Home » Archimedes archive » Archimedes World » AW-1995-04-Disc1.adf » Disk1Apr95 » !AWApr95/Goodies/Calc/ManualTxt
!AWApr95/Goodies/Calc/ManualTxt
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » Archimedes archive » Archimedes World » AW-1995-04-Disc1.adf » Disk1Apr95 |
Filename: | !AWApr95/Goodies/Calc/ManualTxt |
Read OK: | ✔ |
File size: | 4B58 bytes |
Load address: | 0000 |
Exec address: | 0000 |
File contents
Reverse Polish Calculator - By Circle Software - � Jan 1995 =========================================================== This program is shareware. Please read the file Licence in this directory. Introduction. ============ The Reverse Polish system is different from the way most calculators work, and although this is simple, you should not try to use it without first reading these notes. The nature and origin of Reverse Polish notation is explained at the end of this file. Note that the !Help facility is fully implemented. Select Help from the iconbar menu. This manual is divided into sections. Conventions: Describes the nomenclature used in the text. A Quick Start: Gives simple instructions without getting technical. How to use RPCalc: Explains the finer points of using the program. Reverse Polish: Describes the origin and nature of Reverse Polish. The Functions: Describes the use af all calculator functions. More Complex Examples. To find any function, search for the button as [name] e.g. [+] or [Sine] etc. N.B. To correctly display some button legends, your text editor should be set to display standard system font. e.g. [�] should appear as [down arrow]. Conventions =========== Throughout this manual, references to button icons on the calculator are shown between square brackets, e.g. [Enter]. The terms SELECT and ADJUST refer to the first and third mouse buttons, as normally defined, and may be used to prefix a function button. When not specifically stated, you should always use the SELECT button, as in most cases, ADJUST will cause an alternative action. A Quick Start ============= First, see how easy it is to use by doing a simple addition calculation, before going into details. Press the following keys in order - [3] [Enter] [4] [+] The value shown in the lower display is the result of adding 3 + 4, (7). To multiply the result by 5, press - [5] [x] And we get 35.00 as expected. Its as simple as that! Using this method you can always see exactly what values are about to be operated on, unlike ordinary calculators. You can also now see why it is called 'Reverse' Polish. On this calculator you press these buttons in the reverse order, compared to a normal one. However, this simple example may illustrate how to use the machine, but does not show the real power of the system. For that, read on. How to use RPCalc. ================= The Displays. The calculator has four display registers rather than the usual one. The lower register, labelled 'X', is equivalent to the single display found on ordinary calculators. Above this, the Y register is used to hold a second value to be operated on, while the remainder will display intermediate calculation results, where appropriate. These registers constitute a 'stack', where numbers are placed until needed. When you click on the [+] operator button, for example, the value displayed in the X register will be added to the value in Y, and the result displayed in X. A few functions produce two results, and in these cases the second result will be displayed in the Y register. Entering Values. You enter values into the X register in the normal way, by clicking on the number buttons, or by using the keyboard number pad. (In the later case, the calculator must have the input focus. If not, click in the calculator background, or the iconbar icon.) To get a value into the Y register, first enter it into X, as above, and then use the [Enter] key. This will move the value in the X register up to the Y, and clear X ready for a new value. When [Enter] is used, any values in higher registers will also be moved up, and any value in the top register will be lost. This should rarely happen. Adding Two Numbers. Thus, to add two values, enter the first value into X, click [Enter] to push this up to Y, enter the second number into X, then click [+]. This simple example does not show the advantages of Reverse Polish over the more conventional calculator, so let's try something more complex. Evaluating an Expression. To evaluate the expression ( 2 + 4 ) * ( 7 - 3 ) follow the button clicks in the first column below, and check the actions listed. In particular note the display contents as given in the last column. Button Action Stack ====== ================================== ======== X Y [2] '2' appears in X. 2 [Enter] The 2 moves up to Y, and X clears. 2 [4] '4' appears in X. 4 2 [+] '4' and '2' are unstacked, and 6 placed in X 6 [7] '7' appears in X, the 6 moves up to Y 7 6 [Enter] The 7 moves up to Y, and X clears. 7 6 [3] '3' appears in X 3 7 6 [-] '3' and '7' are unstacked, and 4 placed in X 4 6 [*] '4' and '6' are unstacked, and 24 placed in X 24 Thus X contains the final result, which we can use in further calculations if required. Note that it is not necessary to write down, remember, or re-enter either intermediate result 6 or 4, as these remain on the stack until needed. This calculation required 3 of the 4 registers provided, which you will find sufficient for the most complex calculations. Another Example Suppose you needed to calculate the VAT due and the total price of an item costing �123.50 We will use a property of the [Enter] button invoked by clicking with the ADJUST button. When you do this, the value in X will be moved up as before, but X will not be cleared, so its value may be used again. Press the buttons shown in the first column, as before - ( Remember to use the ADJUST button for [Enter] ). Buttons Action Stack ======= ================================== ============= X Y [1][2][3][.][5] 123.5 appears in X 123.50 [Enter] Use the ADJUST mouse button 123.50 123.50 [1][7][.][5] Stack rises & 17.5 appears in X 17.5 123.50 123.50 [%] X % of Y is computed in X 21.61 123.50 (This is the VAT due on 123.50) [+] 21.61 + 123.50 is computed in X 145.11 (This is the total due.) Note how the final total was computed with a single key stroke, without the need to re-enter any values at all. This was because we had duplicated the original 123.5 by clicking [Enter] with the ADJUST button. The Storage Registers In addition to the stack, the value in X may be stored in any of 10 special registers numbered from 0 to 9. To do this click on [Store] followed by the single digit indicating the required store number. To retrieve the stored number click on 'Store' with the Adjust button, followed by the store number. Try this - Buttons Action Stack ======= ================================== ============= X Y [pi] 3.14 appears in X 3.14 [Store] The store button stays 'in'. 3.14 [7] The value is stored. 3.14 [Clear] The X register is cleared 0.00 Now prove the value is stored by (Use the ADJUST button) - [Store] Use the Adjust button to 'fetch' 0.00 [7] Value stored in store 7 is shown 3.14 In the VAT example above, we could have stored the VAT rate, 17.5, in one of these storage registers, and used it in repeated VAT calculations. The Display Format In the above example, the value of 'pi' was shown as 3.14 because the calculator is initially set to display only 2 decimal places. The full value of pi (to about 15 significant figures) is of course used internally, and may be displayed by increasing the decimal places using the adjuster buttons at the top right of the calculator. Other display modes are also available. !Help RPCalc supports the Acorn !help facility, which may be used to explore all the functions on the calculator. To invoke this, select 'Help' from the iconbar menu, and move the pointer over the function buttons provided. You will find that most of the buttons provide two separate functions. The function displayed on the button is invoked using the SELECT mouse button, while another, often the inverse function, is invoked using the ADJUST button. Reverse Polish ============== Reverse Polish is a notation system for mathematical expressions invented by a Polish gentleman by the name of Lukasiewicz. Unfortunately for him, nobody could pronounce his name so the notation became known as Reverse Polish, and his name is all but forgotten. It is possible that even the notation itself would have been forgotten were it not for the arrival of computers, where it has become probably one of the most often used systems, not for writing expressions, but for storing them for later computation, as for example in compiled code. The Forth programming language is based upon the Reverse Polish system, and Postscript also works this way. The tag 'reverse' simply refers to the fact that operators, such as '+' and '-' are written after the values on which they operate rather than before, as in more conventional notation. The advantage of the notation is that it permits an expression to be written without the use of parentheses, while remaining totally un-ambiguous. For example, the expression - ( 2 + 4 ) * ( 7 - 3 ) would be written, or stored as - 2 4 + 7 3 - * To evaluate this, the expression is scanned from left to right, and any values found removed and placed aside on a stack (i.e. a heap or pile). When an operator is found, the required number of values are retrieved from the stack (last on, first off), the operation carried out on them, and the result put back on the stack. This system is continued to the end of the expression. Thus in the above case, 2 and then 4 are placed on the stack before the '+' operator is found. These values are then retrieved and the addition carried out. The result, 6, is then placed back on the stack. Then 7 and 3 are found in turn and placed on top of the 6. At this point a '-' operator is found, so the last two values, 7 and 3, are retrieved and the result of the subtraction, 4, is placed back on the stack, as before. At this point the stack now has a 4 on top of 6, so when the last operator is found, the '*', these two numbers are multiplied together and the result, now the final answer, 24, is placed back on the stack. Notice that whenever an operator is found, only the required number of values are unstacked, so that the system works equally well for unary operators such as x! or sin(x), as for binary ('+' '/' etc) or other operators. The system may be extended to include multi-parameter functions, such as function( a, b, c ). Which is simply written - a b c function It is also possible to include programming constructs, such as if-then-else, repeat, etc, as is done in Forth and Postscript. Note also that the notation does not require any knowledge of operator priority. Operators are always executed when found, using however many values are needed. The Functions. ============= This section gives full descriptions of each available function, for each calculator button. In all cases, X, or X and Y where appropriate, are unstacked, and the result placed in X, unless otherwise stared. Use of the SELECT mouse button is assumed where not stated. The stack manipulations. [Enter] Causes the stack to rise. SELECT Clears the X register ADJUST Preserves the X register. [�] SELECT Rotates the stack downwards. ADJUST Rotates the stack upwards. In both cases end values are wrapped around. [X� Y�] Swaps the X and Y register values. The stack does not rise. Simple Arithmetic. [-] Subtract. Computes Y - X [+] Add. Computes Y + X [�] Multiply. Computes Y * X [�] Divide. Computes Y � X Functions of X. [x!] Factorial. Computes x * (x-1) * (x-2) * (x-3) ... * 2 * 1 e.g. to compute factorial 10, key in - [10] [x!] result 3628800 [1/x] Reciprocal. Computes 1 � x e.g. to compute 1 / e, key in - [e] [1/x] result 0.37 [x^y] Powers. ( Actual legend not reproducible here) SELECT Computes X the the power of Y ADJUST Computes Y the the power of X [x�] Squares. SELECT Computes x * x ADJUST Computes the square root of x Miscellaneous Functions. [�] Changes the sign of X. i.e. -x becomes x, and x becomes -x [Int] Integer. SELECT Computes the integer part of x, removing fractions. ADJUST Computes the fractional part of x. [Abs] Absolute Computes |x| i.e. Removes any -ve sign. Logarithms. [Log] SELECT Computes the log to base 10. ADJUST Computes the anti-log to base 10. [Ln] SELECT Computes the log to base E. ADJUST Computes the anti-log to base E. Trig Functions. [Sin] SELECT Computes sine(x) ADJUST Computes angle whose sine is x [Cos] SELECT Computes cos(x) ADJUST Computes angle whose cosine is x [Tan] SELECT Computes tan(x) ADJUST Computes angle whose tangent is x Hyperbolic Functions. [Sinh] SELECT Computes sinh(x) ADJUST Computes inverse of sinh(x) [Cosh] SELECT Computes cosh(x) ADJUST Computes inverse of cosh(x) [Tanh] SELECT Computes tanh(x) ADJUST Computes inverse of tanh(x) Other Functions. [Polar] This function produces two result values. SELECT Computes polar from cartesian co-ordinates. X = Sqrt( x*x + y*y ) Y = angle whose tangent is Y � X e.g. Given a 3, 4, 5 triangle, key in - [3] [Enter] [4] [Polar] results in - X = 5, the (hypotenuse) Y = 36.87� ADJUST Computes cartesian from polar co-ordinates. X = x * cos(y) Y = x * sin(y) [H.MS] Hours, Minutes and Seconds Conversion. The display should be set to Fixed point, 4 decimal places to use this function. SELECT Computes hrs, mins, secs from decimal hrs. i.e. result X = H.MMSS where MM == Minutes, SS == Seconds. e.g. Given 12.56 hrs, key in - [12.56] [H.MMSS] results in 12.3336 i.e. 12 hrs 33 mins 36 secs. ADJUST Computes the inverse, converting hrs, mins, secs to hrs. e.g. Map reference 12� 18', key in - [12.18] ADJUST [H.MMSS] results in 12.30� [yCx] Combinations and Permutations. SELECT Computes the number of possible combinations of Y objects taken X at a time, where order is unimportant. e.g. To compute the number of ways to select 8 objects from a total of 12, key in - [12] [Enter] [8] [yCx], result 495. N.B. This is how to compute (so called) permutations on your Pools coupon. These are really Combinations, as order is not important. ADJUST Computes the number of possible permutations of Y objects taken X at a time, where order IS important. e.g. Taking the above example, key in - [12] [Enter] [8] ADJUST [yCx], result 19,958,400 More Complex Examples. ===================== 1. A laser range finder gives the distance to the top of a building as 97.66 meters at an elevation of 12� 25'. Compute the height of the building, and its horizontal distance. We must first convert the angle to decimal degrees, then enter the angular distance and convert to cartesian co-ordinates. key in - [12.25] ADJUST [H.MS] [97.66] ADJUST [POLAR] Results are X = 95.38, the horizontal distance. Y = 21.00, the vertical height of the building. 2. Compute the roots of the equation: 3x� - 9x + 6 = 0 Given the equation -b � �(b� - 4ac) i.e. a = 3, b = -9, c = 6 ---------------- 2a This example demonstrates the use of the internal storage registers as well as some stack manipulation, all of which eliminates the need to remember intermediate results, and the necessity to enter the same value more than once. The best way of tackling a problem like this is to start in the middle, with the most complex part, like the inner root function. Buttons Action Stack ======= ====================== ====================== [9] value -b 9 [Store] [1] We will need this later 0 [x�] compute b� 81 [4] enter 4 4 81 [Enter] push the stack up 4 81 [3] value a 3 4 81 [Store] [2] We will need this again 3 4 81 [x] compute 4a 12 81 [6] value c 6 12 81 [x] compute 4ac 72 81 [-] compute b� - 4ac 9 Adj [x�] compute sqr root. 3 Adj [Enter] duplicate value 3 3 Adj [Store] [1] recall -b 9 3 3 [+] compute -b + (b� - 4ac) 12 3 Adj [Store] [2] recall a 3 12 3 [2] value 2 2 3 12 3 [x] compute 2a 6 12 3 [�] First result = 2 2 3 [�] loose result 3 Adj [Store] [1] recall -b 9 3 [x� y�] swap values over 3 9 [-] compute -b - (b� - 4ac) 6 Adj [Store] [2] recall a 3 6 [2] value 2 2 3 6 [x] compute 2a 6 6 [�] Second result = 1 1 Hence, the roots are x = 1 and x = 2. There may be shorter ways of doing this. Note that we stored -b and a values for later use. In this simple contrived example this may have been pointless, as they could easily be re-entered. However, in a real example these values may have had 9 or more digits, so that storing them would be a real time saver. If the inner function had been negative indicating complex roots, we would have had to proceed slightly differently. End.
