   9. |
00004870  20 20 20 5b 2d 5d 20 20  20 20 20 20 20 20 20 20  |   [-]          |
00004880  20 20 20 20 63 6f 6d 70  75 74 65 20 2d 62 20 2d  |    compute -b -|
00004890  20 28 62 b2 20 2d 20 34  61 63 29 20 20 20 20 36  | (b. - 4ac)    6|
000048a0  0a 20 20 20 20 41 64 6a  20 5b 53 74 6f 72 65 5d  |.    Adj [Store]|
000048b0  20 5b 32 5d 20 20 72 65  63 61 6c 6c 20 61 20 20  | [2]  recall a  |
000048c0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
000048d0  20 33 20 20 20 36 0a 20  20 20 20 5b 32 5d 20 20  | 3   6.    [2]  |
000048e0  20 20 20 20 20 20 20 20  20 20 20 20 76 61 6c 75  |            valu|
000048f0  65 20 32 20 20 20 20 20  20 20 20 20 20 20 20 20  |e 2             |
00004900  20 20 20 20 20 20 20 32  20 20 20 33 20 20 20 36  |       2   3   6|
00004910  0a 20 20 20 20 5b 78 5d  20 20 20 20 20 20 20 20  |.    [x]        |
00004920  20 20 20 20 20 20 63 6f  6d 70 75 74 65 20 32 61  |      compute 2a|
00004930  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00004940  20 36 20 20 20 36 0a 20  20 20 20 5b f7 5d 20 20  | 6   6.    [.]  |
00004950  20 20 20 20 20 20 20 20  20 20 20 20 53 65 63 6f  |            Seco|
00004960  6e 64 20 72 65 73 75 6c  74 20 3d 20 31 20 20 20  |nd result = 1   |
00004970  20 20 20 20 20 20 20 31  0a 0a 48 65 6e 63 65 2c  |       1..Hence,|
00004980  20 74 68 65 20 72 6f 6f  74 73 20 61 72 65 20 78  | the roots are x|
00004990  20 3d 20 31 20 61 6e 64  20 78 20 3d 20 32 2e 0a  | = 1 and x = 2..|
000049a0  0a 54 68 65 72 65 20 6d  61 79 20 62 65 20 73 68  |.There may be sh|
000049b0  6f 72 74 65 72 20 77 61  79 73 20 6f 66 20 64 6f  |orter ways of do|
000049c0  69 6e 67 20 74 68 69 73  2e 20 4e 6f 74 65 20 74  |ing this. Note t|
000049d0  68 61 74 20 77 65 20 73  74 6f 72 65 64 20 2d 62  |hat we stored -b|
000049e0  20 61 6e 64 20 61 20 0a  76 61 6c 75 65 73 20 66  | and a .values f|
000049f0  6f 72 20 6c 61 74 65 72  20 75 73 65 2e 20 49 6e  |or later use. In|
00004a00  20 74 68 69 73 20 73 69  6d 70 6c 65 20 63 6f 6e  | this simple con|
00004a10  74 72 69 76 65 64 20 65  78 61 6d 70 6c 65 20 74  |trived example t|
00004a20  68 69 73 20 6d 61 79 20  68 61 76 65 0a 62 65 65  |his may have.bee|
00004a30  6e 20 70 6f 69 6e 74 6c  65 73 73 2c 20 61 73 20  |n pointless, as |
00004a40  74 68 65 79 20 63 6f 75  6c 64 20 65 61 73 69 6c  |they could easil|
00004a50  79 20 62 65 20 72 65 2d  65 6e 74 65 72 65 64 2e  |y be re-entered.|
00004a60  20 48 6f 77 65 76 65 72  2c 20 69 6e 20 61 20 72  | However, in a r|
00004a70  65 61 6c 0a 65 78 61 6d  70 6c 65 20 74 68 65 73  |eal.example thes|
00004a80  65 20 76 61 6c 75 65 73  20 6d 61 79 20 68 61 76  |e values may hav|
00004a90  65 20 68 61 64 20 39 20  6f 72 20 6d 6f 72 65 20  |e had 9 or more |
00004aa0  64 69 67 69 74 73 2c 20  73 6f 20 74 68 61 74 20  |digits, so that |
00004ab0  73 74 6f 72 69 6e 67 0a  74 68 65 6d 20 77 6f 75  |storing.them wou|
00004ac0  6c 64 20 62 65 20 61 20  72 65 61 6c 20 74 69 6d  |ld be a real tim|
00004ad0  65 20 73 61 76 65 72 2e  0a 0a 49 66 20 74 68 65  |e saver...If the|
00004ae0  20 69 6e 6e 65 72 20 66  75 6e 63 74 69 6f 6e 20  | inner function |
00004af0  68 61 64 20 62 65 65 6e  20 6e 65 67 61 74 69 76  |had been negativ|
00004b00  65 20 69 6e 64 69 63 61  74 69 6e 67 20 63 6f 6d  |e indicating com|
00004b10  70 6c 65 78 20 72 6f 6f  74 73 2c 20 77 65 0a 77  |plex roots, we.w|
00004b20  6f 75 6c 64 20 68 61 76  65 20 68 61 64 20 74 6f  |ould have had to|
00004b30  20 70 72 6f 63 65 65 64  20 73 6c 69 67 68 74 6c  | proceed slightl|
00004b40  79 20 64 69 66 66 65 72  65 6e 74 6c 79 2e 0a 0a  |y differently...|
00004b50  0a 0a 45 6e 64 2e 0a 0a                           |..End...|
00004b58