Home » Archimedes archive » Archimedes World » AW-1994-06-Disc1.adf » Disk1Jun94 » !AWJune94/Goodies/3D_Demo/Cube
!AWJune94/Goodies/3D_Demo/Cube
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » Archimedes archive » Archimedes World » AW-1994-06-Disc1.adf » Disk1Jun94 |
Filename: | !AWJune94/Goodies/3D_Demo/Cube |
Read OK: | ✔ |
File size: | 1ED2 bytes |
Load address: | 0000 |
Exec address: | 0000 |
File contents
10REM >Cube 20REM Program : Cube 30REM A simple 3D cube in BBC BASIC 40REM Author : Kevin J Swinton 50REM Version : Acorn A5000.1.00 60REM Date : Monday 14th March 1994 70 80 90ON ERROR MODE MODE : REPORT : PRINT " at Line ";ERL:END 100 110 120REM ------------------------------------------------------------------------ 130REM MAIN PROGRAM 140REM ------------------------------------------------------------------------ 150 160 170MODE 27+128 : OFF 180 190 PROCedure_Initialise 200 PROCedure_Cube 210 220END 230 240 250REM ------------------------------------------------------------------------ 260REM PROCEDURE TO INITIALISE EVERYTHING WE NEED TO KNOW 270REM ------------------------------------------------------------------------ 280 290 300DEF PROCedure_Initialise 310 320 REM *** Place our origin in the middle of the screen *** 330 ORIGIN 640 , 512 340 350 REM *** Dimension all the arrays that we will need *** 360 DIM array_for_the_3D_points( 8 , 3 ) : REM 8 points, each being an X,Y,Z (3D) 370 DIM array_for_the_2D_points( 8 , 2 ) : REM 8 points, each being an X,Y (2D) 380 DIM array_for_the_links( 12 , 2 ) : REM 12 links, each being a "from point x, to point y" 390 400 REM *** Read all the information we need into our arrays. Firstly, *** 410 REM *** read in all our points that make up the cube, and then *** 420 REM *** read in all the links that join the points together. *** 430 PROCedure_Read_Points_Into_Their_Array 440 PROCedure_Read_Links_Into_Their_Array 450 460 BANK = 1 470 PROCedure_Swap_The_Screen_Banks : CLS 480 PROCedure_Swap_The_Screen_Banks : CLS 490 500 REM *** Initialise the rotation of the object in space *** 510 X_ROTATION = 0 520 Y_ROTATION = 0 530 Z_ROTATION = 0 540 550 REM *** Initialise the position of the object in space *** 560 REM *** so that it is quite far away from us *** 570 X_POSITION = + 0 580 Y_POSITION = + 0 590 Z_POSITION = +50 600 610ENDPROC 620 630 640REM ------------------------------------------------------------------------ 650REM MAIN PROCEDURE TO CONTROL THE SPINNING CUBE ON THE SCREEN 660REM ------------------------------------------------------------------------ 670 680 690DEF PROCedure_Cube 700 710 REPEAT 720 730 PROCedure_Rotate_The_Cube 740 PROCedure_Draw_The_Cube 750 PROCedure_Swap_The_Screen_Banks 760 770 X_ROTATION = X_ROTATION + 1 : IF X_ROTATION >= 360 THEN X_ROTATION = X_ROTATION - 360 780 Y_ROTATION = Y_ROTATION + 1 : IF Y_ROTATION >= 360 THEN Y_ROTATION = Y_ROTATION - 360 790 Z_ROTATION = Z_ROTATION + 1 : IF Z_ROTATION >= 360 THEN Z_ROTATION = Z_ROTATION - 360 800 810 UNTIL 1 = 2 820 830ENDPROC 840 850 860REM ------------------------------------------------------------------------ 870REM THE PROCEDURE THAT ROTATES THE 8 POINTS OF THE CUBE 880REM ------------------------------------------------------------------------ 890 900 910DEF