00000000 52 65 76 65 72 73 65 20 50 6f 6c 69 73 68 20 43 |Reverse Polish C| 00000010 61 6c 63 75 6c 61 74 6f 72 20 2d 20 42 79 20 43 |alculator - By C| 00000020 69 72 63 6c 65 20 53 6f 66 74 77 61 72 65 20 2d |ircle Software -| 00000030 20 a9 20 4a 61 6e 20 31 39 39 35 0a 3d 3d 3d 3d | . Jan 1995.====| 00000040 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d |================| * 00000070 3d 3d 3d 3d 3d 3d 3d 0a 0a 54 68 69 73 20 70 72 |=======..This pr| 00000080 6f 67 72 61 6d 20 69 73 20 73 68 61 72 65 77 61 |ogram is sharewa| 00000090 72 65 2e 20 20 0a 50 6c 65 61 73 65 20 72 65 61 |re. .Please rea| 000000a0 64 20 74 68 65 20 66 69 6c 65 20 4c 69 63 65 6e |d the file Licen| 000000b0 63 65 20 69 6e 20 74 68 69 73 20 64 69 72 65 63 |ce in this direc| 000000c0 74 6f 72 79 2e 0a 0a 49 6e 74 72 6f 64 75 63 74 |tory...Introduct| 000000d0 69 6f 6e 2e 0a 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d |ion..===========| 000000e0 3d 0a 0a 54 68 65 20 52 65 76 65 72 73 65 20 50 |=..The Reverse P| 000000f0 6f 6c 69 73 68 20 73 79 73 74 65 6d 20 69 73 20 |olish system is | 00000100 64 69 66 66 65 72 65 6e 74 20 66 72 6f 6d 20 74 |different from t| 00000110 68 65 20 77 61 79 20 6d 6f 73 74 20 63 61 6c 63 |he way most calc| 00000120 75 6c 61 74 6f 72 73 20 0a 77 6f 72 6b 2c 20 61 |ulators .work, a| 00000130 6e 64 20 61 6c 74 68 6f 75 67 68 20 74 68 69 73 |nd although this| 00000140 20 69 73 20 73 69 6d 70 6c 65 2c 20 79 6f 75 20 | is simple, you | 00000150 73 68 6f 75 6c 64 20 6e 6f 74 20 74 72 79 20 74 |should not try t| 00000160 6f 20 75 73 65 20 69 74 20 77 69 74 68 6f 75 74 |o use it without| 00000170 0a 66 69 72 73 74 20 72 65 61 64 69 6e 67 20 74 |.first reading t| 00000180 68 65 73 65 20 6e 6f 74 65 73 2e 0a 0a 54 68 65 |hese notes...The| 00000190 20 6e 61 74 75 72 65 20 61 6e 64 20 6f 72 69 67 | nature and orig| 000001a0 69 6e 20 6f 66 20 52 65 76 65 72 73 65 20 50 6f |in of Reverse Po| 000001b0 6c 69 73 68 20 6e 6f 74 61 74 69 6f 6e 20 69 73 |lish notation is| 000001c0 20 65 78 70 6c 61 69 6e 65 64 20 61 74 20 74 68 | explained at th| 000001d0 65 20 0a 65 6e 64 20 6f 66 20 74 68 69 73 20 66 |e .end of this f| 000001e0 69 6c 65 2e 0a 0a 4e 6f 74 65 20 74 68 61 74 20 |ile...Note that | 000001f0 74 68 65 20 21 48 65 6c 70 20 66 61 63 69 6c 69 |the !Help facili| 00000200 74 79 20 69 73 20 66 75 6c 6c 79 20 69 6d 70 6c |ty is fully impl| 00000210 65 6d 65 6e 74 65 64 2e 20 53 65 6c 65 63 74 20 |emented. Select | 00000220 48 65 6c 70 20 66 72 6f 6d 20 74 68 65 0a 69 63 |Help from the.ic| 00000230 6f 6e 62 61 72 20 6d 65 6e 75 2e 0a 0a 54 68 69 |onbar menu...Thi| 00000240 73 20 6d 61 6e 75 61 6c 20 69 73 20 64 69 76 69 |s manual is divi| 00000250 64 65 64 20 69 6e 74 6f 20 20 73 65 63 74 69 6f |ded into sectio| 00000260 6e 73 2e 0a 0a 43 6f 6e 76 65 6e 74 69 6f 6e 73 |ns...Conventions| 00000270 3a 20 20 20 20 20 20 20 20 20 20 20 44 65 73 63 |: Desc| 00000280 72 69 62 65 73 20 74 68 65 20 6e 6f 6d 65 6e 63 |ribes the nomenc| 00000290 6c 61 74 75 72 65 20 75 73 65 64 20 69 6e 20 74 |lature used in t| 000002a0 68 65 20 74 65 78 74 2e 0a 41 20 51 75 69 63 6b |he text..A Quick| 000002b0 20 53 74 61 72 74 3a 20 20 20 20 20 20 20 20 20 | Start: | 000002c0 47 69 76 65 73 20 73 69 6d 70 6c 65 20 69 6e 73 |Gives simple ins| 000002d0 74 72 75 63 74 69 6f 6e 73 20 77 69 74 68 6f 75 |tructions withou| 000002e0 74 20 67 65 74 74 69 6e 67 20 74 65 63 68 6e 69 |t getting techni| 000002f0 63 61 6c 2e 0a 48 6f 77 20 74 6f 20 75 73 65 20 |cal..How to use | 00000300 52 50 43 61 6c 63 3a 20 20 20 20 20 45 78 70 6c |RPCalc: Expl| 00000310 61 69 6e 73 20 74 68 65 20 66 69 6e 65 72 20 70 |ains the finer p| 00000320 6f 69 6e 74 73 20 6f 66 20 75 73 69 6e 67 20 74 |oints of using t| 00000330 68 65 20 70 72 6f 67 72 61 6d 2e 0a 52 65 76 65 |he program..Reve| 00000340 72 73 65 20 50 6f 6c 69 73 68 3a 20 20 20 20 20 |rse Polish: | 00000350 20 20 20 44 65 73 63 72 69 62 65 73 20 74 68 65 | Describes the| 00000360 20 6f 72 69 67 69 6e 20 61 6e 64 20 6e 61 74 75 | origin and natu| 00000370 72 65 20 6f 66 20 52 65 76 65 72 73 65 20 50 6f |re of Reverse Po| 00000380 6c 69 73 68 2e 0a 54 68 65 20 46 75 6e 63 74 69 |lish..The Functi| 00000390 6f 6e 73 3a 20 20 20 20 20 20 20 20 20 44 65 73 |ons: Des| 000003a0 63 72 69 62 65 73 20 74 68 65 20 75 73 65 20 61 |cribes the use a| 000003b0 66 20 61 6c 6c 20 63 61 6c 63 75 6c 61 74 6f 72 |f all calculator| 000003c0 20 66 75 6e 63 74 69 6f 6e 73 2e 0a 4d 6f 72 65 | functions..More| 000003d0 20 43 6f 6d 70 6c 65 78 20 45 78 61 6d 70 6c 65 | Complex Example| 000003e0 73 2e 0a 20 20 20 20 20 20 20 20 20 20 20 20 20 |s.. | 000003f0 20 20 20 20 20 20 20 20 20 20 54 6f 20 66 69 6e | To fin| 00000400 64 20 61 6e 79 20 66 75 6e 63 74 69 6f 6e 2c 20 |d any function, | 00000410 73 65 61 72 63 68 20 66 6f 72 20 74 68 65 20 62 |search for the b| 00000420 75 74 74 6f 6e 20 61 73 0a 20 20 20 20 20 20 20 |utton as. | 00000430 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00000440 5b 6e 61 6d 65 5d 20 20 20 65 2e 67 2e 20 5b 2b |[name] e.g. [+| 00000450 5d 20 20 6f 72 20 20 5b 53 69 6e 65 5d 20 20 65 |] or [Sine] e| 00000460 74 63 2e 0a 0a 4e 2e 42 2e 20 20 20 20 20 20 20 |tc...N.B. | 00000470 20 20 20 20 20 20 20 20 20 20 20 20 54 6f 20 63 | To c| 00000480 6f 72 72 65 63 74 6c 79 20 64 69 73 70 6c 61 79 |orrectly display| 00000490 20 73 6f 6d 65 20 62 75 74 74 6f 6e 20 6c 65 67 | some button leg| 000004a0 65 6e 64 73 2c 20 79 6f 75 72 20 0a 20 20 20 20 |ends, your . | 000004b0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 000004c0 20 20 20 74 65 78 74 20 65 64 69 74 6f 72 20 73 | text editor s| 000004d0 68 6f 75 6c 64 20 62 65 20 73 65 74 20 74 6f 20 |hould be set to | 000004e0 64 69 73 70 6c 61 79 20 73 74 61 6e 64 61 72 64 |display standard| 000004f0 20 0a 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | . | 00000500 20 20 20 20 20 20 20 20 20 73 79 73 74 65 6d 20 | system | 00000510 66 6f 6e 74 2e 20 65 2e 67 2e 20 5b 8a 5d 20 73 |font. e.g. [.] s| 00000520 68 6f 75 6c 64 20 61 70 70 65 61 72 20 61 73 20 |hould appear as | 00000530 5b 64 6f 77 6e 20 61 72 72 6f 77 5d 2e 0a 0a 43 |[down arrow]...C| 00000540 6f 6e 76 65 6e 74 69 6f 6e 73 0a 3d 3d 3d 3d 3d |onventions.=====| 00000550 3d 3d 3d 3d 3d 3d 0a 0a 54 68 72 6f 75 67 68 6f |======..Througho| 00000560 75 74 20 74 68 69 73 20 6d 61 6e 75 61 6c 2c 20 |ut this manual, | 00000570 72 65 66 65 72 65 6e 63 65 73 20 74 6f 20 62 75 |references to bu| 00000580 74 74 6f 6e 20 69 63 6f 6e 73 20 6f 6e 20 74 68 |tton icons on th| 00000590 65 20 63 61 6c 63 75 6c 61 74 6f 72 0a 61 72 65 |e calculator.are| 000005a0 20 73 68 6f 77 6e 20 62 65 74 77 65 65 6e 20 73 | shown between s| 000005b0 71 75 61 72 65 20 62 72 61 63 6b 65 74 73 2c 20 |quare brackets, | 000005c0 65 2e 67 2e 20 5b 45 6e 74 65 72 5d 2e 0a 0a 54 |e.g. [Enter]...T| 000005d0 68 65 20 74 65 72 6d 73 20 53 45 4c 45 43 54 20 |he terms SELECT | 000005e0 61 6e 64 20 41 44 4a 55 53 54 20 72 65 66 65 72 |and ADJUST refer| 000005f0 20 74 6f 20 74 68 65 20 66 69 72 73 74 20 61 6e | to the first an| 00000600 64 20 74 68 69 72 64 20 6d 6f 75 73 65 20 62 75 |d third mouse bu| 00000610 74 74 6f 6e 73 2c 0a 61 73 20 6e 6f 72 6d 61 6c |ttons,.as normal| 00000620 6c 79 20 64 65 66 69 6e 65 64 2c 20 61 6e 64 20 |ly defined, and | 00000630 6d 61 79 20 62 65 20 75 73 65 64 20 74 6f 20 70 |may be used to p| 00000640 72 65 66 69 78 20 61 20 66 75 6e 63 74 69 6f 6e |refix a function| 00000650 20 62 75 74 74 6f 6e 2e 0a 0a 57 68 65 6e 20 6e | button...When n| 00000660 6f 74 20 73 70 65 63 69 66 69 63 61 6c 6c 79 20 |ot specifically | 00000670 73 74 61 74 65 64 2c 20 79 6f 75 20 73 68 6f 75 |stated, you shou| 00000680 6c 64 20 61 6c 77 61 79 73 20 75 73 65 20 74 68 |ld always use th| 00000690 65 20 53 45 4c 45 43 54 20 62 75 74 74 6f 6e 2c |e SELECT button,| 000006a0 0a 61 73 20 69 6e 20 6d 6f 73 74 20 63 61 73 65 |.as in most case| 000006b0 73 2c 20 41 44 4a 55 53 54 20 77 69 6c 6c 20 63 |s, ADJUST will c| 000006c0 61 75 73 65 20 61 6e 20 61 6c 74 65 72 6e 61 74 |ause an alternat| 000006d0 69 76 65 20 61 63 74 69 6f 6e 2e 0a 0a 0a 41 20 |ive action....A | 000006e0 51 75 69 63 6b 20 53 74 61 72 74 0a 3d 3d 3d 3d |Quick Start.====| 000006f0 3d 3d 3d 3d 3d 3d 3d 3d 3d 0a 0a 46 69 72 73 74 |=========..First| 00000700 2c 20 73 65 65 20 68 6f 77 20 65 61 73 79 20 69 |, see how easy i| 00000710 74 20 69 73 20 74 6f 20 75 73 65 20 62 79 20 64 |t is to use by d| 00000720 6f 69 6e 67 20 61 20 73 69 6d 70 6c 65 20 61 64 |oing a simple ad| 00000730 64 69 74 69 6f 6e 20 63 61 6c 63 75 6c 61 74 69 |dition calculati| 00000740 6f 6e 2c 0a 62 65 66 6f 72 65 20 67 6f 69 6e 67 |on,.before going| 00000750 20 69 6e 74 6f 20 64 65 74 61 69 6c 73 2e 20 20 | into details. | 00000760 50 72 65 73 73 20 74 68 65 20 66 6f 6c 6c 6f 77 |Press the follow| 00000770 69 6e 67 20 6b 65 79 73 20 69 6e 20 6f 72 64 65 |ing keys in orde| 00000780 72 20 2d 0a 0a 20 20 20 20 20 20 20 20 20 20 20 |r -.. | 00000790 20 20 20 20 20 5b 33 5d 20 5b 45 6e 74 65 72 5d | [3] [Enter]| 000007a0 20 5b 34 5d 20 5b 2b 5d 0a 0a 54 68 65 20 76 61 | [4] [+]..The va| 000007b0 6c 75 65 20 73 68 6f 77 6e 20 69 6e 20 74 68 65 |lue shown in the| 000007c0 20 6c 6f 77 65 72 20 64 69 73 70 6c 61 79 20 69 | lower display i| 000007d0 73 20 74 68 65 20 72 65 73 75 6c 74 20 6f 66 20 |s the result of | 000007e0 61 64 64 69 6e 67 20 33 20 2b 20 34 2c 20 28 37 |adding 3 + 4, (7| 000007f0 29 2e 0a 54 6f 20 6d 75 6c 74 69 70 6c 79 20 74 |)..To multiply t| 00000800 68 65 20 72 65 73 75 6c 74 20 62 79 20 35 2c 20 |he result by 5, | 00000810 70 72 65 73 73 20 2d 0a 0a 20 20 20 20 20 20 20 |press -.. | 00000820 20 20 20 20 20 20 20 20 20 5b 35 5d 20 5b 78 5d | [5] [x]| 00000830 0a 0a 41 6e 64 20 77 65 20 67 65 74 20 33 35 2e |..And we get 35.| 00000840 30 30 20 61 73 20 65 78 70 65 63 74 65 64 2e 20 |00 as expected. | 00000850 49 74 73 20 61 73 20 73 69 6d 70 6c 65 20 61 73 |Its as simple as| 00000860 20 74 68 61 74 21 20 20 0a 0a 55 73 69 6e 67 20 | that! ..Using | 00000870 74 68 69 73 20 6d 65 74 68 6f 64 20 79 6f 75 20 |this method you | 00000880 63 61 6e 20 61 6c 77 61 79 73 20 73 65 65 20 65 |can always see e| 00000890 78 61 63 74 6c 79 20 77 68 61 74 20 76 61 6c 75 |xactly what valu| 000008a0 65 73 20 61 72 65 20 61 62 6f 75 74 20 74 6f 20 |es are about to | 000008b0 62 65 20 0a 6f 70 65 72 61 74 65 64 20 6f 6e 2c |be .operated on,| 000008c0 20 75 6e 6c 69 6b 65 20 6f 72 64 69 6e 61 72 79 | unlike ordinary| 000008d0 20 63 61 6c 63 75 6c 61 74 6f 72 73 2e 0a 0a 59 | calculators...Y| 000008e0 6f 75 20 63 61 6e 20 61 6c 73 6f 20 6e 6f 77 20 |ou can also now | 000008f0 73 65 65 20 77 68 79 20 69 74 20 69 73 20 63 61 |see why it is ca| 00000900 6c 6c 65 64 20 27 52 65 76 65 72 73 65 27 20 50 |lled 'Reverse' P| 00000910 6f 6c 69 73 68 2e 20 20 4f 6e 20 74 68 69 73 20 |olish. On this | 00000920 63 61 6c 63 75 6c 61 74 6f 72 20 0a 79 6f 75 20 |calculator .you | 00000930 70 72 65 73 73 20 74 68 65 73 65 20 62 75 74 74 |press these butt| 00000940 6f 6e 73 20 69 6e 20 74 68 65 20 72 65 76 65 72 |ons in the rever| 00000950 73 65 20 6f 72 64 65 72 2c 20 63 6f 6d 70 61 72 |se order, compar| 00000960 65 64 20 74 6f 20 61 20 6e 6f 72 6d 61 6c 20 6f |ed to a normal o| 00000970 6e 65 2e 0a 0a 48 6f 77 65 76 65 72 2c 20 74 68 |ne...However, th| 00000980 69 73 20 73 69 6d 70 6c 65 20 65 78 61 6d 70 6c |is simple exampl| 00000990 65 20 6d 61 79 20 69 6c 6c 75 73 74 72 61 74 65 |e may illustrate| 000009a0 20 68 6f 77 20 74 6f 20 75 73 65 20 74 68 65 20 | how to use the | 000009b0 6d 61 63 68 69 6e 65 2c 20 62 75 74 20 0a 64 6f |machine, but .do| 000009c0 65 73 20 6e 6f 74 20 73 68 6f 77 20 74 68 65 20 |es not show the | 000009d0 72 65 61 6c 20 70 6f 77 65 72 20 6f 66 20 74 68 |real power of th| 000009e0 65 20 73 79 73 74 65 6d 2e 20 46 6f 72 20 74 68 |e system. For th| 000009f0 61 74 2c 20 72 65 61 64 20 6f 6e 2e 0a 0a 0a 48 |at, read on....H| 00000a00 6f 77 20 74 6f 20 75 73 65 20 52 50 43 61 6c 63 |ow to use RPCalc| 00000a10 2e 0a 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d |..==============| 00000a20 3d 3d 3d 0a 0a 54 68 65 20 44 69 73 70 6c 61 79 |===..The Display| 00000a30 73 2e 0a 0a 54 68 65 20 63 61 6c 63 75 6c 61 74 |s...The calculat| 00000a40 6f 72 20 68 61 73 20 66 6f 75 72 20 64 69 73 70 |or has four disp| 00000a50 6c 61 79 20 72 65 67 69 73 74 65 72 73 20 72 61 |lay registers ra| 00000a60 74 68 65 72 20 74 68 61 6e 20 74 68 65 20 75 73 |ther than the us| 00000a70 75 61 6c 20 6f 6e 65 2e 0a 54 68 65 20 6c 6f 77 |ual one..The low| 00000a80 65 72 20 72 65 67 69 73 74 65 72 2c 20 6c 61 62 |er register, lab| 00000a90 65 6c 6c 65 64 20 27 58 27 2c 20 69 73 20 65 71 |elled 'X', is eq| 00000aa0 75 69 76 61 6c 65 6e 74 20 74 6f 20 74 68 65 20 |uivalent to the | 00000ab0 73 69 6e 67 6c 65 20 64 69 73 70 6c 61 79 20 0a |single display .