Home » Archimedes archive » Acorn User » AU 1994-10.adf » !StarInfo_StarInfo » Wareham/Hard

Wareham/Hard

This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.

Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.

Tape/disk: Home » Archimedes archive » Acorn User » AU 1994-10.adf » !StarInfo_StarInfo
Filename: Wareham/Hard
Read OK:
File size: 0427 bytes
Load address: 0000
Exec address: 0000
File contents
On the other hand once the definition is provided the theorem ceases to be obvious, since the result it asserts is quite different from the defining property and to show that the first follows the second is not a trivial task. If it is objected that we should take as definition some property designed to make the proof simpler, the answer is that there are many other 'obvious' and important properties of coninuous functions and no definition simplifies them all simultaneously. We might of course lump together everything we want of a continuous function, and call a function continuous whenever it has these properties. Apart from the crudity and clumsiness of such a procedure, we should thereby entirely obscure the fact that all such properties in fact flow from one simple basic one; we should lose all insight into the relative depths of the properties and into the nature of their interconnections; we might even unwittingly include properties that were subtly inconsistent; and it would take too long to decide whether a given function was continuous.
00000000  4f 6e 20 74 68 65 20 6f  74 68 65 72 20 68 61 6e  |On the other han|
00000010  64 20 6f 6e 63 65 20 74  68 65 20 64 65 66 69 6e  |d once the defin|
00000020  69 74 69 6f 6e 20 69 73  20 70 72 6f 76 69 64 65  |ition is provide|
00000030  64 20 74 68 65 20 74 68  65 6f 72 65 6d 20 63 65  |d the theorem ce|
00000040  61 73 65 73 20 74 6f 20  62 65 20 6f 62 76 69 6f  |ases to be obvio|
00000050  75 73 2c 20 73 69 6e 63  65 20 74 68 65 20 72 65  |us, since the re|
00000060  73 75 6c 74 20 69 74 20  61 73 73 65 72 74 73 20  |sult it asserts |
00000070  69 73 20 71 75 69 74 65  20 64 69 66 66 65 72 65  |is quite differe|
00000080  6e 74 20 66 72 6f 6d 20  74 68 65 20 64 65 66 69  |nt from the defi|
00000090  6e 69 6e 67 20 70 72 6f  70 65 72 74 79 20 61 6e  |ning property an|
000000a0  64 20 74 6f 20 73 68 6f  77 20 74 68 61 74 20 74  |d to show that t|
000000b0  68 65 20 66 69 72 73 74  20 66 6f 6c 6c 6f 77 73  |he first follows|
000000c0  20 74 68 65 20 73 65 63  6f 6e 64 20 69 73 20 6e  | the second is n|
000000d0  6f 74 20 61 20 74 72 69  76 69 61 6c 20 74 61 73  |ot a trivial tas|
000000e0  6b 2e 20 49 66 20 69 74  20 69 73 20 6f 62 6a 65  |k. If it is obje|
000000f0  63 74 65 64 20 74 68 61  74 20 77 65 20 73 68 6f  |cted that we sho|
00000100  75 6c 64 20 74 61 6b 65  20 61 73 20 64 65 66 69  |uld take as defi|
00000110  6e 69 74 69 6f 6e 20 73  6f 6d 65 20 70 72 6f 70  |nition some prop|
00000120  65 72 74 79 20 64 65 73  69 67 6e 65 64 20 74 6f  |erty designed to|
00000130  20 6d 61 6b 65 20 74 68  65 20 70 72 6f 6f 66 20  | make the proof |
00000140  73 69 6d 70 6c 65 72 2c  20 74 68 65 20 61 6e 73  |simpler, the ans|
00000150  77 65 72 20 69 73 20 74  68 61 74 20 74 68 65 72  |wer is that ther|
00000160  65 20 61 72 65 20 6d 61  6e 79 20 6f 74 68 65 72  |e are many other|
00000170  20 27 6f 62 76 69 6f 75  73 27 20 61 6e 64 20 69  | 'obvious' and i|