PROCedure_Rotate_The_Cube 920 930 FOR point_to_rotate = 1 TO 8 940 950 x_position_of_point = array_for_the_3D_points( point_to_rotate , 1 ) 960 y_position_of_point = array_for_the_3D_points( point_to_rotate , 2 ) 970 z_position_of_point = array_for_the_3D_points( point_to_rotate , 3 ) 980 990 REM *** Formula for rotating the point around the X axis *** 1000 rotated_y_value = y_position_of_point * COS( RAD X_ROTATION ) - z_position_of_point * SIN( RAD X_ROTATION ) 1010 rotated_z_value = y_position_of_point * SIN( RAD X_ROTATION ) + z_position_of_point * COS( RAD X_ROTATION ) 1020 y_position_of_point = rotated_y_value 1030 z_position_of_point = rotated_z_value 1040 1050 REM *** Formula for rotating the point around the Y axis *** 1060 rotated_x_value = x_position_of_point * COS( RAD Y_ROTATION ) + z_position_of_point * SIN( RAD Y_ROTATION ) 1070 rotated_z_value = z_position_of_point * COS( RAD Y_ROTATION ) - x_position_of_point * SIN( RAD Y_ROTATION ) 1080 x_position_of_point = rotated_x_value 1090 z_position_of_point = rotated_z_value 1100 1110 REM *** Formula for rotating the point around the Z axis *** 1120 rotated_x_value = x_position_of_point * COS( RAD Z_ROTATION ) - y_position_of_point * SIN( RAD Z_ROTATION ) 1130 rotated_y_value = x_position_of_point * SIN( RAD Z_ROTATION ) + y_position_of_point * COS( RAD Z_ROTATION ) 1140 x_position_of_point = rotated_x_value 1150 y_position_of_point = rotated_y_value 1160 1170 REM *** Now we've rotated the object about itself we must *** 1180 REM *** position it in space relative to where WE are *** 1190 x_position_of_point = x_position_of_point + X_POSITION 1200 y_position_of_point = y_position_of_point + Y_POSITION 1210 z_position_of_point = z_position_of_point + Z_POSITION 1220 1230 REM *** Convert from the rotated 3D position into the relevant *** 1240 REM *** 2D position. Don't forget that this involves dividing *** 1250 REM *** X and Y by Z, and apllying a perspective factor (eg. 800) *** 1260 array_for_the_2D_points( point_to_rotate , 1 ) = ( 800 * x_position_of_point ) / z_position_of_point 1270 array_for_the_2D_points( point_to_rotate , 2 ) = ( 800 * y_position_of_point ) / z_position_of_point 1280 1290 NEXT point_to_rotate 1300 1310ENDPROC 1320 1330 1340REM ------------------------------------------------------------------------ 1350REM THE PROCEDURE THAT DRAWS THE LINKS THAT MAKE UP THE CUBE 1360REM ------------------------------------------------------------------------ 1370 1380 1390DEF PROCedure_Draw_The_Cube 1400 1410 FOR link = 1 TO 12 1420 1430 point_to_link_from = array_for_the_links( link , 1 ) 1440 point_to_link_to = array_for_the_links( link , 2 ) 1450 1460 first_x_position = array_for_the_2D_points( point_to_link_from , 1 ) 1470 first_y_position = array_for_the_2D_points( point_to_link_from , 2 ) 1480 1490 second_x_position = array_for_the_2D_points( point_to_link_to , 1 ) 1500 second_y_position = array_for_the_2D_points( point_to_link_to , 2 ) 1510 1520 MOVE first_x_position , first_y_position 1530 DRAW second_x_position , second_y_position 1540 1550 NEXT link 1560 1570ENDPROC 1580 1590 1600REM ------------------------------------------------------------------------ 1610REM PROCEDURE TO SWAP OUR SCREENS, KEEPING THE ANIMATION FLICKER