| 00000ac0 66 6f 75 6e 64 20 6f 6e 20 6f 72 64 69 6e 61 72 |found on ordinar| 00000ad0 79 20 63 61 6c 63 75 6c 61 74 6f 72 73 2e 20 41 |y calculators. A| 00000ae0 62 6f 76 65 20 74 68 69 73 2c 20 74 68 65 20 59 |bove this, the Y| 00000af0 20 72 65 67 69 73 74 65 72 20 69 73 20 75 73 65 | register is use| 00000b00 64 20 74 6f 0a 68 6f 6c 64 20 61 20 73 65 63 6f |d to.hold a seco| 00000b10 6e 64 20 76 61 6c 75 65 20 74 6f 20 62 65 20 6f |nd value to be o| 00000b20 70 65 72 61 74 65 64 20 6f 6e 2c 20 77 68 69 6c |perated on, whil| 00000b30 65 20 74 68 65 20 72 65 6d 61 69 6e 64 65 72 20 |e the remainder | 00000b40 77 69 6c 6c 0a 64 69 73 70 6c 61 79 20 69 6e 74 |will.display int| 00000b50 65 72 6d 65 64 69 61 74 65 20 63 61 6c 63 75 6c |ermediate calcul| 00000b60 61 74 69 6f 6e 20 72 65 73 75 6c 74 73 2c 20 77 |ation results, w| 00000b70 68 65 72 65 20 61 70 70 72 6f 70 72 69 61 74 65 |here appropriate| 00000b80 2e 0a 0a 54 68 65 73 65 20 72 65 67 69 73 74 65 |...These registe| 00000b90 72 73 20 63 6f 6e 73 74 69 74 75 74 65 20 61 20 |rs constitute a | 00000ba0 27 73 74 61 63 6b 27 2c 20 77 68 65 72 65 20 6e |'stack', where n| 00000bb0 75 6d 62 65 72 73 20 61 72 65 20 70 6c 61 63 65 |umbers are place| 00000bc0 64 20 75 6e 74 69 6c 0a 6e 65 65 64 65 64 2e 0a |d until.needed..| 00000bd0 0a 57 68 65 6e 20 79 6f 75 20 63 6c 69 63 6b 20 |.When you click | 00000be0 6f 6e 20 74 68 65 20 5b 2b 5d 20 6f 70 65 72 61 |on the [+] opera| 00000bf0 74 6f 72 20 62 75 74 74 6f 6e 2c 20 66 6f 72 20 |tor button, for | 00000c00 65 78 61 6d 70 6c 65 2c 20 74 68 65 20 76 61 6c |example, the val| 00000c10 75 65 0a 64 69 73 70 6c 61 79 65 64 20 69 6e 20 |ue.displayed in | 00000c20 74 68 65 20 58 20 72 65 67 69 73 74 65 72 20 77 |the X register w| 00000c30 69 6c 6c 20 62 65 20 61 64 64 65 64 20 74 6f 20 |ill be added to | 00000c40 74 68 65 20 76 61 6c 75 65 20 69 6e 20 59 2c 20 |the value in Y, | 00000c50 61 6e 64 20 74 68 65 0a 72 65 73 75 6c 74 20 64 |and the.result d| 00000c60 69 73 70 6c 61 79 65 64 20 69 6e 20 58 2e 0a 0a |isplayed in X...| 00000c70 41 20 66 65 77 20 66 75 6e 63 74 69 6f 6e 73 20 |A few functions | 00000c80 70 72 6f 64 75 63 65 20 74 77 6f 20 72 65 73 75 |produce two resu| 00000c90 6c 74 73 2c 20 61 6e 64 20 69 6e 20 74 68 65 73 |lts, and in thes| 00000ca0 65 20 63 61 73 65 73 20 74 68 65 20 73 65 63 6f |e cases the seco| 00000cb0 6e 64 0a 72 65 73 75 6c 74 20 77 69 6c 6c 20 62 |nd.result will b| 00000cc0 65 20 64 69 73 70 6c 61 79 65 64 20 69 6e 20 74 |e displayed in t| 00000cd0 68 65 20 59 20 72 65 67 69 73 74 65 72 2e 0a 0a |he Y register...| 00000ce0 0a 45 6e 74 65 72 69 6e 67 20 56 61 6c 75 65 73 |.Entering Values| 00000cf0 2e 0a 0a 59 6f 75 20 65 6e 74 65 72 20 76 61 6c |...You enter val| 00000d00 75 65 73 20 69 6e 74 6f 20 74 68 65 20 58 20 72 |ues into the X r| 00000d10 65 67 69 73 74 65 72 20 69 6e 20 74 68 65 20 6e |egister in the n| 00000d20 6f 72 6d 61 6c 20 77 61 79 2c 20 62 79 20 63 6c |ormal way, by cl| 00000d30 69 63 6b 69 6e 67 0a 6f 6e 20 74 68 65 20 6e 75 |icking.on the nu| 00000d40 6d 62 65 72 20 62 75 74 74 6f 6e 73 2c 20 6f 72 |mber buttons, or| 00000d50 20 62 79 20 75 73 69 6e 67 20 74 68 65 20 6b 65 | by using the ke| 00000d60 79 62 6f 61 72 64 20 6e 75 6d 62 65 72 20 70 61 |yboard number pa| 00000d70 64 2e 20 28 49 6e 20 74 68 65 20 0a 6c 61 74 65 |d. (In the .late| 00000d80 72 20 63 61 73 65 2c 20 74 68 65 20 63 61 6c 63 |r case, the calc| 00000d90 75 6c 61 74 6f 72 20 6d 75 73 74 20 68 61 76 65 |ulator must have| 00000da0 20 74 68 65 20 69 6e 70 75 74 20 66 6f 63 75 73 | the input focus| 00000db0 2e 20 49 66 20 6e 6f 74 2c 20 63 6c 69 63 6b 0a |. If not, click.| 00000dc0 69 6e 20 74 68 65 20 63 61 6c 63 75 6c 61 74 6f |in the calculato| 00000dd0 72 20 62 61 63 6b 67 72 6f 75 6e 64 2c 20 6f 72 |r background, or| 00000de0 20 74 68 65 20 69 63 6f 6e 62 61 72 20 69 63 6f | the iconbar ico| 00000df0 6e 2e 29 0a 0a 54 6f 20 67 65 74 20 61 20 76 61 |n.)..To get a va| 00000e00 6c 75 65 20 69 6e 74 6f 20 74 68 65 20 59 20 72 |lue into the Y r| 00000e10 65 67 69 73 74 65 72 2c 20 66 69 72 73 74 20 65 |egister, first e| 00000e20 6e 74 65 72 20 69 74 20 69 6e 74 6f 20 58 2c 20 |nter it into X, | 00000e30 61 73 20 61 62 6f 76 65 2c 0a 61 6e 64 20 74 68 |as above,.and th| 00000e40 65 6e 20 75 73 65 20 74 68 65 20 5b 45 6e 74 65 |en use the [Ente| 00000e50 72 5d 20 6b 65 79 2e 20 20 54 68 69 73 20 77 69 |r] key. This wi| 00000e60 6c 6c 20 6d 6f 76 65 20 74 68 65 20 76 61 6c 75 |ll move the valu| 00000e70 65 20 69 6e 20 74 68 65 20 58 20 0a 72 65 67 69 |e in the X .regi| 00000e80 73 74 65 72 20 75 70 20 74 6f 20 74 68 65 20 59 |ster up to the Y| 00000e90 2c 20 61 6e 64 20 63 6c 65 61 72 20 58 20 72 65 |, and clear X re| 00000ea0 61 64 79 20 66 6f 72 20 61 20 6e 65 77 20 76 61 |ady for a new va| 00000eb0 6c 75 65 2e 20 0a 0a 57 68 65 6e 20 5b 45 6e 74 |lue. ..When [Ent| 00000ec0 65 72 5d 20 69 73 20 75 73 65 64 2c 20 61 6e 79 |er] is used, any| 00000ed0 20 76 61 6c 75 65 73 20 69 6e 20 68 69 67 68 65 | values in highe| 00000ee0 72 20 72 65 67 69 73 74 65 72 73 20 77 69 6c 6c |r registers will| 00000ef0 20 61 6c 73 6f 20 62 65 20 6d 6f 76 65 64 0a 75 | also be moved.u| 00000f00 70 2c 20 61 6e 64 20 61 6e 79 20 76 61 6c 75 65 |p, and any value| 00000f10 20 69 6e 20 74 68 65 20 74 6f 70 20 72 65 67 69 | in the top regi| 00000f20 73 74 65 72 20 77 69 6c 6c 20 62 65 20 6c 6f 73 |ster will be los| 00000f30 74 2e 20 54 68 69 73 20 73 68 6f 75 6c 64 20 72 |t. This should r| 00000f40 61 72 65 6c 79 0a 68 61 70 70 65 6e 2e 0a 0a 0a |arely.happen....| 00000f50 41 64 64 69 6e 67 20 54 77 6f 20 4e 75 6d 62 65 |Adding Two Numbe| 00000f60 72 73 2e 0a 0a 54 68 75 73 2c 20 74 6f 20 61 64 |rs...Thus, to ad| 00000f70 64 20 74 77 6f 20 76 61 6c 75 65 73 2c 20 65 6e |d two values, en| 00000f80 74 65 72 20 74 68 65 20 66 69 72 73 74 20 76 61 |ter the first va| 00000f90 6c 75 65 20 69 6e 74 6f 20 58 2c 20 63 6c 69 63 |lue into X, clic| 00000fa0 6b 20 5b 45 6e 74 65 72 5d 20 74 6f 0a 70 75 73 |k [Enter] to.pus| 00000fb0 68 20 74 68 69 73 20 75 70 20 74 6f 20 59 2c 20 |h this up to Y, | 00000fc0 65 6e 74 65 72 20 74 68 65 20 73 65 63 6f 6e 64 |enter the second| 00000fd0 20 6e 75 6d 62 65 72 20 69 6e 74 6f 20 58 2c 20 | number into X, | 00000fe0 74 68 65 6e 20 63 6c 69 63 6b 20 5b 2b 5d 2e 0a |then click [+]..| 00000ff0 0a 54 68 69 73 20 73 69 6d 70 6c 65 20 65 78 61 |.This simple exa| 00001000 6d 70 6c 65 20 64 6f 65 73 20 6e 6f 74 20 73 68 |mple does not sh| 00001010 6f 77 20 74 68 65 20 61 64 76 61 6e 74 61 67 65 |ow the advantage| 00001020 73 20 6f 66 20 52 65 76 65 72 73 65 20 50 6f 6c |s of Reverse Pol| 00001030 69 73 68 20 6f 76 65 72 0a 74 68 65 20 6d 6f 72 |ish over.the mor| 00001040 65 20 63 6f 6e 76 65 6e 74 69 6f 6e 61 6c 20 63 |e conventional c| 00001050 61 6c 63 75 6c 61 74 6f 72 2c 20 73 6f 20 6c 65 |alculator, so le| 00001060 74 27 73 20 74 72 79 20 73 6f 6d 65 74 68 69 6e |t's try somethin| 00001070 67 20 6d 6f 72 65 20 63 6f 6d 70 6c 65 78 2e 0a |g more complex..| 00001080 0a 0a 45 76 61 6c 75 61 74 69 6e 67 20 61 6e 20 |..Evaluating an | 00001090 45 78 70 72 65 73 73 69 6f 6e 2e 0a 0a 54 6f 20 |Expression...To | 000010a0 65 76 61 6c 75 61 74 65 20 74 68 65 20 65 78 70 |evaluate the exp| 000010b0 72 65 73 73 69 6f 6e 20 28 20 32 20 2b 20 34 20 |ression ( 2 + 4 | 000010c0 29 20 2a 20 28 20 37 20 2d 20 33 20 29 20 66 6f |) * ( 7 - 3 ) fo| 000010d0 6c 6c 6f 77 20 74 68 65 20 62 75 74 74 6f 6e 0a |llow the button.| 000010e0 63 6c 69 63 6b 73 20 69 6e 20 74 68 65 20 66 69 |clicks in the fi| 000010f0 72 73 74 20 63 6f 6c 75 6d 6e 20 62 65 6c 6f 77 |rst column below| 00001100 2c 20 61 6e 64 20 63 68 65 63 6b 20 74 68 65 20 |, and check the | 00001110 61 63 74 69 6f 6e 73 20 6c 69 73 74 65 64 2e 20 |actions listed. | 00001120 0a 49 6e 20 70 61 72 74 69 63 75 6c 61 72 20 6e |.In particular n| 00001130 6f 74 65 20 74 68 65 20 64 69 73 70 6c 61 79 20 |ote the display | 00001140 63 6f 6e 74 65 6e 74 73 20 61 73 20 67 69 76 65 |contents as give| 00001150 6e 20 69 6e 20 74 68 65 20 6c 61 73 74 20 63 6f |n in the last co| 00001160 6c 75 6d 6e 2e 0a 0a 20 20 20 20 20 42 75 74 74 |lumn... Butt| 00001170 6f 6e 20 20 20 20 41 63 74 69 6f 6e 20 20 20 20 |on Action | 00001180 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | * 000011a0 20 20 20 20 20 20 53 74 61 63 6b 0a 20 20 20 20 | Stack. | 000011b0 20 3d 3d 3d 3d 3d 3d 20 20 20 20 3d 3d 3d 3d 3d | ====== =====| 000011c0 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d |================| 000011d0 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 20 20 20 |============= | 000011e0 20 20 20 20 20 20 20 20 20 20 20 3d 3d 3d 3d 3d | =====| 000011f0 3d 3d 3d 0a 20 20 20 20 20 20 20 20 20 20 20 20 |===. | 00001200 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | * 00001230 20 20 20 20 58 20 20 59 20 0a 20 20 20 20 20 5b | X Y . [| 00001240 32 5d 20 20 20 20 20 20 20 27 32 27 20 61 70 70 |2] '2' app| 00001250 65 61 72 73 20 69 6e 20 58 2e 20 20 20 20 20 20 |ears in X. | 00001260 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00001270 20 20 20 20 20 20 20 20 20 20 32 0a 20 20 20 20 | 2. | 00001280 20 5b 45 6e 74 65 72 5d 20 20 20 54 68 65 20 32 | [Enter] The 2| 00001290 20 6d 6f 76 65 73 20 75 70 20 74 6f 20 59 2c 20 | moves up to Y, | 000012a0 61 6e 64 20 58 20 63 6c 65 61 72 73 2e 20 20 20 |and X clears. | 000012b0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 32 | 2| 000012c0 0a 20 20 20 20 20 5b 34 5d 20 20 20 20 20 20 20 |. [4] | 000012d0 27 34 27 20 61 70 70 65 61 72 73 20 69 6e 20 58 |'4' appears in X| 000012e0 2e 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 |. | 000012f0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00001300 20 34 20 20 32 0a 20 20 20 20 20 5b 2b 5d 20 20 | 4 2. [+] | 00001310 20 20 20 20 20 27 34 27 20 61 6e 64 20 27 32 27 | '4' and '2'| 00001320 20 61 72 65 20 75 6e 73 74 61 63 6b 65 64 2c 20 | are unstacked, | 00001330 61 6e 64 20 36 20 70 6c 61 63 65 64 20 69 6e 20 |and 6 placed in | 00001340 58 20 20 20 20 20 36 20 20 0a 20 20 20 20 20 5b |X 6 . [| 00001350 37 5d 20 20 20 20 20 20 20 27 37 27 20 61 70 70 |7] '7' app| 00001360 65 61 72 73 20 69 6e 20 58 2c 20 74 68 65 20 36 |ears in X, the 6| 00001370 20 6d 6f 76 65 73 20 75 70 20 74 6f 20 59 20 20 | moves up to Y | 00001380 20 20 20 20 20 20 20 20 20 20 37 20 20 36 0a 20 | 7 6. | 00001390 20 20 20 20 5b 45 6e 74 65 72 5d 20 20 20 54 68 | [Enter] Th| 000013a0 65 20 37 20 6d 6f 76 65 73 20 75 70 20 74 6f 20 |e 7 moves up to | 000013b0 59 2c 20 61 6e 64 20 58 20 63 6c 65 61 72 73 2e |Y, and X clears.| 000013c0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 000013d0 20 20 37 20 20 36 0a 20 20 20 20 20 5b 33 5d 20 | 7 6. [3] | 000013e0 20 20 20 20 20 20 27 33 27 20 61 70 70 65 61 72 | '3' appear| 000013f0 73 20 69 6e 20 58 20 20 20 20 20 20 20 20 20 20 |s in X | 00001400 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00001410 20 20 20 20 20 20 20 33 20 20 37 20 20 36 0a 20 | 3 7 6. | 00001420 20 20 20 20 5b 2d 5d 20 20 20 20 20 20 20 27 33 | [-] '3| 00001430 27 20 61 6e 64 20 27 37 27 20 61 72 65 20 75 6e |' and '7' are un| 00001440 73 74 61 63 6b 65 64 2c 20 61 6e 64 20 34 20 70 |stacked, and 4 p| 00001450 6c 61 63 65 64 20 69 6e 20 58 20 20 20 20 20 20 |laced in X | 00001460 34 20 20 36 0a 20 20 20 20 20 5b 2a 5d 20 20 20 |4 6. [*] | 00001470 20 20 20 20 27 34 27 20 61 6e 64 20 27 36 27 20 | '4' and '6' | 00001480 61 72 65 20 75 6e 73 74 61 63 6b 65 64 2c 20 61 |are unstacked, a| 00001490 6e 64 20 32 34 20 70 6c 61 63 65 64 20 69 6e 20 |nd 24 placed in | 000014a0 58 20 20 20 20 32 34 0a 0a 54 68 75 73 20 58 20 |X 24..Thus X | 000014b0 63 6f 6e 74 61 69 6e 73 20 74 68 65 20 66 69 6e |contains the fin| 000014c0 61 6c 20 72 65 73 75 6c 74 2c 20 77 68 69 63 68 |al result, which| 000014d0 20 77 65 20 63 61 6e 20 75 73 65 20 69 6e 20 66 | we can use in f| 000014e0 75 72 74 68 65 72 20 0a 63 61 6c 63 75 6c 61 74 |urther .calculat| 000014f0 69 6f 6e 73 20 69 66 20 72 65 71 75 69 72 65 64 |ions if required| 00001500 2e 20 20 4e 6f 74 65 20 74 68 61 74 20 69 74 20 |. Note that it | 00001510 69 73 20 6e 6f 74 20 6e 65 63 65 73 73 61 72 79 |is not necessary| 00001520 20 74 6f 20 77 72 69 74 65 20 64 6f 77 6e 2c 0a | to write down,.