00000180  6d 70 6f 72 74 61 6e 74  20 70 72 6f 70 65 72 74  |mportant propert|
00000190  69 65 73 20 6f 66 20 63  6f 6e 69 6e 75 6f 75 73  |ies of coninuous|
000001a0  20 66 75 6e 63 74 69 6f  6e 73 20 61 6e 64 20 6e  | functions and n|
000001b0  6f 20 64 65 66 69 6e 69  74 69 6f 6e 20 73 69 6d  |o definition sim|
000001c0  70 6c 69 66 69 65 73 20  74 68 65 6d 20 61 6c 6c  |plifies them all|
000001d0  20 73 69 6d 75 6c 74 61  6e 65 6f 75 73 6c 79 2e  | simultaneously.|
000001e0  20 57 65 20 6d 69 67 68  74 20 6f 66 20 63 6f 75  | We might of cou|
000001f0  72 73 65 20 6c 75 6d 70  20 74 6f 67 65 74 68 65  |rse lump togethe|
00000200  72 20 65 76 65 72 79 74  68 69 6e 67 20 77 65 20  |r everything we |
00000210  77 61 6e 74 20 6f 66 20  61 20 63 6f 6e 74 69 6e  |want of a contin|
00000220  75 6f 75 73 20 66 75 6e  63 74 69 6f 6e 2c 20 61  |uous function, a|
00000230  6e 64 20 63 61 6c 6c 20  61 20 66 75 6e 63 74 69  |nd call a functi|
00000240  6f 6e 20 63 6f 6e 74 69  6e 75 6f 75 73 20 77 68  |on continuous wh|
00000250  65 6e 65 76 65 72 20 69  74 20 68 61 73 20 74 68  |enever it has th|
00000260  65 73 65 20 70 72 6f 70  65 72 74 69 65 73 2e 20  |ese properties. |
00000270  41 70 61 72 74 20 66 72  6f 6d 20 74 68 65 20 63  |Apart from the c|
00000280  72 75 64 69 74 79 20 61  6e 64 20 63 6c 75 6d 73  |rudity and clums|
00000290  69 6e 65 73 73 20 6f 66  20 73 75 63 68 20 61 20  |iness of such a |
000002a0  70 72 6f 63 65 64 75 72  65 2c 20 77 65 20 73 68  |procedure, we sh|
000002b0  6f 75 6c 64 20 74 68 65  72 65 62 79 20 65 6e 74  |ould thereby ent|
000002c0  69 72 65 6c 79 20 6f 62  73 63 75 72 65 20 74 68  |irely obscure th|
000002d0  65 20 66 61 63 74 20 74  68 61 74 20 61 6c 6c 20  |e fact that all |
000002e0  73 75 63 68 20 70 72 6f  70 65 72 74 69 65 73 20  |such properties |
000002f0  69 6e 20 66 61 63 74 20  66 6c 6f 77 20 66 72 6f  |in fact flow fro|
00000300  6d 20 6f 6e 65 20 73 69  6d 70 6c 65 20 62 61 73  |m one simple bas|
00000310  69 63 20 6f 6e 65 3b 20  77 65 20 73 68 6f 75 6c  |ic one; we shoul|
00000320  64 20 6c 6f 73 65 20 61  6c 6c 20 69 6e 73 69 67  |d lose all insig|
00000330  68 74 20 69 6e 74 6f 20  74 68 65 20 72 65 6c 61  |ht into the rela|
00000340  74 69 76 65 20 64 65 70  74 68 73 20 6f 66 20 74  |tive depths of t|
00000350  68 65 20 70 72 6f 70 65  72 74 69 65 73 20 61 6e  |he properties an|
00000360  64 20 69 6e 74 6f 20 74  68 65 20 6e 61 74 75 72  |d into the natur|
00000370  65 20 6f 66 20 74 68 65  69 72 20 69 6e 74 65 72  |e of their inter|
00000380  63 6f 6e 6e 65 63 74 69  6f 6e 73 3b 20 77 65 20  |connections; we |
00000390  6d 69 67 68 74 20 65 76  65 6e 20 75 6e 77 69 74  |might even unwit|
000003a0  74 69 6e 67 6c 79 20 69  6e 63 6c 75 64 65 20 70  |tingly include p|
000003b0  72 6f 70 65 72 74 69 65  73 20 74 68 61 74 20 77  |roperties that w|
000003c0  65 72 65 20 73 75 62 74  6c 79 20 69 6e 63 6f 6e  |ere subtly incon|
000003d0  73 69 73 74 65 6e 74 3b  20 61 6e 64 20 69 74 20  |sistent; and it |
000003e0  77 6f 75 6c 64 20 74 61  6b 65 20 74 6f 6f 20 6c  |would take too l|
000003f0  6f 6e 67 20 74 6f 20 64  65 63 69 64 65 20 77 68  |ong to decide wh|
00000400  65 74 68 65 72 20 61 20  67 69 76 65 6e 20 66 75  |ether a given fu|
00000410  6e 63 74 69 6f 6e 20 77  61 73 20 63 6f 6e 74 69  |nction was conti|
00000420  6e 75 6f 75 73 2e 0a                              |nuous..|
00000427