Home » Archimedes archive » Apps » PipeDream 4 (1991) (Colton Software) (Examples Disc).adf » Functions/Maths

Functions/Maths

This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.

Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.

Tape/disk: Home » Archimedes archive » Apps » PipeDream 4 (1991) (Colton Software) (Examples Disc).adf
Filename: Functions/Maths
Read OK:
File size: 047C bytes
Load address: FFFDDE43
Exec address: 9C9DFA70
Duplicates

There is 1 duplicate copy of this file in the archive:

File contents
%OP%VS4.11 (04-Dec-91), Adrienne Kruse - Colton Software, R4000 5163 2671 7255 
%OP%DP4
%OP%LP*
%OP%TM4
%OP%BM4
%OP%LM5
%OP%FX
%OP%FY
%OP%FS
%OP%WC2,1782,592,1108,0,1,0,0
%CO:A,10,100%%C%%H1%Mathematical Functions Examples

%C%Function

ABS
EXP
INT
LN
LOG
MOD
%L%SGN
%L%SQR
SUM
%CO:B,11,0%

%R%Input 1

%V%%R%-25
%V%%R%1
%V%%R%12.9437
%V%%R%exp(-1)
%V%%R%1000
%V%%R%51
%V%%R%-55.24
%V%%R%49
%R%B6B13
%CO:C,9,0%

%R%Input 2

%C%-
%C%-
%C%-
%C%-
%C%-
%V%%R%8
%C%-
%C%-
%C%-
%CO:D,9,0%

%R%Input 3

%C%-
%C%-
%C%-
%C%-
%C%-
%C%-
%C%-
%C%-
%C%-
%CO:E,11,0%

%R%Output

%V%%R%abs(B5)
%V%%R%exp(B6)
%V%%R%int(B7)
%V%%R%ln(B8)
%V%%R%log(B9)
%V%%R%mod(B10,C10)
%V%%R%sgn(B11)
%V%%R%sqr(B12)
%V%%R%sum(B5B12)
%CO:F,1,0%%CO:G,53,0%