| 00001530 72 65 6d 65 6d 62 65 72 2c 20 6f 72 20 72 65 2d |remember, or re-| 00001540 65 6e 74 65 72 20 65 69 74 68 65 72 20 69 6e 74 |enter either int| 00001550 65 72 6d 65 64 69 61 74 65 20 72 65 73 75 6c 74 |ermediate result| 00001560 20 36 20 6f 72 20 34 2c 20 61 73 20 74 68 65 73 | 6 or 4, as thes| 00001570 65 20 0a 72 65 6d 61 69 6e 20 6f 6e 20 74 68 65 |e .remain on the| 00001580 20 73 74 61 63 6b 20 75 6e 74 69 6c 20 6e 65 65 | stack until nee| 00001590 64 65 64 2e 20 20 54 68 69 73 20 63 61 6c 63 75 |ded. This calcu| 000015a0 6c 61 74 69 6f 6e 20 72 65 71 75 69 72 65 64 20 |lation required | 000015b0 33 20 6f 66 0a 74 68 65 20 34 20 72 65 67 69 73 |3 of.the 4 regis| 000015c0 74 65 72 73 20 70 72 6f 76 69 64 65 64 2c 20 77 |ters provided, w| 000015d0 68 69 63 68 20 79 6f 75 20 77 69 6c 6c 20 66 69 |hich you will fi| 000015e0 6e 64 20 73 75 66 66 69 63 69 65 6e 74 20 66 6f |nd sufficient fo| 000015f0 72 20 74 68 65 20 6d 6f 73 74 0a 63 6f 6d 70 6c |r the most.compl| 00001600 65 78 20 63 61 6c 63 75 6c 61 74 69 6f 6e 73 2e |ex calculations.| 00001610 0a 0a 0a 41 6e 6f 74 68 65 72 20 45 78 61 6d 70 |...Another Examp| 00001620 6c 65 0a 0a 53 75 70 70 6f 73 65 20 79 6f 75 20 |le..Suppose you | 00001630 6e 65 65 64 65 64 20 74 6f 20 63 61 6c 63 75 6c |needed to calcul| 00001640 61 74 65 20 74 68 65 20 56 41 54 20 64 75 65 20 |ate the VAT due | 00001650 61 6e 64 20 74 68 65 20 74 6f 74 61 6c 20 70 72 |and the total pr| 00001660 69 63 65 20 6f 66 0a 61 6e 20 69 74 65 6d 20 63 |ice of.an item c| 00001670 6f 73 74 69 6e 67 20 a3 31 32 33 2e 35 30 20 20 |osting .123.50 | 00001680 57 65 20 77 69 6c 6c 20 75 73 65 20 61 20 70 72 |We will use a pr| 00001690 6f 70 65 72 74 79 20 6f 66 20 74 68 65 20 5b 45 |operty of the [E| 000016a0 6e 74 65 72 5d 20 62 75 74 74 6f 6e 0a 69 6e 76 |nter] button.inv| 000016b0 6f 6b 65 64 20 62 79 20 63 6c 69 63 6b 69 6e 67 |oked by clicking| 000016c0 20 77 69 74 68 20 74 68 65 20 41 44 4a 55 53 54 | with the ADJUST| 000016d0 20 62 75 74 74 6f 6e 2e 20 57 68 65 6e 20 79 6f | button. When yo| 000016e0 75 20 64 6f 20 74 68 69 73 2c 20 74 68 65 20 76 |u do this, the v| 000016f0 61 6c 75 65 0a 69 6e 20 58 20 77 69 6c 6c 20 62 |alue.in X will b| 00001700 65 20 6d 6f 76 65 64 20 75 70 20 61 73 20 62 65 |e moved up as be| 00001710 66 6f 72 65 2c 20 62 75 74 20 58 20 77 69 6c 6c |fore, but X will| 00001720 20 6e 6f 74 20 62 65 20 63 6c 65 61 72 65 64 2c | not be cleared,| 00001730 20 73 6f 20 69 74 73 20 76 61 6c 75 65 0a 6d 61 | so its value.ma| 00001740 79 20 62 65 20 75 73 65 64 20 61 67 61 69 6e 2e |y be used again.| 00001750 0a 0a 50 72 65 73 73 20 74 68 65 20 62 75 74 74 |..Press the butt| 00001760 6f 6e 73 20 73 68 6f 77 6e 20 69 6e 20 74 68 65 |ons shown in the| 00001770 20 66 69 72 73 74 20 63 6f 6c 75 6d 6e 2c 20 61 | first column, a| 00001780 73 20 62 65 66 6f 72 65 20 2d 0a 28 20 52 65 6d |s before -.( Rem| 00001790 65 6d 62 65 72 20 74 6f 20 75 73 65 20 74 68 65 |ember to use the| 000017a0 20 41 44 4a 55 53 54 20 62 75 74 74 6f 6e 20 66 | ADJUST button f| 000017b0 6f 72 20 5b 45 6e 74 65 72 5d 20 29 2e 0a 0a 20 |or [Enter] )... | 000017c0 20 20 20 20 42 75 74 74 6f 6e 73 20 20 20 20 20 | Buttons | 000017d0 20 20 20 20 20 20 41 63 74 69 6f 6e 20 20 20 20 | Action | 000017e0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 000017f0 20 20 20 20 20 20 20 20 20 20 53 74 61 63 6b 0a | Stack.| 00001800 20 20 20 20 20 3d 3d 3d 3d 3d 3d 3d 20 20 20 20 | ======= | 00001810 20 20 20 20 20 20 20 3d 3d 3d 3d 3d 3d 3d 3d 3d | =========| 00001820 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d |================| 00001830 3d 3d 3d 3d 3d 3d 3d 3d 3d 20 20 3d 3d 3d 3d 3d |========= =====| 00001840 3d 3d 3d 3d 3d 3d 3d 3d 0a 20 20 20 20 20 20 20 |========. | 00001850 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | * 00001880 20 20 20 20 58 20 20 20 20 20 20 20 59 20 0a 20 | X Y . | 00001890 20 20 20 20 5b 31 5d 5b 32 5d 5b 33 5d 5b 2e 5d | [1][2][3][.]| 000018a0 5b 35 5d 20 20 20 31 32 33 2e 35 20 61 70 70 65 |[5] 123.5 appe| 000018b0 61 72 73 20 69 6e 20 58 20 20 20 20 20 20 20 20 |ars in X | 000018c0 20 20 20 20 20 20 20 20 20 20 31 32 33 2e 35 30 | 123.50| 000018d0 0a 20 20 20 20 20 5b 45 6e 74 65 72 5d 20 20 20 |. [Enter] | 000018e0 20 20 20 20 20 20 20 20 55 73 65 20 74 68 65 20 | Use the | 000018f0 41 44 4a 55 53 54 20 6d 6f 75 73 65 20 62 75 74 |ADJUST mouse but| 00001900 74 6f 6e 20 20 20 20 20 20 20 20 20 31 32 33 2e |ton 123.| 00001910 35 30 20 20 31 32 33 2e 35 30 0a 20 20 20 20 20 |50 123.50. | 00001920 5b 31 5d 5b 37 5d 5b 2e 5d 5b 35 5d 20 20 20 20 |[1][7][.][5] | 00001930 20 20 53 74 61 63 6b 20 72 69 73 65 73 20 26 20 | Stack rises & | 00001940 31 37 2e 35 20 61 70 70 65 61 72 73 20 69 6e 20 |17.5 appears in | 00001950 58 20 20 20 20 20 31 37 2e 35 20 20 20 20 31 32 |X 17.5 12| 00001960 33 2e 35 30 20 20 31 32 33 2e 35 30 0a 20 20 20 |3.50 123.50. | 00001970 20 20 5b 25 5d 20 20 20 20 20 20 20 20 20 20 20 | [%] | 00001980 20 20 20 20 58 20 25 20 6f 66 20 59 20 69 73 20 | X % of Y is | 00001990 63 6f 6d 70 75 74 65 64 20 69 6e 20 58 20 20 20 |computed in X | 000019a0 20 20 20 20 20 20 20 20 32 31 2e 36 31 20 20 20 | 21.61 | 000019b0 31 32 33 2e 35 30 0a 20 20 20 20 20 20 20 20 20 |123.50. | 000019c0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 28 54 | (T| 000019d0 68 69 73 20 69 73 20 74 68 65 20 56 41 54 20 64 |his is the VAT d| 000019e0 75 65 20 6f 6e 20 31 32 33 2e 35 30 29 0a 20 20 |ue on 123.50). | 000019f0 20 20 20 5b 2b 5d 20 20 20 20 20 20 20 20 20 20 | [+] | 00001a00 20 20 20 20 20 32 31 2e 36 31 20 2b 20 31 32 33 | 21.61 + 123| 00001a10 2e 35 30 20 69 73 20 63 6f 6d 70 75 74 65 64 20 |.50 is computed | 00001a20 69 6e 20 58 20 20 20 20 20 31 34 35 2e 31 31 0a |in X 145.11.| 00001a30 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00001a40 20 20 20 20 20 20 20 28 54 68 69 73 20 69 73 20 | (This is | 00001a50 74 68 65 20 74 6f 74 61 6c 20 64 75 65 2e 29 0a |the total due.).| 00001a60 0a 4e 6f 74 65 20 68 6f 77 20 74 68 65 20 66 69 |.Note how the fi| 00001a70 6e 61 6c 20 74 6f 74 61 6c 20 77 61 73 20 63 6f |nal total was co| 00001a80 6d 70 75 74 65 64 20 77 69 74 68 20 61 20 73 69 |mputed with a si| 00001a90 6e 67 6c 65 20 6b 65 79 20 73 74 72 6f 6b 65 2c |ngle key stroke,| 00001aa0 20 77 69 74 68 6f 75 74 0a 74 68 65 20 6e 65 65 | without.the nee| 00001ab0 64 20 74 6f 20 72 65 2d 65 6e 74 65 72 20 61 6e |d to re-enter an| 00001ac0 79 20 76 61 6c 75 65 73 20 61 74 20 61 6c 6c 2e |y values at all.| 00001ad0 20 20 54 68 69 73 20 77 61 73 20 62 65 63 61 75 | This was becau| 00001ae0 73 65 20 77 65 20 68 61 64 20 64 75 70 6c 69 63 |se we had duplic| 00001af0 61 74 65 64 0a 74 68 65 20 6f 72 69 67 69 6e 61 |ated.the origina| 00001b00 6c 20 31 32 33 2e 35 20 62 79 20 63 6c 69 63 6b |l 123.5 by click| 00001b10 69 6e 67 20 5b 45 6e 74 65 72 5d 20 77 69 74 68 |ing [Enter] with| 00001b20 20 74 68 65 20 41 44 4a 55 53 54 20 62 75 74 74 | the ADJUST butt| 00001b30 6f 6e 2e 0a 0a 0a 54 68 65 20 53 74 6f 72 61 67 |on....The Storag| 00001b40 65 20 52 65 67 69 73 74 65 72 73 0a 0a 49 6e 20 |e Registers..In | 00001b50 61 64 64 69 74 69 6f 6e 20 74 6f 20 74 68 65 20 |addition to the | 00001b60 73 74 61 63 6b 2c 20 74 68 65 20 76 61 6c 75 65 |stack, the value| 00001b70 20 69 6e 20 58 20 6d 61 79 20 62 65 20 73 74 6f | in X may be sto| 00001b80 72 65 64 20 69 6e 20 61 6e 79 20 6f 66 20 31 30 |red in any of 10| 00001b90 20 73 70 65 63 69 61 6c 20 0a 72 65 67 69 73 74 | special .regist| 00001ba0 65 72 73 20 6e 75 6d 62 65 72 65 64 20 66 72 6f |ers numbered fro| 00001bb0 6d 20 30 20 74 6f 20 39 2e 20 54 6f 20 64 6f 20 |m 0 to 9. To do | 00001bc0 74 68 69 73 20 63 6c 69 63 6b 20 6f 6e 20 5b 53 |this click on [S| 00001bd0 74 6f 72 65 5d 20 66 6f 6c 6c 6f 77 65 64 20 62 |tore] followed b| 00001be0 79 20 74 68 65 0a 73 69 6e 67 6c 65 20 64 69 67 |y the.single dig| 00001bf0 69 74 20 69 6e 64 69 63 61 74 69 6e 67 20 74 68 |it indicating th| 00001c00 65 20 72 65 71 75 69 72 65 64 20 73 74 6f 72 65 |e required store| 00001c10 20 6e 75 6d 62 65 72 2e 20 54 6f 20 72 65 74 72 | number. To retr| 00001c20 69 65 76 65 20 74 68 65 20 73 74 6f 72 65 64 0a |ieve the stored.| 00001c30 6e 75 6d 62 65 72 20 63 6c 69 63 6b 20 6f 6e 20 |number click on | 00001c40 27 53 74 6f 72 65 27 20 77 69 74 68 20 74 68 65 |'Store' with the| 00001c50 20 41 64 6a 75 73 74 20 62 75 74 74 6f 6e 2c 20 | Adjust button, | 00001c60 66 6f 6c 6c 6f 77 65 64 20 62 79 20 74 68 65 20 |followed by the | 00001c70 73 74 6f 72 65 20 6e 75 6d 62 65 72 2e 0a 0a 54 |store number...T| 00001c80 72 79 20 74 68 69 73 20 2d 0a 0a 20 20 20 20 20 |ry this -.. | 00001c90 42 75 74 74 6f 6e 73 20 20 20 41 63 74 69 6f 6e |Buttons Action| 00001ca0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00001cb0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 53 | S| 00001cc0 74 61 63 6b 0a 20 20 20 20 20 3d 3d 3d 3d 3d 3d |tack. ======| 00001cd0 3d 20 20 20 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d |= ============| 00001ce0 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d |================| 00001cf0 3d 3d 3d 3d 3d 3d 20 20 20 3d 3d 3d 3d 3d 3d 3d |====== =======| 00001d00 3d 3d 3d 3d 3d 3d 0a 20 20 20 20 20 20 20 20 20 |======. | 00001d10 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | * 00001d30 20 20 20 20 20 20 20 20 20 20 20 58 20 20 20 20 | X | 00001d40 20 20 59 20 0a 20 20 20 20 20 5b 70 69 5d 20 20 | Y . [pi] | 00001d50 20 20 20 20 33 2e 31 34 20 61 70 70 65 61 72 73 | 3.14 appears| 00001d60 20 69 6e 20 58 20 20 20 20 20 20 20 20 20 20 20 | in X | 00001d70 20 20 20 20 20 20 20 20 20 33 2e 31 34 0a 20 20 | 3.14. | 00001d80 20 20 20 5b 53 74 6f 72 65 5d 20 20 20 54 68 65 | [Store] The| 00001d90 20 73 74 6f 72 65 20 62 75 74 74 6f 6e 20 73 74 | store button st| 00001da0 61 79 73 20 27 69 6e 27 2e 20 20 20 20 20 20 20 |ays 'in'. | 00001db0 20 20 33 2e 31 34 0a 20 20 20 20 20 5b 37 5d 20 | 3.14. [7] | 00001dc0 20 20 20 20 20 20 54 68 65 20 76 61 6c 75 65 20 | The value | 00001dd0 69 73 20 73 74 6f 72 65 64 2e 20 20 20 20 20 20 |is stored. | 00001de0 20 20 20 20 20 20 20 20 20 20 20 33 2e 31 34 0a | 3.14.| 00001df0 20 20 20 20 20 5b 43 6c 65 61 72 5d 20 20 20 54 | [Clear] T| 00001e00 68 65 20 58 20 72 65 67 69 73 74 65 72 20 69 73 |he X register is| 00001e10 20 63 6c 65 61 72 65 64 20 20 20 20 20 20 20 20 | cleared | 00001e20 20 20 20 20 30 2e 30 30 0a 0a 4e 6f 77 20 70 72 | 0.00..Now pr| 00001e30 6f 76 65 20 74 68 65 20 76 61 6c 75 65 20 69 73 |ove the value is| 00001e40 20 73 74 6f 72 65 64 20 62 79 20 28 55 73 65 20 | stored by (Use | 00001e50 74 68 65 20 41 44 4a 55 53 54 20 62 75 74 74 6f |the ADJUST butto| 00001e60 6e 29 20 2d 0a 0a 20 20 20 20 20 5b 53 74 6f 72 |n) -.. [Stor| 00001e70 65 5d 20 20 20 55 73 65 20 74 68 65 20 41 64 6a |e] Use the Adj| 00001e80 75 73 74 20 62 75 74 74 6f 6e 20 74 6f 20 27 66 |ust button to 'f| 00001e90 65 74 63 68 27 20 20 20 20 20 30 2e 30 30 0a 20 |etch' 0.00. | 00001ea0 20 20 20 20 5b 37 5d 20 20 20 20 20 20 20 56 61 | [7] Va| 00001eb0 6c 75 65 20 73 74 6f 72 65 64 20 69 6e 20 73 74 |lue stored in st| 00001ec0 6f 72 65 20 37 20 69 73 20 73 68 6f 77 6e 20 20 |ore 7 is shown | 00001ed0 20 20 20 33 2e 31 34 0a 0a 49 6e 20 74 68 65 20 | 3.14..In the | 00001ee0 56 41 54 20 65 78 61 6d 70 6c 65 20 61 62 6f 76 |VAT example abov| 00001ef0 65 2c 20 77 65 20 63 6f 75 6c 64 20 68 61 76 65 |e, we could have| 00001f00 20 73 74 6f 72 65 64 20 74 68 65 20 56 41 54 20 | stored the VAT | 00001f10 72 61 74 65 2c 20 31 37 2e 35 2c 20 69 6e 20 6f |rate, 17.5, in o| 00001f20 6e 65 0a 6f 66 20 74 68 65 73 65 20 73 74 6f 72 |ne.of these stor| 00001f30 61 67 65 20 72 65 67 69 73 74 65 72 73 2c 20 61 |age registers, a| 00001f40 6e 64 20 75 73 65 64 20 69 74 20 69 6e 20 72 65 |nd used it in re| 00001f50 70 65 61 74 65 64 20 56 41 54 20 63 61 6c 63 75 |peated VAT calcu| 00001f60 6c 61 74 69 6f 6e 73 2e 0a 0a 0a 54 68 65 20 44 |lations....The D| 00001f70 69 73 70 6c 61 79 20 46 6f 72 6d 61 74 0a 0a 49 |isplay Format..I| 00001f80 6e 20 74 68 65 20 61 62 6f 76 65 20 65 78 61 6d |n the above exam| 00001f90 70 6c 65 2c 20 74 68 65 20 76 61 6c 75 65 20 6f |ple, the value o| 00001fa0 66 20 27 70 69 27 20 77 61 73 20 73 68 6f 77 6e |f 'pi' was shown| 00001fb0 20 61 73 20 33 2e 31 34 20 62 65 63 61 75 73 65 | as 3.14 because| 00001fc0 20 74 68 65 0a 63 61 6c 63 75 6c 61 74 6f 72 20 | the.calculator | 00001fd0 69 73 20 69 6e 69 74 69 61 6c 6c 79 20 73 65 74 |is initially set| 00001fe0 20 74 6f 20 64 69 73 70 6c 61 79 20 6f 6e 6c 79 | to display only| 00001ff0 20 32 20 64 65 63 69 6d 61 6c 20 70 6c 61 63 65 | 2 decimal place| 00002000 73 2e 20 54 68 65 20 66 75 6c 6c 0a 76 61 6c 75 |s. The full.valu| 00002010 65 20 6f 66 20 70 69 20 28 74 6f 20 61 62 6f 75 |e of pi (to abou| 00002020 74 20 31 35 20 73 69 67 6e 69 66 69 63 61 6e 74 |t 15 significant| 00002030 20 66 69 67 75 72 65 73 29 20 69 73 20 6f 66 20 | figures) is of | 00002040 63 6f 75 72 73 65 20 75 73 65 64 20 69 6e 74 65 |course used inte| 00002050 72 6e 61 6c 6c 79 2c 20 0a 61 6e 64 20 6d 61 79 |rnally, .and may| 00002060 20 62 65 20 64 69 73 70 6c 61 79 65 64 20 62 79 | be displayed by| 00002070 20 69 6e 63 72 65 61 73 69 6e 67 20 74 68 65 20 | increasing the | 00002080 64 65 63 69 6d 61 6c 20 70 6c 61 63 65 73 20 75 |decimal places u| 00002090 73 69 6e 67 20 74 68 65 20 61 64 6a 75 73 74 65 |sing the adjuste| 000020a0 72 0a 62 75 74 74 6f 6e 73 20 61 74 20 74 68 65 |r.buttons at the| 000020b0 20 74 6f 70 20 72 69 67 68 74 20 6f 66 20 74 68 | top right of th| 000020c0 65 20 63 61 6c 63 75 6c 61 74 6f 72 2e 0a 0a 4f |e calculator...O| 000020d0 74 68 65 72 20 64 69 73 70 6c 61 79 20 6d 6f 64 |ther display mod| 000020e0 65 73 20 61 72 65 20 61 6c 73 6f 20 61 76 61 69 |es are also avai| 000020f0 6c 61 62 6c 65 2e 0a 0a 0a 21 48 65 6c 70 0a 0a |lable....!Help..| 00002100 52 50 43 61 6c 63 20 73 75 70 70 6f 72 74 73 20 |RPCalc supports | 00002110 74 68 65 20 41 63 6f 72 6e 20 21 68 65 6c 70 20 |the Acorn !help | 00002120 66 61 63 69 6c 69 74 79 2c 20 77 68 69 63 68 20 |facility, which | 00002130 6d 61 79 20 62 65 20 75 73 65 64 20 74 6f 20 65 |may be used to e| 00002140 78 70 6c 6f 72 65 20 61 6c 6c 0a 74 68 65 20 66 |xplore all.the f| 00002150 75 6e 63 74 69 6f 6e 73 20 6f 6e 20 74 68 65 20 |unctions on the | 00002160 63 61 6c 63 75 6c 61 74 6f 72 2e 20 20 54 6f 20 |calculator. To | 00002170 69 6e 76 6f 6b 65 20 74 68 69 73 2c 20 73 65 6c |invoke this, sel| 00002180 65 63 74 20 27 48 65 6c 70 27 20 66 72 6f 6d 0a |ect 'Help' from.| 00002190 74 68 65 20 69 63 6f 6e 62 61 72 20 6d 65 6e 75 |the iconbar menu| 000021a0 2c 20 61 6e 64 20 6d 6f 76 65 20 74 68 65 20 70 |, and move the p| 000021b0 6f 69 6e 74 65 72 20 6f 76 65 72 20 74 68 65 20 |ointer over the | 000021c0 66 75 6e 63 74 69 6f 6e 20 62 75 74 74 6f 6e 73 |function buttons| 000021d0 20 70 72 6f 76 69 64 65 64 2e 0a 59 6f 75 20 77 | provided..You w| 000021e0 69 6c 6c 20 66 69 6e 64 20 74 68 61 74 20 6d 6f |ill find that mo| 000021f0 73 74 20 6f 66 20 74 68 65 20 62 75 74 74 6f 6e |st of the button| 00002200 73 20 70 72 6f 76 69 64 65 20 74 77 6f 20 73 65 |s provide two se| 00002210 70 61 72 61 74 65 20 66 75 6e 63 74 69 6f 6e 73 |parate functions| 00002220 2e 20 54 68 65 0a 66 75 6e 63 74 69 6f 6e 20 64 |. The.function d| 00002230 69 73 70 6c 61 79 65 64 20 6f 6e 20 74 68 65 20 |isplayed on the | 00002240 62 75 74 74 6f 6e 20 69 73 20 69 6e 76 6f 6b 65 |button is invoke| 00002250 64 20 75 73 69 6e 67 20 74 68 65 20 53 45 4c 45 |d using the SELE| 00002260 43 54 20 6d 6f 75 73 65 20 62 75 74 74 6f 6e 2c |CT mouse button,| 00002270 0a 77 68 69 6c 65 20 61 6e 6f 74 68 65 72 2c 20 |.while another, | 00002280 6f 66 74 65 6e 20 74 68 65 20 69 6e 76 65 72 73 |often the invers| 00002290 65 20 66 75 6e 63 74 69 6f 6e 2c 20 69 73 20 69 |e function, is i| 000022a0 6e 76 6f 6b 65 64 20 75 73 69 6e 67 20 74 68 65 |nvoked using the| 000022b0 20 41 44 4a 55 53 54 0a 62 75 74 74 6f 6e 2e 0a | ADJUST.button..| 000022c0 0a 0a 52 65 76 65 72 73 65 20 50 6f 6c 69 73 68 |..Reverse Polish| 000022d0 0a 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 0a |.==============.| 000022e0 0a 52 65 76 65 72 73 65 20 50 6f 6c 69 73 68 20 |.Reverse Polish | 000022f0 69 73 20 61 20 6e 6f 74 61 74 69 6f 6e 20 73 79 |is a notation sy| 00002300 73 74 65 6d 20 66 6f 72 20 6d 61 74 68 65 6d 61 |stem for mathema| 00002310 74 69 63 61 6c 20 65 78 70 72 65 73 73 69 6f 6e |tical expression| 00002320 73 20 0a 69 6e 76 65 6e 74 65 64 20 62 79 20 61 |s .invented by a| 00002330 20 50 6f 6c 69 73 68 20 67 65 6e 74 6c 65 6d 61 | Polish gentlema| 00002340 6e 20 62 79 20 74 68 65 20 6e 61 6d 65 20 6f 66 |n by the name of| 00002350 20 4c 75 6b 61 73 69 65 77 69 63 7a 2e 20 0a 55 | Lukasiewicz. .U| 00002360 6e 66 6f 72 74 75 6e 61 74 65 6c 79 20 66 6f 72 |nfortunately for| 00002370 20 68 69 6d 2c 20 6e 6f 62 6f 64 79 20 63 6f 75 | him, nobody cou| 00002380 6c 64 20 70 72 6f 6e 6f 75 6e 63 65 20 68 69 73 |ld pronounce his| 00002390 20 6e 61 6d 65 20 73 6f 20 74 68 65 20 0a 6e 6f | name so the .no| 000023a0 74 61 74 69 6f 6e 20 62 65 63 61 6d 65 20 6b 6e |tation became kn| 000023b0 6f 77 6e 20 61 73 20 52 65 76 65 72 73 65 20 50 |own as Reverse P| 000023c0 6f 6c 69 73 68 2c 20 61 6e 64 20 68 69 73 20 6e |olish, and his n| 000023d0 61 6d 65 20 69 73 20 61 6c 6c 20 62 75 74 20 0a |ame is all but .| 000023e0 66 6f 72 67 6f 74 74 65 6e 2e 0a 0a 49 74 20 69 |forgotten...It i| 000023f0 73 20 70 6f 73 73 69 62 6c 65 20 74 68 61 74 20 |s possible that | 00002400 65 76 65 6e 20 74 68 65 20 6e 6f 74 61 74 69 6f |even the notatio| 00002410 6e 20 69 74 73 65 6c 66 20 77 6f 75 6c 64 20 68 |n itself would h| 00002420 61 76 65 20 62 65 65 6e 0a 66 6f 72 67 6f 74 74 |ave been.forgott| 00002430 65 6e 20 77 65 72 65 20 69 74 20 6e 6f 74 20 66 |en were it not f| 00002440 6f 72 20 74 68 65 20 61 72 72 69 76 61 6c 20 6f |or the arrival o| 00002450 66 20 63 6f 6d 70 75 74 65 72 73 2c 20 77 68 65 |f computers, whe| 00002460 72 65 20 69 74 20 68 61 73 0a 62 65 63 6f 6d 65 |re it has.become| 00002470 20 70 72 6f 62 61 62 6c 79 20 6f 6e 65 20 6f 66 | probably one of| 00002480 20 74 68 65 20 6d 6f 73 74 20 6f 66 74 65 6e 20 | the most often | 00002490 75 73 65 64 20 73 79 73 74 65 6d 73 2c 20 6e 6f |used systems, no| 000024a0 74 20 66 6f 72 20 0a 77 72 69 74 69 6e 67 20 65 |t for .writing e| 000024b0 78 70 72 65 73 73 69 6f 6e 73 2c 20 62 75 74 20 |xpressions, but | 000024c0 66 6f 72 20 73 74 6f 72 69 6e 67 20 74 68 65 6d |for storing them| 000024d0 20 66 6f 72 20 6c 61 74 65 72 20 63 6f 6d 70 75 | for later compu| 000024e0 74 61 74 69 6f 6e 2c 0a 61 73 20 66 6f 72 20 65 |tation,.as for e| 000024f0 78 61 6d 70 6c 65 20 69 6e 20 63 6f 6d 70 69 6c |xample in compil| 00002500 65 64 20 63 6f 64 65 2e 20 0a 0a 54 68 65 20 46 |ed code. ..The F| 00002510 6f 72 74 68 20 70 72 6f 67 72 61 6d 6d 69 6e 67 |orth programming| 00002520 20 6c 61 6e 67 75 61 67 65 20 69 73 20 62 61 73 | language is bas| 00002530 65 64 20 75 70 6f 6e 20 74 68 65 20 52 65 76 65 |ed upon the Reve| 00002540 72 73 65 20 50 6f 6c 69 73 68 0a 73 79 73 74 65 |rse Polish.syste| 00002550 6d 2c 20 61 6e 64 20 50 6f 73 74 73 63 72 69 70 |m, and Postscrip| 00002560 74 20 61 6c 73 6f 20 77 6f 72 6b 73 20 74 68 69 |t also works thi| 00002570 73 20 77 61 79 2e 0a 0a 54 68 65 20 74 61 67 20 |s way...The tag | 00002580 27 72 65 76 65 72 73 65 27 20 73 69 6d 70 6c 79 |'reverse' simply| 00002590 20 72 65 66 65 72 73 20 74 6f 20 74 68 65 20 66 | refers to the f| 000025a0 61 63 74 20 74 68 61 74 20 6f 70 65 72 61 74 6f |act that operato| 000025b0 72 73 2c 20 73 75 63 68 0a 61 73 20 27 2b 27 20 |rs, such.as '+' | 000025c0 61 6e 64 20 27 2d 27 20 61 72 65 20 77 72 69 74 |and '-' are writ| 000025d0 74 65 6e 20 61 66 74 65 72 20 74 68 65 20 76 61 |ten after the va| 000025e0 6c 75 65 73 20 6f 6e 20 77 68 69 63 68 20 74 68 |lues on which th| 000025f0 65 79 20 6f 70 65 72 61 74 65 0a 72 61 74 68 65 |ey operate.rathe| 00002600 72 20 74 68 61 6e 20 62 65 66 6f 72 65 2c 20 61 |r than before, a| 00002610 73 20 69 6e 20 6d 6f 72 65 20 63 6f 6e 76 65 6e |s in more conven| 00002620 74 69 6f 6e 61 6c 20 6e 6f 74 61 74 69 6f 6e 2e |tional notation.| 00002630 0a 0a 54 68 65 20 61 64 76 61 6e 74 61 67 65 20 |..The advantage | 00002640 6f 66 20 74 68 65 20 6e 6f 74 61 74 69 6f 6e 20 |of the notation | 00002650 69 73 20 74 68 61 74 20 69 74 20 70 65 72 6d 69 |is that it permi| 00002660 74 73 20 61 6e 20 65 78 70 72 65 73 73 69 6f 6e |ts an expression| 00002670 0a 74 6f 20 62 65 20 77 72 69 74 74 65 6e 20 77 |.to be written w| 00002680 69 74 68 6f 75 74 20 74 68 65 20 75 73 65 20 6f |ithout the use o| 00002690 66 20 70 61 72 65 6e 74 68 65 73 65 73 2c 20 77 |f parentheses, w| 000026a0 68 69 6c 65 20 72 65 6d 61 69 6e 69 6e 67 0a 74 |hile remaining.t| 000026b0 6f 74 61 6c 6c 79 20 75 6e 2d 61 6d 62 69 67 75 |otally un-ambigu| 000026c0 6f 75 73 2e 20 46 6f 72 20 65 78 61 6d 70 6c 65 |ous. For example| 000026d0 2c 20 74 68 65 20 65 78 70 72 65 73 73 69 6f 6e |, the expression| 000026e0 20 2d 0a 0a 20 20 20 20 20 20 20 20 20 20 28 20 | -.. ( | 000026f0 32 20 2b 20 34 20 29 20 2a 20 28 20 37 20 2d 20 |2 + 4 ) * ( 7 - | 00002700 33 20 29 0a 0a 77 6f 75 6c 64 20 62 65 20 77 72 |3 )..would be wr| 00002710 69 74 74 65 6e 2c 20 6f 72 20 73 74 6f 72 65 64 |itten, or stored| 00002720 20 61 73 20 2d 0a 0a 20 20 20 20 20 20 20 20 20 | as -.. | 00002730 20 20 20 32 20 20 34 20 20 2b 20 20 37 20 20 33 | 2 4 + 7 3| 00002740 20 20 2d 20 20 2a 20 0a 0a 54 6f 20 65 76 61 6c | - * ..To eval| 00002750 75 61 74 65 20 74 68 69 73 2c 20 74 68 65 20 65 |uate this, the e| 00002760 78 70 72 65 73 73 69 6f 6e 20 69 73 20 73 63 61 |xpression is sca| 00002770 6e 6e 65 64 20 66 72 6f 6d 20 6c 65 66 74 20 74 |nned from left t| 00002780 6f 20 72 69 67 68 74 2c 20 61 6e 64 20 0a 61 6e |o right, and .an| 00002790 79 20 76 61 6c 75 65 73 20 66 6f 75 6e 64 20 72 |y values found r| 000027a0 65 6d 6f 76 65 64 20 61 6e 64 20 70 6c 61 63 65 |emoved and place| 000027b0 64 20 61 73 69 64 65 20 6f 6e 20 61 20 73 74 61 |d aside on a sta| 000027c0 63 6b 20 28 69 2e 65 2e 20 61 20 68 65 61 70 20 |ck (i.e. a heap | 000027d0 6f 72 20 0a 70 69 6c 65 29 2e 20 57 68 65 6e 20 |or .pile). When | 000027e0 61 6e 20 6f 70 65 72 61 74 6f 72 20 69 73 20 66 |an operator is f| 000027f0 6f 75 6e 64 2c 20 74 68 65 20 72 65 71 75 69 72 |ound, the requir| 00002800 65 64 20 6e 75 6d 62 65 72 20 6f 66 20 76 61 6c |ed number of val| 00002810 75 65 73 20 61 72 65 20 0a 72 65 74 72 69 65 76 |ues are .retriev| 00002820 65 64 20 66 72 6f 6d 20 74 68 65 20 73 74 61 63 |ed from the stac| 00002830 6b 20 28 6c 61 73 74 20 6f 6e 2c 20 66 69 72 73 |k (last on, firs| 00002840 74 20 6f 66 66 29 2c 20 74 68 65 20 6f 70 65 72 |t off), the oper| 00002850 61 74 69 6f 6e 20 63 61 72 72 69 65 64 20 0a 6f |ation carried .o| 00002860 75 74 20 6f 6e 20 74 68 65 6d 2c 20 61 6e 64 20 |ut on them, and | 00002870 74 68 65 20 72 65 73 75 6c 74 20 70 75 74 20 62 |the result put b| 00002880 61 63 6b 20 6f 6e 20 74 68 65 20 73 74 61 63 6b |ack on the stack| 00002890 2e 20 54 68 69 73 20 73 79 73 74 65 6d 20 69 73 |. This system is| 000028a0 20 0a 63 6f 6e 74 69 6e 75 65 64 20 74 6f 20 74 | .continued to t| 000028b0 68 65 20 65 6e 64 20 6f 66 20 74 68 65 20 65 78 |he end of the ex| 000028c0 70 72 65 73 73 69 6f 6e 2e 0a 0a 54 68 75 73 20 |pression...Thus | 000028d0 69 6e 20 74 68 65 20 61 62 6f 76 65 20 63 61 73 |in the above cas| 000028e0 65 2c 20 32 20 61 6e 64 20 74 68 65 6e 20 34 20 |e, 2 and then 4 | 000028f0 61 72 65 20 70 6c 61 63 65 64 20 6f 6e 20 74 68 |are placed on th| 00002900 65 20 73 74 61 63 6b 20 62 65 66 6f 72 65 20 0a |e stack before .| 00002910 74 68 65 20 27 2b 27 20 6f 70 65 72 61 74 6f 72 |the '+' operator| 00002920 20 69 73 20 66 6f 75 6e 64 2e 20 54 68 65 73 65 | is found. These| 00002930 20 76 61 6c 75 65 73 20 61 72 65 20 74 68 65 6e | values are then| 00002940 20 72 65 74 72 69 65 76 65 64 20 61 6e 64 20 74 | retrieved and t| 00002950 68 65 0a 61 64 64 69 74 69 6f 6e 20 63 61 72 72 |he.addition carr| 00002960 69 65 64 20 6f 75 74 2e 20 54 68 65 20 72 65 73 |ied out. The res| 00002970 75 6c 74 2c 20 36 2c 20 69 73 20 74 68 65 6e 20 |ult, 6, is then | 00002980 70 6c 61 63 65 64 20 62 61 63 6b 20 6f 6e 20 74 |placed back on t| 00002990 68 65 20 0a 73 74 61 63 6b 2e 20 0a 0a 54 68 65 |he .stack. ..The| 000029a0 6e 20 37 20 61 6e 64 20 33 20 61 72 65 20 66 6f |n 7 and 3 are fo| 000029b0 75 6e 64 20 69 6e 20 74 75 72 6e 20 61 6e 64 20 |und in turn and | 000029c0 70 6c 61 63 65 64 20 6f 6e 20 74 6f 70 20 6f 66 |placed on top of| 000029d0 20 74 68 65 20 36 2e 20 41 74 20 74 68 69 73 20 | the 6. At this | 000029e0 0a 70 6f 69 6e 74 20 61 20 27 2d 27 20 6f 70 65 |.point a '-' ope| 000029f0 72 61 74 6f 72 20 69 73 20 66 6f 75 6e 64 2c 20 |rator is found, | 00002a00 73 6f 20 74 68 65 20 6c 61 73 74 20 74 77 6f 20 |so the last two | 00002a10 76 61 6c 75 65 73 2c 20 37 20 61 6e 64 20 33 2c |values, 7 and 3,| 00002a20 20 61 72 65 0a 72 65 74 72 69 65 76 65 64 20 61 | are.retrieved a| 00002a30 6e 64 20 74 68 65 20 72 65 73 75 6c 74 20 6f 66 |nd the result of| 00002a40 20 74 68 65 20 73 75 62 74 72 61 63 74 69 6f 6e | the subtraction| 00002a50 2c 20 34 2c 20 69 73 20 70 6c 61 63 65 64 20 62 |, 4, is placed b| 00002a60 61 63 6b 20 6f 6e 20 0a 74 68 65 20 73 74 61 63 |ack on .the stac| 00002a70 6b 2c 20 61 73 20 62 65 66 6f 72 65 2e 0a 0a 41 |k, as before...A| 00002a80 74 20 74 68 69 73 20 70 6f 69 6e 74 20 74 68 65 |t this point the| 00002a90 20 73 74 61 63 6b 20 6e 6f 77 20 68 61 73 20 61 | stack now has a| 00002aa0 20 34 20 6f 6e 20 74 6f 70 20 6f 66 20 36 2c 20 | 4 on top of 6, | 00002ab0 73 6f 20 77 68 65 6e 20 74 68 65 20 6c 61 73 74 |so when the last| 00002ac0 20 0a 6f 70 65 72 61 74 6f 72 20 69 73 20 66 6f | .operator is fo| 00002ad0 75 6e 64 2c 20 74 68 65 20 27 2a 27 2c 20 74 68 |und, the '*', th| 00002ae0 65 73 65 20 74 77 6f 20 6e 75 6d 62 65 72 73 20 |ese two numbers | 00002af0 61 72 65 20 6d 75 6c 74 69 70 6c 69 65 64 20 74 |are multiplied t| 00002b00 6f 67 65 74 68 65 72 20 0a 61 6e 64 20 74 68 65 |ogether .and the| 00002b10 20 72 65 73 75 6c 74 2c 20 6e 6f 77 20 74 68 65 | result, now the| 00002b20 20 66 69 6e 61 6c 20 61 6e 73 77 65 72 2c 20 32 | final answer, 2| 00002b30 34 2c 20 69 73 20 70 6c 61 63 65 64 20 62 61 63 |4, is placed bac| 00002b40 6b 20 6f 6e 20 74 68 65 20 0a 73 74 61 63 6b 2e |k on the .stack.