Summary

Returns the absolute value of %H4%Input1%H4%.
Raises e (natural exponent) to the power of %H4%Input1%H4%.
Returns the integer value of %H4%Input1%H4%.
Returns the natural logarithm of %H4%Input1%H4%.
Returns the logarithm to base 10 of %H4%Input1%H4%.
Returns %H4%Input1%H4% MOD %H4%Input2%H4%.
Returns the sign (-1 , 0 , +1 ) of %H4%Input1%H4%.
Returns the square root of %H4%Input1%H4%.
Sums the values in a list.
00000000  25 4f 50 25 56 53 34 2e  31 31 20 28 30 34 2d 44  |%OP%VS4.11 (04-D|
00000010  65 63 2d 39 31 29 2c 20  41 64 72 69 65 6e 6e 65  |ec-91), Adrienne|
00000020  20 4b 72 75 73 65 20 2d  20 43 6f 6c 74 6f 6e 20  | Kruse - Colton |
00000030  53 6f 66 74 77 61 72 65  2c 20 52 34 30 30 30 20  |Software, R4000 |
00000040  35 31 36 33 20 32 36 37  31 20 37 32 35 35 20 0a  |5163 2671 7255 .|
00000050  25 4f 50 25 44 50 34 0a  25 4f 50 25 4c 50 2a 0a  |%OP%DP4.%OP%LP*.|
00000060  25 4f 50 25 54 4d 34 0a  25 4f 50 25 42 4d 34 0a  |%OP%TM4.%OP%BM4.|
00000070  25 4f 50 25 4c 4d 35 0a  25 4f 50 25 46 58 0a 25  |%OP%LM5.%OP%FX.%|
00000080  4f 50 25 46 59 0a 25 4f  50 25 46 53 0a 25 4f 50  |OP%FY.%OP%FS.%OP|
00000090  25 57 43 32 2c 31 37 38  32 2c 35 39 32 2c 31 31  |%WC2,1782,592,11|
000000a0  30 38 2c 30 2c 31 2c 30  2c 30 0a 25 43 4f 3a 41  |08,0,1,0,0.%CO:A|
000000b0  2c 31 30 2c 31 30 30 25  25 43 25 25 48 31 25 4d  |,10,100%%C%%H1%M|
000000c0  61 74 68 65 6d 61 74 69  63 61 6c 20 46 75 6e 63  |athematical Func|
000000d0  74 69 6f 6e 73 20 45 78  61 6d 70 6c 65 73 0a 0a  |tions Examples..|
000000e0  25 43 25 46 75 6e 63 74  69 6f 6e 0a 0a 41 42 53  |%C%Function..ABS|
000000f0  0a 45 58 50 0a 49 4e 54  0a 4c 4e 0a 4c 4f 47 0a  |.EXP.INT.LN.LOG.|
00000100  4d 4f 44 0a 25 4c 25 53  47 4e 0a 25 4c 25 53 51  |MOD.%L%SGN.%L%SQ|
00000110  52 0a 53 55 4d 0a 25 43  4f 3a 42 2c 31 31 2c 30  |R.SUM.%CO:B,11,0|
00000120  25 0a 0a 25 52 25 49 6e  70 75 74 20 31 0a 0a 25  |%..%R%Input 1..%|
00000130  56 25 25 52 25 2d 32 35  0a 25 56 25 25 52 25 31  |V%%R%-25.%V%%R%1|
00000140  0a 25 56 25 25 52 25 31  32 2e 39 34 33 37 0a 25  |.%V%%R%12.9437.%|
00000150  56 25 25 52 25 65 78 70  28 2d 31 29 0a 25 56 25  |V%%R%exp(-1).%V%|
00000160  25 52 25 31 30 30 30 0a  25 56 25 25 52 25 35 31  |%R%1000.%V%%R%51|
00000170  0a 25 56 25 25 52 25 2d  35 35 2e 32 34 0a 25 56  |.%V%%R%-55.24.%V|
00000180  25 25 52 25 34 39 0a 25  52 25 42 36 42 31 33 0a  |%%R%49.%R%B6B13.|
00000190  25 43 4f 3a 43 2c 39 2c  30 25 0a 0a 25 52 25 49  |%CO:C,9,0%..%R%I|
000001a0  6e 70 75 74 20 32 0a 0a  25 43 25 2d 0a 25 43 25  |nput 2..%C%-.%C%|
000001b0  2d 0a 25 43 25 2d 0a 25  43 25 2d 0a 25 43 25 2d  |-.%C%-.%C%-.%C%-|
000001c0  0a 25 56 25 25 52 25 38  0a 25 43 25 2d 0a 25 43  |.%V%%R%8.%C%-.%C|
000001d0  25 2d 0a 25 43 25 2d 0a  25 43 4f 3a 44 2c 39 2c  |%-.%C%-.%CO:D,9,|
000001e0  30 25 0a 0a 25 52 25 49  6e 70 75 74 20 33 0a 0a  |0%..%R%Input 3..|
000001f0  25 43 25 2d 0a 25 43 25  2d 0a 25 43 25 2d 0a 25  |%C%-.%C%-.%C%-.%|
00000200  43 25 2d 0a 25 43 25 2d  0a 25 43 25 2d 0a 25 43  |C%-.%C%-.%C%-.%C|