| 00002b50 0a 0a 4e 6f 74 69 63 65 20 74 68 61 74 20 77 68 |..Notice that wh| 00002b60 65 6e 65 76 65 72 20 61 6e 20 6f 70 65 72 61 74 |enever an operat| 00002b70 6f 72 20 69 73 20 66 6f 75 6e 64 2c 20 6f 6e 6c |or is found, onl| 00002b80 79 20 74 68 65 20 72 65 71 75 69 72 65 64 20 6e |y the required n| 00002b90 75 6d 62 65 72 20 6f 66 0a 76 61 6c 75 65 73 20 |umber of.values | 00002ba0 61 72 65 20 75 6e 73 74 61 63 6b 65 64 2c 20 73 |are unstacked, s| 00002bb0 6f 20 74 68 61 74 20 74 68 65 20 73 79 73 74 65 |o that the syste| 00002bc0 6d 20 77 6f 72 6b 73 20 65 71 75 61 6c 6c 79 20 |m works equally | 00002bd0 77 65 6c 6c 20 66 6f 72 20 75 6e 61 72 79 0a 6f |well for unary.o| 00002be0 70 65 72 61 74 6f 72 73 20 73 75 63 68 20 61 73 |perators such as| 00002bf0 20 78 21 20 6f 72 20 73 69 6e 28 78 29 2c 20 61 | x! or sin(x), a| 00002c00 73 20 66 6f 72 20 62 69 6e 61 72 79 20 28 27 2b |s for binary ('+| 00002c10 27 20 27 2f 27 20 65 74 63 29 20 6f 72 20 6f 74 |' '/' etc) or ot| 00002c20 68 65 72 20 0a 6f 70 65 72 61 74 6f 72 73 2e 0a |her .operators..| 00002c30 0a 54 68 65 20 73 79 73 74 65 6d 20 6d 61 79 20 |.The system may | 00002c40 62 65 20 65 78 74 65 6e 64 65 64 20 74 6f 20 69 |be extended to i| 00002c50 6e 63 6c 75 64 65 20 6d 75 6c 74 69 2d 70 61 72 |nclude multi-par| 00002c60 61 6d 65 74 65 72 20 66 75 6e 63 74 69 6f 6e 73 |ameter functions| 00002c70 2c 20 73 75 63 68 0a 61 73 20 66 75 6e 63 74 69 |, such.as functi| 00002c80 6f 6e 28 20 61 2c 20 62 2c 20 63 20 29 2e 20 57 |on( a, b, c ). W| 00002c90 68 69 63 68 20 69 73 20 73 69 6d 70 6c 79 20 77 |hich is simply w| 00002ca0 72 69 74 74 65 6e 20 2d 0a 0a 20 20 20 20 20 20 |ritten -.. | 00002cb0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00002cc0 20 61 20 20 62 20 20 63 20 20 66 75 6e 63 74 69 | a b c functi| 00002cd0 6f 6e 0a 0a 49 74 20 69 73 20 61 6c 73 6f 20 70 |on..It is also p| 00002ce0 6f 73 73 69 62 6c 65 20 74 6f 20 69 6e 63 6c 75 |ossible to inclu| 00002cf0 64 65 20 70 72 6f 67 72 61 6d 6d 69 6e 67 20 63 |de programming c| 00002d00 6f 6e 73 74 72 75 63 74 73 2c 20 73 75 63 68 20 |onstructs, such | 00002d10 61 73 0a 69 66 2d 74 68 65 6e 2d 65 6c 73 65 2c |as.if-then-else,| 00002d20 20 72 65 70 65 61 74 2c 20 65 74 63 2c 20 61 73 | repeat, etc, as| 00002d30 20 69 73 20 64 6f 6e 65 20 69 6e 20 46 6f 72 74 | is done in Fort| 00002d40 68 20 61 6e 64 20 50 6f 73 74 73 63 72 69 70 74 |h and Postscript| 00002d50 2e 0a 0a 4e 6f 74 65 20 61 6c 73 6f 20 74 68 61 |...Note also tha| 00002d60 74 20 74 68 65 20 6e 6f 74 61 74 69 6f 6e 20 64 |t the notation d| 00002d70 6f 65 73 20 6e 6f 74 20 72 65 71 75 69 72 65 20 |oes not require | 00002d80 61 6e 79 20 6b 6e 6f 77 6c 65 64 67 65 20 6f 66 |any knowledge of| 00002d90 20 6f 70 65 72 61 74 6f 72 0a 70 72 69 6f 72 69 | operator.priori| 00002da0 74 79 2e 20 20 4f 70 65 72 61 74 6f 72 73 20 61 |ty. Operators a| 00002db0 72 65 20 61 6c 77 61 79 73 20 65 78 65 63 75 74 |re always execut| 00002dc0 65 64 20 77 68 65 6e 20 66 6f 75 6e 64 2c 20 75 |ed when found, u| 00002dd0 73 69 6e 67 20 68 6f 77 65 76 65 72 0a 6d 61 6e |sing however.man| 00002de0 79 20 76 61 6c 75 65 73 20 61 72 65 20 6e 65 65 |y values are nee| 00002df0 64 65 64 2e 0a 0a 54 68 65 20 46 75 6e 63 74 69 |ded...The Functi| 00002e00 6f 6e 73 2e 0a 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d |ons..===========| 00002e10 3d 3d 0a 0a 54 68 69 73 20 73 65 63 74 69 6f 6e |==..This section| 00002e20 20 67 69 76 65 73 20 66 75 6c 6c 20 64 65 73 63 | gives full desc| 00002e30 72 69 70 74 69 6f 6e 73 20 6f 66 20 65 61 63 68 |riptions of each| 00002e40 20 61 76 61 69 6c 61 62 6c 65 20 66 75 6e 63 74 | available funct| 00002e50 69 6f 6e 2c 0a 66 6f 72 20 65 61 63 68 20 63 61 |ion,.for each ca| 00002e60 6c 63 75 6c 61 74 6f 72 20 62 75 74 74 6f 6e 2e |lculator button.| 00002e70 20 20 20 0a 0a 49 6e 20 61 6c 6c 20 63 61 73 65 | ..In all case| 00002e80 73 2c 20 58 2c 20 6f 72 20 58 20 61 6e 64 20 59 |s, X, or X and Y| 00002e90 20 77 68 65 72 65 20 61 70 70 72 6f 70 72 69 61 | where appropria| 00002ea0 74 65 2c 20 61 72 65 20 75 6e 73 74 61 63 6b 65 |te, are unstacke| 00002eb0 64 2c 20 61 6e 64 20 0a 74 68 65 20 72 65 73 75 |d, and .the resu| 00002ec0 6c 74 20 70 6c 61 63 65 64 20 69 6e 20 58 2c 20 |lt placed in X, | 00002ed0 75 6e 6c 65 73 73 20 6f 74 68 65 72 77 69 73 65 |unless otherwise| 00002ee0 20 73 74 61 72 65 64 2e 0a 0a 55 73 65 20 6f 66 | stared...Use of| 00002ef0 20 74 68 65 20 53 45 4c 45 43 54 20 6d 6f 75 73 | the SELECT mous| 00002f00 65 20 62 75 74 74 6f 6e 20 69 73 20 61 73 73 75 |e button is assu| 00002f10 6d 65 64 20 77 68 65 72 65 20 6e 6f 74 20 73 74 |med where not st| 00002f20 61 74 65 64 2e 0a 0a 0a 54 68 65 20 73 74 61 63 |ated....The stac| 00002f30 6b 20 6d 61 6e 69 70 75 6c 61 74 69 6f 6e 73 2e |k manipulations.| 00002f40 0a 0a 5b 45 6e 74 65 72 5d 20 20 43 61 75 73 65 |..[Enter] Cause| 00002f50 73 20 74 68 65 20 73 74 61 63 6b 20 74 6f 20 72 |s the stack to r| 00002f60 69 73 65 2e 0a 20 20 20 20 20 20 20 20 20 53 45 |ise.. SE| 00002f70 4c 45 43 54 20 43 6c 65 61 72 73 20 74 68 65 20 |LECT Clears the | 00002f80 58 20 72 65 67 69 73 74 65 72 0a 20 20 20 20 20 |X register. | 00002f90 20 20 20 20 41 44 4a 55 53 54 20 50 72 65 73 65 | ADJUST Prese| 00002fa0 72 76 65 73 20 74 68 65 20 58 20 72 65 67 69 73 |rves the X regis| 00002fb0 74 65 72 2e 0a 0a 5b 8a 5d 20 20 20 20 20 20 53 |ter...[.] S| 00002fc0 45 4c 45 43 54 20 52 6f 74 61 74 65 73 20 74 68 |ELECT Rotates th| 00002fd0 65 20 73 74 61 63 6b 20 64 6f 77 6e 77 61 72 64 |e stack downward| 00002fe0 73 2e 0a 20 20 20 20 20 20 20 20 20 41 44 4a 55 |s.. ADJU| 00002ff0 53 54 20 52 6f 74 61 74 65 73 20 74 68 65 20 73 |ST Rotates the s| 00003000 74 61 63 6b 20 75 70 77 61 72 64 73 2e 0a 20 20 |tack upwards.. | 00003010 20 20 20 20 20 20 20 20 20 20 20 20 20 20 49 6e | In| 00003020 20 62 6f 74 68 20 63 61 73 65 73 20 65 6e 64 20 | both cases end | 00003030 76 61 6c 75 65 73 20 61 72 65 20 77 72 61 70 70 |values are wrapp| 00003040 65 64 20 61 72 6f 75 6e 64 2e 0a 0a 5b 58 8b 20 |ed around...[X. | 00003050 59 8a 5d 20 20 53 77 61 70 73 20 74 68 65 20 58 |Y.] Swaps the X| 00003060 20 61 6e 64 20 59 20 72 65 67 69 73 74 65 72 20 | and Y register | 00003070 76 61 6c 75 65 73 2e 20 20 0a 20 20 20 20 20 20 |values. . | 00003080 20 20 20 54 68 65 20 73 74 61 63 6b 20 64 6f 65 | The stack doe| 00003090 73 20 6e 6f 74 20 72 69 73 65 2e 0a 0a 0a 53 69 |s not rise....Si| 000030a0 6d 70 6c 65 20 41 72 69 74 68 6d 65 74 69 63 2e |mple Arithmetic.| 000030b0 0a 0a 5b 2d 5d 20 20 53 75 62 74 72 61 63 74 2e |..[-] Subtract.| 000030c0 20 20 43 6f 6d 70 75 74 65 73 20 59 20 2d 20 58 | Computes Y - X| 000030d0 0a 0a 5b 2b 5d 20 20 41 64 64 2e 20 20 20 20 20 |..[+] Add. | 000030e0 20 20 43 6f 6d 70 75 74 65 73 20 59 20 2b 20 58 | Computes Y + X| 000030f0 0a 0a 5b d7 5d 20 20 4d 75 6c 74 69 70 6c 79 2e |..[.] Multiply.| 00003100 20 20 43 6f 6d 70 75 74 65 73 20 59 20 2a 20 58 | Computes Y * X| 00003110 0a 0a 5b f7 5d 20 20 44 69 76 69 64 65 2e 20 20 |..[.] Divide. | 00003120 20 20 43 6f 6d 70 75 74 65 73 20 59 20 f7 20 58 | Computes Y . X| 00003130 0a 0a 0a 46 75 6e 63 74 69 6f 6e 73 20 6f 66 20 |...Functions of | 00003140 58 2e 0a 0a 5b 78 21 5d 20 20 20 46 61 63 74 6f |X...[x!] Facto| 00003150 72 69 61 6c 2e 20 43 6f 6d 70 75 74 65 73 20 20 |rial. Computes | 00003160 78 20 2a 20 28 78 2d 31 29 20 2a 20 28 78 2d 32 |x * (x-1) * (x-2| 00003170 29 20 2a 20 28 78 2d 33 29 20 2e 2e 2e 20 2a 20 |) * (x-3) ... * | 00003180 32 20 2a 20 31 0a 0a 20 20 20 20 20 20 20 65 2e |2 * 1.. e.| 00003190 67 2e 20 20 74 6f 20 63 6f 6d 70 75 74 65 20 66 |g. to compute f| 000031a0 61 63 74 6f 72 69 61 6c 20 31 30 2c 20 6b 65 79 |actorial 10, key| 000031b0 20 69 6e 20 2d 0a 20 20 20 20 20 20 20 20 20 20 | in -. | 000031c0 20 20 20 20 20 20 5b 31 30 5d 20 5b 78 21 5d 20 | [10] [x!] | 000031d0 20 20 20 72 65 73 75 6c 74 20 33 36 32 38 38 30 | result 362880| 000031e0 30 0a 0a 0a 5b 31 2f 78 5d 20 20 52 65 63 69 70 |0...[1/x] Recip| 000031f0 72 6f 63 61 6c 2e 20 20 43 6f 6d 70 75 74 65 73 |rocal. Computes| 00003200 20 31 20 f7 20 78 0a 0a 20 20 20 20 20 20 20 65 | 1 . x.. e| 00003210 2e 67 2e 20 20 74 6f 20 63 6f 6d 70 75 74 65 20 |.g. to compute | 00003220 31 20 2f 20 65 2c 20 20 6b 65 79 20 69 6e 20 2d |1 / e, key in -| 00003230 0a 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 |. | 00003240 20 5b 65 5d 20 5b 31 2f 78 5d 20 20 20 20 72 65 | [e] [1/x] re| 00003250 73 75 6c 74 20 20 30 2e 33 37 0a 0a 0a 5b 78 5e |sult 0.37...[x^| 00003260 79 5d 20 20 50 6f 77 65 72 73 2e 20 20 28 20 41 |y] Powers. ( A| 00003270 63 74 75 61 6c 20 6c 65 67 65 6e 64 20 6e 6f 74 |ctual legend not| 00003280 20 72 65 70 72 6f 64 75 63 69 62 6c 65 20 68 65 | reproducible he| 00003290 72 65 29 0a 20 20 20 20 20 20 20 53 45 4c 45 43 |re). SELEC| 000032a0 54 20 20 20 43 6f 6d 70 75 74 65 73 20 58 20 74 |T Computes X t| 000032b0 68 65 20 74 68 65 20 70 6f 77 65 72 20 6f 66 20 |he the power of | 000032c0 59 0a 20 20 20 20 20 20 20 41 44 4a 55 53 54 20 |Y. ADJUST | 000032d0 20 20 43 6f 6d 70 75 74 65 73 20 59 20 74 68 65 | Computes Y the| 000032e0 20 74 68 65 20 70 6f 77 65 72 20 6f 66 20 58 0a | the power of X.| 000032f0 0a 5b 78 b2 5d 20 20 20 53 71 75 61 72 65 73 2e |.[x.] Squares.| 00003300 20 0a 20 20 20 20 20 20 20 53 45 4c 45 43 54 20 | . SELECT | 00003310 20 20 43 6f 6d 70 75 74 65 73 20 78 20 2a 20 78 | Computes x * x| 00003320 0a 20 20 20 20 20 20 20 41 44 4a 55 53 54 20 20 |. ADJUST | 00003330 20 43 6f 6d 70 75 74 65 73 20 74 68 65 20 73 71 | Computes the sq| 00003340 75 61 72 65 20 72 6f 6f 74 20 6f 66 20 78 0a 0a |uare root of x..| 00003350 0a 4d 69 73 63 65 6c 6c 61 6e 65 6f 75 73 20 46 |.Miscellaneous F| 00003360 75 6e 63 74 69 6f 6e 73 2e 0a 0a 5b b1 5d 20 20 |unctions...[.] | 00003370 20 20 43 68 61 6e 67 65 73 20 74 68 65 20 73 69 | Changes the si| 00003380 67 6e 20 6f 66 20 58 2e 20 20 69 2e 65 2e 20 2d |gn of X. i.e. -| 00003390 78 20 62 65 63 6f 6d 65 73 20 78 2c 20 61 6e 64 |x becomes x, and| 000033a0 20 78 20 62 65 63 6f 6d 65 73 20 2d 78 0a 0a 5b | x becomes -x..[| 000033b0 49 6e 74 5d 20 20 49 6e 74 65 67 65 72 2e 0a 20 |Int] Integer.. | 000033c0 20 20 20 20 20 20 53 45 4c 45 43 54 20 20 20 43 | SELECT C| 000033d0 6f 6d 70 75 74 65 73 20 74 68 65 20 69 6e 74 65 |omputes the inte| 000033e0 67 65 72 20 70 61 72 74 20 6f 66 20 78 2c 20 72 |ger part of x, r| 000033f0 65 6d 6f 76 69 6e 67 20 66 72 61 63 74 69 6f 6e |emoving fraction| 00003400 73 2e 0a 20 20 20 20 20 20 20 41 44 4a 55 53 54 |s.. ADJUST| 00003410 20 20 20 43 6f 6d 70 75 74 65 73 20 74 68 65 20 | Computes the | 00003420 66 72 61 63 74 69 6f 6e 61 6c 20 70 61 72 74 20 |fractional part | 00003430 6f 66 20 78 2e 0a 0a 5b 41 62 73 5d 20 20 41 62 |of x...[Abs] Ab| 00003440 73 6f 6c 75 74 65 20 43 6f 6d 70 75 74 65 73 20 |solute Computes | 00003450 7c 78 7c 20 69 2e 65 2e 20 52 65 6d 6f 76 65 73 ||x| i.e. Removes| 00003460 20 61 6e 79 20 2d 76 65 20 73 69 67 6e 2e 0a 0a | any -ve sign...| 00003470 0a 4c 6f 67 61 72 69 74 68 6d 73 2e 0a 0a 5b 4c |.Logarithms...[L| 00003480 6f 67 5d 20 20 53 45 4c 45 43 54 20 20 43 6f 6d |og] SELECT Com| 00003490 70 75 74 65 73 20 74 68 65 20 6c 6f 67 20 74 6f |putes the log to| 000034a0 20 62 61 73 65 20 31 30 2e 0a 20 20 20 20 20 20 | base 10.. | 000034b0 20 41 44 4a 55 53 54 20 20 43 6f 6d 70 75 74 65 | ADJUST Compute| 000034c0 73 20 74 68 65 20 61 6e 74 69 2d 6c 6f 67 20 74 |s the anti-log t| 000034d0 6f 20 62 61 73 65 20 31 30 2e 0a 0a 5b 4c 6e 5d |o base 10...[Ln]| 000034e0 20 20 20 53 45 4c 45 43 54 20 20 43 6f 6d 70 75 | SELECT Compu| 000034f0 74 65 73 20 74 68 65 20 6c 6f 67 20 74 6f 20 62 |tes the log to b| 00003500 61 73 65 20 45 2e 0a 20 20 20 20 20 20 20 41 44 |ase E.. AD| 00003510 4a 55 53 54 20 20 43 6f 6d 70 75 74 65 73 20 74 |JUST Computes t| 00003520 68 65 20 61 6e 74 69 2d 6c 6f 67 20 74 6f 20 62 |he anti-log to b| 00003530 61 73 65 20 45 2e 0a 0a 0a 54 72 69 67 20 46 75 |ase E....Trig Fu| 00003540 6e 63 74 69 6f 6e 73 2e 0a 0a 5b 53 69 6e 5d 20 |nctions...[Sin] | 00003550 20 53 45 4c 45 43 54 20 20 43 6f 6d 70 75 74 65 | SELECT Compute| 00003560 73 20 73 69 6e 65 28 78 29 0a 20 20 20 20 20 20 |s sine(x). | 00003570 20 41 44 4a 55 53 54 20 20 43 6f 6d 70 75 74 65 | ADJUST Compute| 00003580 73 20 61 6e 67 6c 65 20 77 68 6f 73 65 20 73 69 |s angle whose si| 00003590 6e 65 20 69 73 20 78 0a 0a 5b 43 6f 73 5d 20 20 |ne is x..[Cos] | 000035a0 53 45 4c 45 43 54 20 20 43 6f 6d 70 75 74 65 73 |SELECT Computes| 000035b0 20 63 6f 73 28 78 29 0a 20 20 20 20 20 20 20 41 | cos(x). A| 000035c0 44 4a 55 53 54 20 20 43 6f 6d 70 75 74 65 73 20 |DJUST Computes | 000035d0 61 6e 67 6c 65 20 77 68 6f 73 65 20 63 6f 73 69 |angle whose cosi| 000035e0 6e 65 20 69 73 20 78 0a 0a 5b 54 61 6e 5d 20 20 |ne is x..[Tan] | 000035f0 53 45 4c 45 43 54 20 20 43 6f 6d 70 75 74 65 73 |SELECT Computes| 00003600 20 74 61 6e 28 78 29 0a 20 20 20 20 20 20 20 41 | tan(x). A| 00003610 44 4a 55 53 54 20 20 43 6f 6d 70 75 74 65 73 20 |DJUST Computes | 00003620 61 6e 67 6c 65 20 77 68 6f 73 65 20 74 61 6e 67 |angle whose tang| 00003630 65 6e 74 20 69 73 20 78 0a 0a 0a 48 79 70 65 72 |ent is x...Hyper| 00003640 62 6f 6c 69 63 20 46 75 6e 63 74 69 6f 6e 73 2e |bolic Functions.| 00003650 0a 0a 5b 53 69 6e 68 5d 20 53 45 4c 45 43 54 20 |..[Sinh] SELECT | 00003660 20 43 6f 6d 70 75 74 65 73 20 73 69 6e 68 28 78 | Computes sinh(x| 00003670 29 0a 20 20 20 20 20 20 20 41 44 4a 55 53 54 20 |). ADJUST | 00003680 20 43 6f 6d 70 75 74 65 73 20 69 6e 76 65 72 73 | Computes invers| 00003690 65 20 6f 66 20 73 69 6e 68 28 78 29 0a 0a 5b 43 |e of sinh(x)..[C| 000036a0 6f 73 68 5d 20 53 45 4c 45 43 54 20 20 43 6f 6d |osh] SELECT Com| 000036b0 70 75 74 65 73 20 63 6f 73 68 28 78 29 0a 20 20 |putes cosh(x). | 000036c0 20 20 20 20 20 41 44 4a 55 53 54 20 20 43 6f 6d | ADJUST Com| 000036d0 70 75 74 65 73 20 69 6e 76 65 72 73 65 20 6f 66 |putes inverse of| 000036e0 20 63 6f 73 68 28 78 29 0a 0a 5b 54 61 6e 68 5d | cosh(x)..[Tanh]| 000036f0 20 53 45 4c 45 43 54 20 20 43 6f 6d 70 75 74 65 | SELECT Compute| 00003700 73 20 74 61 6e 68 28 78 29 0a 20 20 20 20 20 20 |s tanh(x). | 00003710 20 41 44 4a 55 53 54 20 20 43 6f 6d 70 75 74 65 | ADJUST Compute| 00003720 73 20 69 6e 76 65 72 73 65 20 6f 66 20 74 61 6e |s inverse of tan| 00003730 68 28 78 29 0a 0a 0a 4f 74 68 65 72 20 46 75 6e |h(x)...Other Fun| 00003740 63 74 69 6f 6e 73 2e 0a 0a 5b 50 6f 6c 61 72 5d |ctions...[Polar]| 00003750 20 20 54 68 69 73 20 66 75 6e 63 74 69 6f 6e 20 | This function | 00003760 70 72 6f 64 75 63 65 73 20 74 77 6f 20 72 65 73 |produces two res| 00003770 75 6c 74 20 76 61 6c 75 65 73 2e 0a 0a 20 20 20 |ult values... | 00003780 20 20 20 20 20 20 53 45 4c 45 43 54 20 43 6f 6d | SELECT Com| 00003790 70 75 74 65 73 20 70 6f 6c 61 72 20 66 72 6f 6d |putes polar from| 000037a0 20 63 61 72 74 65 73 69 61 6e 20 63 6f 2d 6f 72 | cartesian co-or| 000037b0 64 69 6e 61 74 65 73 2e 0a 20 20 20 20 20 20 20 |dinates.. | 000037c0 20 20 20 20 20 20 20 20 20 20 20 20 20 58 20 3d | X =| 000037d0 20 53 71 72 74 28 20 78 2a 78 20 2b 20 79 2a 79 | Sqrt( x*x + y*y| 000037e0 20 29 0a 20 20 20 20 20 20 20 20 20 20 20 20 20 | ). | 000037f0 20 20 20 20 20 20 20 59 20 3d 20 61 6e 67 6c 65 | Y = angle| 00003800 20 77 68 6f 73 65 20 74 61 6e 67 65 6e 74 20 69 | whose tangent i| 00003810 73 20 59 20 f7 20 58 0a 0a 20 20 20 20 20 20 20 |s Y . X.. | 00003820 20 20 65 2e 67 2e 20 20 20 47 69 76 65 6e 20 61 | e.g. Given a| 00003830 20 33 2c 20 34 2c 20 35 20 74 72 69 61 6e 67 6c | 3, 4, 5 triangl| 00003840 65 2c 20 6b 65 79 20 69 6e 20 2d 0a 20 20 20 20 |e, key in -. | 00003850 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 5b | [| 00003860 33 5d 20 5b 45 6e 74 65 72 5d 20 5b 34 5d 20 5b |3] [Enter] [4] [| 00003870 50 6f 6c 61 72 5d 20 20 20 72 65 73 75 6c 74 73 |Polar] results| 00003880 20 69 6e 20 2d 0a 20 20 20 20 20 20 20 20 20 20 | in -. | 00003890 20 20 20 20 20 20 20 20 20 20 58 20 3d 20 35 2c | X = 5,| 000038a0 20 20 74 68 65 20 28 68 79 70 6f 74 65 6e 75 73 | the (hypotenus| 000038b0 65 29 0a 20 20 20 20 20 20 20 20 20 20 20 20 20 |e). | 000038c0 20 20 20 20 20 20 20 59 20 3d 20 33 36 2e 38 37 | Y = 36.87| 000038d0 b0 0a 0a 20 20 20 20 20 20 20 20 20 41 44 4a 55 |... ADJU| 000038e0 53 54 20 43 6f 6d 70 75 74 65 73 20 63 61 72 74 |ST Computes cart| 000038f0 65 73 69 61 6e 20 66 72 6f 6d 20 70 6f 6c 61 72 |esian from polar| 00003900 20 63 6f 2d 6f 72 64 69 6e 61 74 65 73 2e 0a 20 | co-ordinates.. | 00003910 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00003920 20 20 20 58 20 3d 20 78 20 2a 20 63 6f 73 28 79 | X = x * cos(y| 00003930 29 0a 20 20 20 20 20 20 20 20 20 20 20 20 20 20 |). | 00003940 20 20 20 20 20 20 59 20 3d 20 78 20 2a 20 73 69 | Y = x * si| 00003950 6e 28 79 29 0a 0a 0a 5b 48 2e 4d 53 5d 20 20 20 |n(y)...[H.MS] | 00003960 48 6f 75 72 73 2c 20 4d 69 6e 75 74 65 73 20 61 |Hours, Minutes a| 00003970 6e 64 20 53 65 63 6f 6e 64 73 20 43 6f 6e 76 65 |nd Seconds Conve| 00003980 72 73 69 6f 6e 2e 0a 20 20 20 20 20 20 20 20 20 |rsion.. | 00003990 54 68 65 20 64 69 73 70 6c 61 79 20 73 68 6f 75 |The display shou| 000039a0 6c 64 20 62 65 20 73 65 74 20 74 6f 20 46 69 78 |ld be set to Fix| 000039b0 65 64 20 70 6f 69 6e 74 2c 20 34 20 64 65 63 69 |ed point, 4 deci| 000039c0 6d 61 6c 20 70 6c 61 63 65 73 0a 20 20 20 20 20 |mal places. | 000039d0 20 20 20 20 74 6f 20 75 73 65 20 74 68 69 73 20 | to use this | 000039e0 66 75 6e 63 74 69 6f 6e 2e 0a 0a 20 20 20 20 20 |function... | 000039f0 20 20 20 20 53 45 4c 45 43 54 20 43 6f 6d 70 75 | SELECT Compu| 00003a00 74 65 73 20 68 72 73 2c 20 6d 69 6e 73 2c 20 73 |tes hrs, mins, s| 00003a10 65 63 73 20 66 72 6f 6d 20 64 65 63 69 6d 61 6c |ecs from decimal| 00003a20 20 68 72 73 2e 0a 20 20 20 20 20 20 20 20 20 20 | hrs.. | 00003a30 20 20 20 20 20 20 69 2e 65 2e 20 72 65 73 75 6c | i.e. resul| 00003a40 74 20 58 20 3d 20 48 2e 4d 4d 53 53 20 20 77 68 |t X = H.MMSS wh| 00003a50 65 72 65 20 4d 4d 20 3d 3d 20 4d 69 6e 75 74 65 |ere MM == Minute| 00003a60 73 2c 20 53 53 20 3d 3d 20 53 65 63 6f 6e 64 73 |s, SS == Seconds| 00003a70 2e 0a 0a 20 20 20 20 20 20 20 20 20 65 2e 67 2e |... e.g.| 00003a80 20 20 20 47 69 76 65 6e 20 31 32 2e 35 36 20 68 | Given 12.56 h| 00003a90 72 73 2c 20 20 6b 65 79 20 69 6e 20 2d 0a 20 20 |rs, key in -. | 00003aa0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 5b 31 | [1| 00003ab0 32 2e 35 36 5d 20 5b 48 2e 4d 4d 53 53 5d 20 20 |2.56] [H.MMSS] | 00003ac0 20 72 65 73 75 6c 74 73 20 69 6e 20 31 32 2e 33 | results in 12.3| 00003ad0 33 33 36 20 20 0a 20 20 20 20 20 20 20 20 20 20 |336 . | 00003ae0 20 20 20 20 20 20 69 2e 65 2e 20 31 32 20 68 72 | i.e. 12 hr| 00003af0 73 20 33 33 20 6d 69 6e 73 20 33 36 20 73 65 63 |s 33 mins 36 sec| 00003b00 73 2e 0a 20 20 20 0a 0a 20 20 20 20 20 20 20 20 |s.. .. | 00003b10 20 41 44 4a 55 53 54 20 43 6f 6d 70 75 74 65 73 | ADJUST Computes| 00003b20 20 74 68 65 20 69 6e 76 65 72 73 65 2c 20 63 6f | the inverse, co| 00003b30 6e 76 65 72 74 69 6e 67 20 68 72 73 2c 20 6d 69 |nverting hrs, mi| 00003b40 6e 73 2c 20 73 65 63 73 20 20 74 6f 20 68 72 73 |ns, secs to hrs| 00003b50 2e 0a 0a 20 20 20 20 20 20 20 20 20 65 2e 67 2e |... e.g.| 00003b60 20 4d 61 70 20 72 65 66 65 72 65 6e 63 65 20 31 | Map reference 1| 00003b70 32 b0 20 31 38 27 2c 20 6b 65 79 20 69 6e 20 2d |2. 18', key in -| 00003b80 0a 0a 20 20 20 20 20 20 20 20 20 20 20 20 20 20 |.. | 00003b90 20 5b 31 32 2e 31 38 5d 20 20 41 44 4a 55 53 54 | [12.18] ADJUST| 00003ba0 20 5b 48 2e 4d 4d 53 53 5d 20 20 20 20 72 65 73 | [H.MMSS] res| 00003bb0 75 6c 74 73 20 69 6e 20 31 32 2e 33 30 b0 0a 0a |ults in 12.30...| 00003bc0 0a 5b 79 43 78 5d 20 20 20 20 43 6f 6d 62 69 6e |.[yCx] Combin| 00003bd0 61 74 69 6f 6e 73 20 61 6e 64 20 50 65 72 6d 75 |ations and Permu| 00003be0 74 61 74 69 6f 6e 73 2e 0a 0a 20 20 20 20 20 20 |tations... | 00003bf0 20 20 20 53 45 4c 45 43 54 20 43 6f 6d 70 75 74 | SELECT Comput| 00003c00 65 73 20 74 68 65 20 6e 75 6d 62 65 72 20 6f 66 |es the number of| 00003c10 20 70 6f 73 73 69 62 6c 65 20 63 6f 6d 62 69 6e | possible combin| 00003c20 61 74 69 6f 6e 73 20 6f 66 20 59 20 6f 62 6a 65 |ations of Y obje| 00003c30 63 74 73 0a 20 20 20 20 20 20 20 20 20 20 20 20 |cts. | 00003c40 20 20 20 20 74 61 6b 65 6e 20 58 20 61 74 20 61 | taken X at a| 00003c50 20 74 69 6d 65 2c 20 77 68 65 72 65 20 6f 72 64 | time, where ord| 00003c60 65 72 20 69 73 20 75 6e 69 6d 70 6f 72 74 61 6e |er is unimportan| 00003c70 74 2e 0a 0a 20 20 20 20 20 20 20 20 20 65 2e 67 |t... e.g| 00003c80 2e 20 20 20 54 6f 20 63 6f 6d 70 75 74 65 20 74 |. To compute t| 00003c90 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 77 61 79 |he number of way| 00003ca0 73 20 74 6f 20 73 65 6c 65 63 74 20 38 20 6f 62 |s to select 8 ob| 00003cb0 6a 65 63 74 73 20 66 72 6f 6d 20 61 0a 20 20 20 |jects from a. | 00003cc0 20 20 20 20 20 20 20 20 20 20 20 20 20 74 6f 74 | tot| 00003cd0 61 6c 20 6f 66 20 31 32 2c 20 6b 65 79 20 69 6e |al of 12, key in| 00003ce0 20 2d 0a 0a 20 20 20 20 20 20 20 20 20 20 20 20 | -.. | 00003cf0 20 20 20 20 5b 31 32 5d 20 5b 45 6e 74 65 72 5d | [12] [Enter]| 00003d00 20 5b 38 5d 20 5b 79 43 78 5d 2c 20 20 72 65 73 | [8] [yCx], res| 00003d10 75 6c 74 20 34 39 35 2e 0a 0a 20 20 20 20 20 20 |ult 495... | 00003d20 20 20 20 4e 2e 42 2e 20 20 20 54 68 69 73 20 69 | N.B. This i| 00003d30 73 20 68 6f 77 20 74 6f 20 63 6f 6d 70 75 74 65 |s how to compute| 00003d40 20 28 73 6f 20 63 61 6c 6c 65 64 29 20 70 65 72 | (so called) per| 00003d50 6d 75 74 61 74 69 6f 6e 73 20 6f 6e 20 79 6f 75 |mutations on you| 00003d60 72 0a 20 20 20 20 20 20 20 20 20 20 20 20 20 20 |r. | 00003d70 20 20 50 6f 6f 6c 73 20 63 6f 75 70 6f 6e 2e 20 | Pools coupon. | 00003d80 54 68 65 73 65 20 61 72 65 20 72 65 61 6c 6c 79 |These are really| 00003d90 20 43 6f 6d 62 69 6e 61 74 69 6f 6e 73 2c 20 61 | Combinations, a| 00003da0 73 20 6f 72 64 65 72 20 69 73 0a 20 20 20 20 20 |s order is. | 00003db0 20 20 20 20 20 20 20 20 20 20 20 6e 6f 74 20 69 | not i| 00003dc0 6d 70 6f 72 74 61 6e 74 2e 0a 0a 20 20 20 20 20 |mportant... | 00003dd0 20 20 20 20 41 44 4a 55 53 54 20 43 6f 6d 70 75 | ADJUST Compu| 00003de0 74 65 73 20 74 68 65 20 6e 75 6d 62 65 72 20 6f |tes the number o| 00003df0 66 20 70 6f 73 73 69 62 6c 65 20 70 65 72 6d 75 |f possible permu| 00003e00 74 61 74 69 6f 6e 73 20 6f 66 20 59 20 6f 62 6a |tations of Y obj| 00003e10 65 63 74 73 0a 20 20 20 20 20 20 20 20 20 20 20 |ects. | 00003e20 20 20 20 20 20 74 61 6b 65 6e 20 58 20 61 74 20 | taken X at | 00003e30 61 20 74 69 6d 65 2c 20 77 68 65 72 65 20 6f 72 |a time, where or| 00003e40 64 65 72 20 49 53 20 69 6d 70 6f 72 74 61 6e 74 |der IS important| 00003e50 2e 0a 0a 20 20 20 20 20 20 20 20 20 65 2e 67 2e |... e.g.| 00003e60 20 20 20 54 61 6b 69 6e 67 20 74 68 65 20 61 62 | Taking the ab| 00003e70 6f 76 65 20 65 78 61 6d 70 6c 65 2c 20 6b 65 79 |ove example, key| 00003e80 20 69 6e 20 2d 0a 0a 20 20 20 20 20 20 20 20 20 | in -.. | 00003e90 20 20 20 20 20 20 20 5b 31 32 5d 20 5b 45 6e 74 | [12] [Ent| 00003ea0 65 72 5d 20 5b 38 5d 20 41 44 4a 55 53 54 20 5b |er] [8] ADJUST [| 00003eb0 79 43 78 5d 2c 20 20 20 72 65 73 75 6c 74 20 31 |yCx], result 1| 00003ec0 39 2c 39 35 38 2c 34 30 30 0a 0a 0a 4d 6f 72 65 |9,958,400...More| 00003ed0 20 43 6f 6d 70 6c 65 78 20 45 78 61 6d 70 6c 65 | Complex Example| 00003ee0 73 2e 0a 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d |s..=============| 00003ef0 3d 3d 3d 3d 3d 3d 3d 3d 0a 0a 31 2e 20 20 41 20 |========..1. A | 00003f00 6c 61 73 65 72 20 72 61 6e 67 65 20 66 69 6e 64 |laser range find| 00003f10 65 72 20 67 69 76 65 73 20 74 68 65 20 64 69 73 |er gives the dis| 00003f20 74 61 6e 63 65 20 74 6f 20 74 68 65 20 74 6f 70 |tance to the top| 00003f30 20 6f 66 20 61 20 62 75 69 6c 64 69 6e 67 20 61 | of a building a| 00003f40 73 0a 20 20 20 20 39 37 2e 36 36 20 6d 65 74 65 |s. 97.66 mete| 00003f50 72 73 20 61 74 20 61 6e 20 65 6c 65 76 61 74 69 |rs at an elevati| 00003f60 6f 6e 20 6f 66 20 31 32 b0 20 32 35 27 2e 20 43 |on of 12. 25'. C| 00003f70 6f 6d 70 75 74 65 20 74 68 65 20 68 65 69 67 68 |ompute the heigh| 00003f80 74 20 6f 66 20 74 68 65 0a 20 20 20 20 62 75 69 |t of the. bui| 00003f90 6c 64 69 6e 67 2c 20 61 6e 64 20 69 74 73 20 68 |lding, and its h| 00003fa0 6f 72 69 7a 6f 6e 74 61 6c 20 64 69 73 74 61 6e |orizontal distan| 00003fb0 63 65 2e 0a 0a 20 20 20 20 57 65 20 6d 75 73 74 |ce... We must| 00003fc0 20 66 69 72 73 74 20 63 6f 6e 76 65 72 74 20 74 | first convert t| 00003fd0 68 65 20 61 6e 67 6c 65 20 74 6f 20 64 65 63 69 |he angle to deci| 00003fe0 6d 61 6c 20 64 65 67 72 65 65 73 2c 20 74 68 65 |mal degrees, the| 00003ff0 6e 20 65 6e 74 65 72 20 74 68 65 20 0a 20 20 20 |n enter the . | 00004000 20 61 6e 67 75 6c 61 72 20 64 69 73 74 61 6e 63 | angular distanc| 00004010 65 20 61 6e 64 20 63 6f 6e 76 65 72 74 20 74 6f |e and convert to| 00004020 20 63 61 72 74 65 73 69 61 6e 20 63 6f 2d 6f 72 | cartesian co-or| 00004030 64 69 6e 61 74 65 73 2e 0a 0a 20 20 20 20 6b 65 |dinates... ke| 00004040 79 20 69 6e 20 2d 20 20 20 5b 31 32 2e 32 35 5d |y in - [12.25]| 00004050 20 20 41 44 4a 55 53 54 20 5b 48 2e 4d 53 5d 20 | ADJUST [H.MS] | 00004060 20 5b 39 37 2e 36 36 5d 20 20 41 44 4a 55 53 54 | [97.66] ADJUST| 00004070 20 5b 50 4f 4c 41 52 5d 0a 0a 20 20 20 20 52 65 | [POLAR].. Re| 00004080 73 75 6c 74 73 20 61 72 65 20 20 58 20 3d 20 39 |sults are X = 9| 00004090 35 2e 33 38 2c 20 20 74 68 65 20 68 6f 72 69 7a |5.38, the horiz| 000040a0 6f 6e 74 61 6c 20 64 69 73 74 61 6e 63 65 2e 0a |ontal distance..