00000210  25 2d 0a 25 43 25 2d 0a  25 43 25 2d 0a 25 43 4f  |%-.%C%-.%C%-.%CO|
00000220  3a 45 2c 31 31 2c 30 25  0a 0a 25 52 25 4f 75 74  |:E,11,0%..%R%Out|
00000230  70 75 74 0a 0a 25 56 25  25 52 25 61 62 73 28 42  |put..%V%%R%abs(B|
00000240  35 29 0a 25 56 25 25 52  25 65 78 70 28 42 36 29  |5).%V%%R%exp(B6)|
00000250  0a 25 56 25 25 52 25 69  6e 74 28 42 37 29 0a 25  |.%V%%R%int(B7).%|
00000260  56 25 25 52 25 6c 6e 28  42 38 29 0a 25 56 25 25  |V%%R%ln(B8).%V%%|
00000270  52 25 6c 6f 67 28 42 39  29 0a 25 56 25 25 52 25  |R%log(B9).%V%%R%|
00000280  6d 6f 64 28 42 31 30 2c  43 31 30 29 0a 25 56 25  |mod(B10,C10).%V%|
00000290  25 52 25 73 67 6e 28 42  31 31 29 0a 25 56 25 25  |%R%sgn(B11).%V%%|
000002a0  52 25 73 71 72 28 42 31  32 29 0a 25 56 25 25 52  |R%sqr(B12).%V%%R|
000002b0  25 73 75 6d 28 42 35 42  31 32 29 0a 25 43 4f 3a  |%sum(B5B12).%CO:|
000002c0  46 2c 31 2c 30 25 25 43  4f 3a 47 2c 35 33 2c 30  |F,1,0%%CO:G,53,0|
000002d0  25 0a 0a 53 75 6d 6d 61  72 79 0a 0a 52 65 74 75  |%..Summary..Retu|
000002e0  72 6e 73 20 74 68 65 20  61 62 73 6f 6c 75 74 65  |rns the absolute|
000002f0  20 76 61 6c 75 65 20 6f  66 20 25 48 34 25 49 6e  | value of %H4%In|
00000300  70 75 74 31 25 48 34 25  2e 0a 52 61 69 73 65 73  |put1%H4%..Raises|
00000310  20 65 20 28 6e 61 74 75  72 61 6c 20 65 78 70 6f  | e (natural expo|
00000320  6e 65 6e 74 29 20 74 6f  20 74 68 65 20 70 6f 77  |nent) to the pow|
00000330  65 72 20 6f 66 20 25 48  34 25 49 6e 70 75 74 31  |er of %H4%Input1|
00000340  25 48 34 25 2e 0a 52 65  74 75 72 6e 73 20 74 68  |%H4%..Returns th|
00000350  65 20 69 6e 74 65 67 65  72 20 76 61 6c 75 65 20  |e integer value |
00000360  6f 66 20 25 48 34 25 49  6e 70 75 74 31 25 48 34  |of %H4%Input1%H4|
00000370  25 2e 0a 52 65 74 75 72  6e 73 20 74 68 65 20 6e  |%..Returns the n|
00000380  61 74 75 72 61 6c 20 6c  6f 67 61 72 69 74 68 6d  |atural logarithm|
00000390  20 6f 66 20 25 48 34 25  49 6e 70 75 74 31 25 48  | of %H4%Input1%H|
000003a0  34 25 2e 0a 52 65 74 75  72 6e 73 20 74 68 65 20  |4%..Returns the |
000003b0  6c 6f 67 61 72 69 74 68  6d 20 74 6f 20 62 61 73  |logarithm to bas|
000003c0  65 20 31 30 20 6f 66 20  25 48 34 25 49 6e 70 75  |e 10 of %H4%Inpu|
000003d0  74 31 25 48 34 25 2e 0a  52 65 74 75 72 6e 73 20  |t1%H4%..Returns |
000003e0  25 48 34 25 49 6e 70 75  74 31 25 48 34 25 20 4d  |%H4%Input1%H4% M|
000003f0  4f 44 20 25 48 34 25 49  6e 70 75 74 32 25 48 34  |OD %H4%Input2%H4|
00000400  25 2e 0a 52 65 74 75 72  6e 73 20 74 68 65 20 73  |%..Returns the s|
00000410  69 67 6e 20 28 2d 31 20  2c 20 30 20 2c 20 2b 31  |ign (-1 , 0 , +1|
00000420  20 29 20 6f 66 20 25 48  34 25 49 6e 70 75 74 31  | ) of %H4%Input1|
00000430  25 48 34 25 2e 0a 52 65  74 75 72 6e 73 20 74 68  |%H4%..Returns th|
00000440  65 20 73 71 75 61 72 65  20 72 6f 6f 74 20 6f 66  |e square root of|
00000450  20 25 48 34 25 49 6e 70  75 74 31 25 48 34 25 2e  | %H4%Input1%H4%.|
00000460  0a 53 75 6d 73 20 74 68  65 20 76 61 6c 75 65 73  |.Sums the values|
00000470  20 69 6e 20 61 20 6c 69  73 74 2e 0a              | in a list..|
0000047c