| 000040b0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 000040c0 20 59 20 3d 20 32 31 2e 30 30 2c 20 20 74 68 65 | Y = 21.00, the| 000040d0 20 76 65 72 74 69 63 61 6c 20 68 65 69 67 68 74 | vertical height| 000040e0 20 6f 66 20 74 68 65 20 62 75 69 6c 64 69 6e 67 | of the building| 000040f0 2e 0a 0a 0a 32 2e 20 20 43 6f 6d 70 75 74 65 20 |....2. Compute | 00004100 74 68 65 20 72 6f 6f 74 73 20 6f 66 20 74 68 65 |the roots of the| 00004110 20 65 71 75 61 74 69 6f 6e 3a 20 20 33 78 b2 20 | equation: 3x. | 00004120 2d 20 39 78 20 2b 20 36 20 3d 20 30 0a 0a 20 20 |- 9x + 6 = 0.. | 00004130 20 20 47 69 76 65 6e 20 74 68 65 20 65 71 75 61 | Given the equa| 00004140 74 69 6f 6e 20 20 2d 62 20 b1 20 80 28 62 b2 20 |tion -b . .(b. | 00004150 2d 20 34 61 63 29 20 20 20 69 2e 65 2e 20 20 61 |- 4ac) i.e. a| 00004160 20 3d 20 33 2c 20 20 62 20 3d 20 2d 39 2c 20 20 | = 3, b = -9, | 00004170 63 20 3d 20 36 0a 20 20 20 20 20 20 20 20 20 20 |c = 6. | 00004180 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2d 2d | --| 00004190 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 20 |--------------. | 000041a0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 000041b0 20 20 20 20 20 20 20 20 20 20 20 20 20 32 61 0a | 2a.| 000041c0 20 0a 20 20 20 20 54 68 69 73 20 65 78 61 6d 70 | . This examp| 000041d0 6c 65 20 64 65 6d 6f 6e 73 74 72 61 74 65 73 20 |le demonstrates | 000041e0 74 68 65 20 75 73 65 20 6f 66 20 74 68 65 20 69 |the use of the i| 000041f0 6e 74 65 72 6e 61 6c 20 73 74 6f 72 61 67 65 20 |nternal storage | 00004200 72 65 67 69 73 74 65 72 73 0a 20 20 20 20 61 73 |registers. as| 00004210 20 77 65 6c 6c 20 61 73 20 73 6f 6d 65 20 73 74 | well as some st| 00004220 61 63 6b 20 6d 61 6e 69 70 75 6c 61 74 69 6f 6e |ack manipulation| 00004230 2c 20 61 6c 6c 20 6f 66 20 77 68 69 63 68 20 65 |, all of which e| 00004240 6c 69 6d 69 6e 61 74 65 73 20 74 68 65 20 0a 20 |liminates the . | 00004250 20 20 20 6e 65 65 64 20 74 6f 20 72 65 6d 65 6d | need to remem| 00004260 62 65 72 20 69 6e 74 65 72 6d 65 64 69 61 74 65 |ber intermediate| 00004270 20 72 65 73 75 6c 74 73 2c 20 61 6e 64 20 74 68 | results, and th| 00004280 65 20 6e 65 63 65 73 73 69 74 79 20 74 6f 20 65 |e necessity to e| 00004290 6e 74 65 72 0a 20 20 20 20 74 68 65 20 73 61 6d |nter. the sam| 000042a0 65 20 76 61 6c 75 65 20 6d 6f 72 65 20 74 68 61 |e value more tha| 000042b0 6e 20 6f 6e 63 65 2e 0a 0a 20 20 20 20 54 68 65 |n once... The| 000042c0 20 62 65 73 74 20 77 61 79 20 6f 66 20 74 61 63 | best way of tac| 000042d0 6b 6c 69 6e 67 20 61 20 70 72 6f 62 6c 65 6d 20 |kling a problem | 000042e0 6c 69 6b 65 20 74 68 69 73 20 69 73 20 74 6f 20 |like this is to | 000042f0 73 74 61 72 74 20 69 6e 20 74 68 65 0a 20 20 20 |start in the. | 00004300 20 6d 69 64 64 6c 65 2c 20 77 69 74 68 20 74 68 | middle, with th| 00004310 65 20 6d 6f 73 74 20 63 6f 6d 70 6c 65 78 20 70 |e most complex p| 00004320 61 72 74 2c 20 6c 69 6b 65 20 74 68 65 20 69 6e |art, like the in| 00004330 6e 65 72 20 72 6f 6f 74 20 66 75 6e 63 74 69 6f |ner root functio| 00004340 6e 2e 0a 0a 20 20 20 20 42 75 74 74 6f 6e 73 20 |n... Buttons | 00004350 20 20 20 20 20 20 20 20 20 41 63 74 69 6f 6e 20 | Action | 00004360 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00004370 20 20 20 53 74 61 63 6b 0a 20 20 20 20 3d 3d 3d | Stack. ===| 00004380 3d 3d 3d 3d 20 20 20 20 20 20 20 20 20 20 3d 3d |==== ==| 00004390 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d |================| 000043a0 3d 3d 3d 3d 20 20 20 20 3d 3d 3d 3d 3d 3d 3d 3d |==== ========| 000043b0 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 0a 20 |==============. | 000043c0 20 20 20 5b 39 5d 20 20 20 20 20 20 20 20 20 20 | [9] | 000043d0 20 20 20 20 76 61 6c 75 65 20 2d 62 20 20 20 20 | value -b | 000043e0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 39 | 9| 000043f0 0a 20 20 20 20 5b 53 74 6f 72 65 5d 20 5b 31 5d |. [Store] [1]| 00004400 20 20 20 20 20 20 57 65 20 77 69 6c 6c 20 6e 65 | We will ne| 00004410 65 64 20 74 68 69 73 20 6c 61 74 65 72 20 20 20 |ed this later | 00004420 20 30 0a 20 20 20 20 5b 78 b2 5d 20 20 20 20 20 | 0. [x.] | 00004430 20 20 20 20 20 20 20 20 63 6f 6d 70 75 74 65 20 | compute | 00004440 62 b2 20 20 20 20 20 20 20 20 20 20 20 20 20 20 |b. | 00004450 20 20 38 31 0a 20 20 20 20 5b 34 5d 20 20 20 20 | 81. [4] | 00004460 20 20 20 20 20 20 20 20 20 20 65 6e 74 65 72 20 | enter | 00004470 34 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 |4 | 00004480 20 20 20 20 20 34 20 20 38 31 0a 20 20 20 20 5b | 4 81. [| 00004490 45 6e 74 65 72 5d 20 20 20 20 20 20 20 20 20 20 |Enter] | 000044a0 70 75 73 68 20 74 68 65 20 73 74 61 63 6b 20 75 |push the stack u| 000044b0 70 20 20 20 20 20 20 20 20 20 20 20 20 20 20 34 |p 4| 000044c0 20 20 38 31 0a 20 20 20 20 5b 33 5d 20 20 20 20 | 81. [3] | 000044d0 20 20 20 20 20 20 20 20 20 20 76 61 6c 75 65 20 | value | 000044e0 61 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 |a | 000044f0 20 20 20 20 20 33 20 20 20 34 20 20 38 31 0a 20 | 3 4 81. | 00004500 20 20 20 5b 53 74 6f 72 65 5d 20 5b 32 5d 20 20 | [Store] [2] | 00004510 20 20 20 20 57 65 20 77 69 6c 6c 20 6e 65 65 64 | We will need| 00004520 20 74 68 69 73 20 61 67 61 69 6e 20 20 20 20 33 | this again 3| 00004530 20 20 20 34 20 20 38 31 0a 20 20 20 20 5b 78 5d | 4 81. [x]| 00004540 20 20 20 20 20 20 20 20 20 20 20 20 20 20 63 6f | co| 00004550 6d 70 75 74 65 20 34 61 20 20 20 20 20 20 20 20 |mpute 4a | 00004560 20 20 20 20 20 20 20 20 31 32 20 20 38 31 0a 20 | 12 81. | 00004570 20 20 20 5b 36 5d 20 20 20 20 20 20 20 20 20 20 | [6] | 00004580 20 20 20 20 76 61 6c 75 65 20 63 20 20 20 20 20 | value c | 00004590 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 36 | 6| 000045a0 20 20 31 32 20 20 38 31 0a 20 20 20 20 5b 78 5d | 12 81. [x]| 000045b0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 63 6f | co| 000045c0 6d 70 75 74 65 20 34 61 63 20 20 20 20 20 20 20 |mpute 4ac | 000045d0 20 20 20 20 20 20 20 20 37 32 20 20 38 31 0a 20 | 72 81. | 000045e0 20 20 20 5b 2d 5d 20 20 20 20 20 20 20 20 20 20 | [-] | 000045f0 20 20 20 20 63 6f 6d 70 75 74 65 20 62 b2 20 2d | compute b. -| 00004600 20 34 61 63 20 20 20 20 20 20 20 20 20 20 20 39 | 4ac 9| 00004610 0a 20 20 20 20 41 64 6a 20 5b 78 b2 5d 20 20 20 |. Adj [x.] | 00004620 20 20 20 20 20 20 63 6f 6d 70 75 74 65 20 73 71 | compute sq| 00004630 72 20 72 6f 6f 74 2e 20 20 20 20 20 20 20 20 20 |r root. | 00004640 20 33 0a 20 20 20 20 41 64 6a 20 5b 45 6e 74 65 | 3. Adj [Ente| 00004650 72 5d 20 20 20 20 20 20 64 75 70 6c 69 63 61 74 |r] duplicat| 00004660 65 20 76 61 6c 75 65 20 20 20 20 20 20 20 20 20 |e value | 00004670 20 20 20 33 20 20 20 33 0a 20 20 20 20 41 64 6a | 3 3. Adj| 00004680 20 5b 53 74 6f 72 65 5d 20 5b 31 5d 20 20 72 65 | [Store] [1] re| 00004690 63 61 6c 6c 20 2d 62 20 20 20 20 20 20 20 20 20 |call -b | 000046a0 20 20 20 20 20 20 20 20 20 39 20 20 20 33 20 20 | 9 3 | 000046b0 20 33 0a 20 20 20 20 5b 2b 5d 20 20 20 20 20 20 | 3. [+] | 000046c0 20 20 20 20 20 20 20 20 63 6f 6d 70 75 74 65 20 | compute | 000046d0 2d 62 20 2b 20 28 62 b2 20 2d 20 34 61 63 29 20 |-b + (b. - 4ac) | 000046e0 20 20 31 32 20 20 20 33 0a 20 20 20 20 41 64 6a | 12 3. Adj| 000046f0 20 5b 53 74 6f 72 65 5d 20 5b 32 5d 20 20 72 65 | [Store] [2] re| 00004700 63 61 6c 6c 20 61 20 20 20 20 20 20 20 20 20 20 |call a | 00004710 20 20 20 20 20 20 20 20 20 33 20 20 31 32 20 20 | 3 12 | 00004720 20 33 0a 20 20 20 20 5b 32 5d 20 20 20 20 20 20 | 3. [2] | 00004730 20 20 20 20 20 20 20 20 76 61 6c 75 65 20 32 20 | value 2 | 00004740 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00004750 20 20 20 32 20 20 20 33 20 20 31 32 20 20 20 33 | 2 3 12 3| 00004760 0a 20 20 20 20 5b 78 5d 20 20 20 20 20 20 20 20 |. [x] | 00004770 20 20 20 20 20 20 63 6f 6d 70 75 74 65 20 32 61 | compute 2a| 00004780 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00004790 20 36 20 20 31 32 20 20 20 33 0a 20 20 20 20 5b | 6 12 3. [| 000047a0 f7 5d 20 20 20 20 20 20 20 20 20 20 20 20 20 20 |.] | 000047b0 46 69 72 73 74 20 72 65 73 75 6c 74 20 3d 20 32 |First result = 2| 000047c0 20 20 20 20 20 20 20 20 20 20 20 32 20 20 20 33 | 2 3| 000047d0 0a 20 20 20 20 5b 8a 5d 20 20 20 20 20 20 20 20 |. [.] | 000047e0 20 20 20 20 20 20 6c 6f 6f 73 65 20 72 65 73 75 | loose resu| 000047f0 6c 74 20 20 20 20 20 20 20 20 20 20 20 20 20 20 |lt | 00004800 20 33 0a 20 20 20 20 41 64 6a 20 5b 53 74 6f 72 | 3. Adj [Stor| 00004810 65 5d 20 5b 31 5d 20 20 72 65 63 61 6c 6c 20 2d |e] [1] recall -| 00004820 62 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 |b | 00004830 20 20 20 39 20 20 20 33 0a 20 20 20 20 5b 78 8b | 9 3. [x.| 00004840 20 79 8a 5d 20 20 20 20 20 20 20 20 20 20 73 77 | y.] sw| 00004850 61 70 20 76 61 6c 75 65 73 20 6f 76 65 72 20 20 |ap values over | 00004860 20 20 20 20 20 20 20 20 20 33 20 20 20 39 0a 20 | 3 9. | 00004870 20 20 20 5b 2d 5d 20 20 20 20 20 20 20 20 20 20 | [-] | 00004880 20 20 20 20 63 6f 6d 70 75 74 65 20 2d 62 20 2d | compute -b -| 00004890 20 28 62 b2 20 2d 20 34 61 63 29 20 20 20 20 36 | (b. - 4ac) 6| 000048a0 0a 20 20 20 20 41 64 6a 20 5b 53 74 6f 72 65 5d |. Adj [Store]| 000048b0 20 5b 32 5d 20 20 72 65 63 61 6c 6c 20 61 20 20 | [2] recall a | 000048c0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 000048d0 20 33 20 20 20 36 0a 20 20 20 20 5b 32 5d 20 20 | 3 6. [2] | 000048e0 20 20 20 20 20 20 20 20 20 20 20 20 76 61 6c 75 | valu| 000048f0 65 20 32 20 20 20 20 20 20 20 20 20 20 20 20 20 |e 2 | 00004900 20 20 20 20 20 20 20 32 20 20 20 33 20 20 20 36 | 2 3 6| 00004910 0a 20 20 20 20 5b 78 5d 20 20 20 20 20 20 20 20 |. [x] | 00004920 20 20 20 20 20 20 63 6f 6d 70 75 74 65 20 32 61 | compute 2a| 00004930 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00004940 20 36 20 20 20 36 0a 20 20 20 20 5b f7 5d 20 20 | 6 6. [.] | 00004950 20 20 20 20 20 20 20 20 20 20 20 20 53 65 63 6f | Seco| 00004960 6e 64 20 72 65 73 75 6c 74 20 3d 20 31 20 20 20 |nd result = 1 | 00004970 20 20 20 20 20 20 20 31 0a 0a 48 65 6e 63 65 2c | 1..Hence,| 00004980 20 74 68 65 20 72 6f 6f 74 73 20 61 72 65 20 78 | the roots are x| 00004990 20 3d 20 31 20 61 6e 64 20 78 20 3d 20 32 2e 0a | = 1 and x = 2..| 000049a0 0a 54 68 65 72 65 20 6d 61 79 20 62 65 20 73 68 |.There may be sh| 000049b0 6f 72 74 65 72 20 77 61 79 73 20 6f 66 20 64 6f |orter ways of do| 000049c0 69 6e 67 20 74 68 69 73 2e 20 4e 6f 74 65 20 74 |ing this. Note t| 000049d0 68 61 74 20 77 65 20 73 74 6f 72 65 64 20 2d 62 |hat we stored -b| 000049e0 20 61 6e 64 20 61 20 0a 76 61 6c 75 65 73 20 66 | and a .values f| 000049f0 6f 72 20 6c 61 74 65 72 20 75 73 65 2e 20 49 6e |or later use. In| 00004a00 20 74 68 69 73 20 73 69 6d 70 6c 65 20 63 6f 6e | this simple con| 00004a10 74 72 69 76 65 64 20 65 78 61 6d 70 6c 65 20 74 |trived example t| 00004a20 68 69 73 20 6d 61 79 20 68 61 76 65 0a 62 65 65 |his may have.bee| 00004a30 6e 20 70 6f 69 6e 74 6c 65 73 73 2c 20 61 73 20 |n pointless, as | 00004a40 74 68 65 79 20 63 6f 75 6c 64 20 65 61 73 69 6c |they could easil| 00004a50 79 20 62 65 20 72 65 2d 65 6e 74 65 72 65 64 2e |y be re-entered.| 00004a60 20 48 6f 77 65 76 65 72 2c 20 69 6e 20 61 20 72 | However, in a r| 00004a70 65 61 6c 0a 65 78 61 6d 70 6c 65 20 74 68 65 73 |eal.example thes| 00004a80 65 20 76 61 6c 75 65 73 20 6d 61 79 20 68 61 76 |e values may hav| 00004a90 65 20 68 61 64 20 39 20 6f 72 20 6d 6f 72 65 20 |e had 9 or more | 00004aa0 64 69 67 69 74 73 2c 20 73 6f 20 74 68 61 74 20 |digits, so that | 00004ab0 73 74 6f 72 69 6e 67 0a 74 68 65 6d 20 77 6f 75 |storing.them wou| 00004ac0 6c 64 20 62 65 20 61 20 72 65 61 6c 20 74 69 6d |ld be a real tim| 00004ad0 65 20 73 61 76 65 72 2e 0a 0a 49 66 20 74 68 65 |e saver...If the| 00004ae0 20 69 6e 6e 65 72 20 66 75 6e 63 74 69 6f 6e 20 | inner function | 00004af0 68 61 64 20 62 65 65 6e 20 6e 65 67 61 74 69 76 |had been negativ| 00004b00 65 20 69 6e 64 69 63 61 74 69 6e 67 20 63 6f 6d |e indicating com| 00004b10 70 6c 65 78 20 72 6f 6f 74 73 2c 20 77 65 0a 77 |plex roots, we.w| 00004b20 6f 75 6c 64 20 68 61 76 65 20 68 61 64 20 74 6f |ould have had to| 00004b30 20 70 72 6f 63 65 65 64 20 73 6c 69 67 68 74 6c | proceed slightl| 00004b40 79 20 64 69 66 66 65 72 65 6e 74 6c 79 2e 0a 0a |y differently...| 00004b50 0a 0a 45 6e 64 2e 0a 0a |..End...| 00004b58