FREE 1620REM ------------------------------------------------------------------------ 1630 1640 1650DEF PROCedure_Swap_The_Screen_Banks 1660 1670 WAIT 1680 BANK = BANK EOR 3 1690 SYS 6,112,BANK 1700 SYS 6,113,BANK EOR 3 1710 CLS 1720 1730ENDPROC 1740 1750 1760REM ------------------------------------------------------------------------ 1770REM THE PROCEDURE THAT READS THE 8 POINTS INTO THE ARRAY WE'VE SET UP 1780REM ------------------------------------------------------------------------ 1790 1800 1810DEF PROCedure_Read_Points_Into_Their_Array 1820 1830 RESTORE 2010 1840 1850 FOR point = 1 TO 8 1860 1870 READ X_POSITION , Y_POSITION , Z_POSITION 1880 1890 array_for_the_3D_points( point , 1 ) = X_POSITION 1900 array_for_the_3D_points( point , 2 ) = Y_POSITION 1910 array_for_the_3D_points( point , 3 ) = Z_POSITION 1920 1930 NEXT point 1940 1950ENDPROC 1960 1970 1980REM *** The data for the 8 points of the cube *** 1990 2000 2010DATA -10,+10 , +10 : REM The 4 points for the front of the cube 2020DATA +10,+10 , +10 2030DATA +10,-10 , +10 2040DATA -10,-10 , +10 2050 2060DATA -10,+10 , -10 : REM The 4 points for the back of the cube 2070DATA +10,+10 , -10 2080DATA +10,-10 , -10 2090DATA -10,-10 , -10 2100 2110 2120REM ------------------------------------------------------------------------ 2130REM THE PROCEDURE THAT READS THE 12 LINKS INTO THE ARRAY WE'VE SET UP 2140REM ------------------------------------------------------------------------ 2150 2160 2170DEF PROCedure_Read_Links_Into_Their_Array 2180 2190 RESTORE 2360 2200 2210 FOR link = 1 TO 12 2220 2230 READ JOIN_FROM , JOIN_TO 2240 2250 array_for_the_links( link , 1 ) = JOIN_FROM 2260 array_for_the_links( link , 2 ) = JOIN_TO 2270 2280 NEXT link 2290 2300ENDPROC 2310 2320 2330REM *** The data for the 12 links to make up the cube *** 2340 2350 2360DATA 1 , 2 : REM The links to join up the front face 2370DATA 2 , 3 2380DATA 3 , 4 2390DATA 4 , 1 2400 2410DATA 5 , 6 : REM The links to join up the back face 2420DATA 6 , 7 2430DATA 7 , 8 2440DATA 8 , 5 2450 2460DATA 1 , 5 : REM The links to join the front face to the back face 2470DATA 2 , 6 2480DATA 3 , 7 2490DATA 4 , 8
� >Cube � Program : Cube -� A simple 3D cube in BBC BASIC (� Author : Kevin J Swinton 2 � Version : Acorn A5000.1.00 <&� Date : Monday 14th March 1994 F P Z#� � � � : � : � " at Line ";�:� d n xN� ------------------------------------------------------------------------ �/� MAIN PROGRAM �N� ------------------------------------------------------------------------ � � �� 27+128 : � � � �edure_Initialise � �edure_Cube � �� � � �N� ------------------------------------------------------------------------ @� PROCEDURE TO INITIALISE EVERYTHING WE NEED TO KNOW N� ------------------------------------------------------------------------ " ,� �edure_Initialise 6 @; � *** Place our origin in the middle of the screen *** J ȑ 640 , 512 T ^9 � *** Dimension all the arrays that we will need *** hN � array_for_the_3D_points( 8 , 3 ) : � 8 points, each being an X,Y,Z (3D) rN � array_for_the_2D_points( 8 , 2 ) : � 8 points, each being an X,Y (2D) |] � array_for_the_links( 12 , 2 ) : � 12 links, each being a "from point x, to point y" � �I � *** Read all the information we need into our arrays. Firstly, *** �I � *** read in all our points that make up the cube, and then *** �I � *** read in all the links that join the points together. *** �( �edure_Read_Points_Into_Their_Array �' �edure_Read_Links_Into_Their_Array � � BANK = 1 �% �edure_Swap_The_Screen_Banks : � �% �edure_Swap_The_Screen_Banks : � � �= � *** Initialise the rotation of the object in space *** � X_ROTATION = 0 Y_ROTATION = 0 Z_ROTATION = 0 &= � *** Initialise the position of the object in space *** 0= � *** so that it is quite far away from us *** : X_POSITION = + 0 D Y_POSITION = + 0 N Z_POSITION = +50 X b� l v �N� ------------------------------------------------------------------------ �D� MAIN PROCEDURE TO CONTROL THE SPINNING CUBE ON THE SCREEN �N� ------------------------------------------------------------------------ � � �� �edure_Cube � � � � � �edure_Rotate_The_Cube � �edure_Draw_The_Cube �$ �edure_Swap_The_Screen_Banks � Y X_ROTATION = X_ROTATION + 1 : � X_ROTATION >= 360 � X_ROTATION = X_ROTATION - 360 Y Y_ROTATION = Y_ROTATION + 1 : � Y_ROTATION >= 360 � Y_ROTATION = Y_ROTATION - 360 Y Z_ROTATION = Z_ROTATION + 1 : � Z_ROTATION >= 360 � Z_ROTATION = Z_ROTATION - 360 * � 1 = 2 4 >� H R \N� ------------------------------------------------------------------------ f@� THE PROCEDURE THAT ROTATES THE 8 POINTS OF THE CUBE pN� ------------------------------------------------------------------------ z � �� �edure_Rotate_The_Cube � � � point_to_rotate = 1 � 8 � �J x_position_of_point = array_for_the_3D_points( point_to_rotate , 1 ) �J y_position_of_point = array_for_the_3D_points( point_to_rotate , 2 ) �J z_position_of_point = array_for_the_3D_points( point_to_rotate , 3 ) � �@ � *** Formula for rotating the point around the X axis *** �i rotated_y_value = y_position_of_point * �( � X_ROTATION ) - z_position_of_point * �( � X_ROTATION ) �i rotated_z_value = y_position_of_point * �( � X_ROTATION ) + z_position_of_point * �( � X_ROTATION ) �+ y_position_of_point = rotated_y_value + z_position_of_point = rotated_z_value @ � *** Formula for rotating the point around the Y axis *** $i rotated_x_value = x_position_of_point * �( � Y_ROTATION ) + z_position_of_point * �( � Y_ROTATION ) .i rotated_z_value = z_position_of_point * �( � Y_ROTATION ) - x_position_of_point * �( � Y_ROTATION ) 8+ x_position_of_point = rotated_x_value B+ z_position_of_point = rotated_z_value L V@ � *** Formula for rotating the point around the Z axis *** `i rotated_x_value = x_position_of_point * �( � Z_ROTATION ) - y_position_of_point * �( � Z_ROTATION ) ji rotated_y_value = x_position_of_point * �( � Z_ROTATION ) + y_position_of_point * �( � Z_ROTATION ) t+ x_position_of_point = rotated_x_value ~+ y_position_of_point = rotated_y_value � �A � *** Now we've rotated the object about itself we must *** �A � *** position it in space relative to where WE are *** �< x_position_of_point = x_position_of_point + X_POSITION �< y_position_of_point = y_position_of_point + Y_POSITION �< z_position_of_point = z_position_of_point + Z_POSITION � �I � *** Convert from the rotated 3D position into the relevant *** �I � *** 2D position. Don't forget that this involves dividing *** �I � *** X and Y by Z, and apllying a perspective factor (eg. 800) *** �j array_for_the_2D_points( point_to_rotate , 1 ) = ( 800 * x_position_of_point ) / z_position_of_point �j array_for_the_2D_points( point_to_rotate , 2 ) = ( 800 * y_position_of_point ) / z_position_of_point � point_to_rotate � ( 2 <N� ------------------------------------------------------------------------ FC� THE PROCEDURE THAT DRAWS THE LINKS THAT MAKE UP THE CUBE PN� ------------------------------------------------------------------------ Z d n� �edure_Draw_The_Cube x � � link = 1 � 12 � �= point_to_link_from = array_for_the_links( link , 1 ) �= point_to_link_to = array_for_the_links( link , 2 ) � �O first_x_position = array_for_the_2D_points( point_to_link_from , 1 ) �O first_y_position = array_for_the_2D_points( point_to_link_from , 2 ) � �O second_x_position = array_for_the_2D_points( point_to_link_to , 1 ) �O second_y_position = array_for_the_2D_points( point_to_link_to , 2 ) � �/ � first_x_position , first_y_position �0 � second_x_position , second_y_position � link "� , 6 @N� ------------------------------------------------------------------------ JH� PROCEDURE TO SWAP OUR SCREENS, KEEPING THE ANIMATION FLICKER FREE TN� ------------------------------------------------------------------------ ^ h r"� �edure_Swap_The_Screen_Banks | � Ȗ � BANK = BANK � 3 � ș 6,112,BANK � ș 6,113,BANK � 3 � � � �� � � �N� ------------------------------------------------------------------------ �H� THE PROCEDURE THAT READS THE 8 POINTS INTO THE ARRAY WE'VE SET UP �N� ------------------------------------------------------------------------ � )� �edure_Read_Points_Into_Their_Array & � �dZG 0 : � point = 1 � 8 D N/ � X_POSITION , Y_POSITION , Z_POSITION X b: array_for_the_3D_points( point , 1 ) = X_POSITION l: array_for_the_3D_points( point , 2 ) = Y_POSITION v: array_for_the_3D_points( point , 3 ) = Z_POSITION � � � point � �� � � �3� *** The data for the 8 points of the cube *** � � �@� -10,+10 , +10 : REM The 4 points for the front of the cube �� +10,+10 , +10 �� +10,-10 , +10 �� -10,-10 , +10 @� -10,+10 , -10 : REM The 4 points for the back of the cube � +10,+10 , -10 � +10,-10 , -10 *� -10,-10 , -10 4 > HN� ------------------------------------------------------------------------ RH� THE PROCEDURE THAT READS THE 12 LINKS INTO THE ARRAY WE'VE SET UP \N� ------------------------------------------------------------------------ f p z(� �edure_Read_Links_Into_Their_Array � � � �TxI � � � link = 1 � 12 � � � JOIN_FROM , JOIN_TO � �4 array_for_the_links( link , 1 ) = JOIN_FROM �2 array_for_the_links( link , 2 ) = JOIN_TO � � � link � �� ;� *** The data for the 12 links to make up the cube *** $ . 85� 1 , 2 : REM The links to join up the front face B� 2 , 3 L� 3 , 4 V� 4 , 1 ` j5� 5 , 6 : REM The links to join up the back face t� 6 , 7 ~� 7 , 8 �� 8 , 5 � �C� 1 , 5 : REM The links to join the front face to the back face �� 2 , 6 �� 3 , 7 �� 4 , 8 �
00000000 0d 00 0a 0b f4 20 3e 43 75 62 65 0d 00 14 14 f4 |..... >Cube.....| 00000010 20 50 72 6f 67 72 61 6d 20 3a 20 43 75 62 65 0d | Program : Cube.| 00000020 00 1e 2d f4 20 20 20 20 20 20 20 20 20 20 20 41 |..-. A| 00000030 20 73 69 6d 70 6c 65 20 33 44 20 63 75 62 65 20 | simple 3D cube | 00000040 69 6e 20 42 42 43 20 42 41 53 49 43 0d 00 28 1f |in BBC BASIC..(.| 00000050 f4 20 41 75 74 68 6f 72 20 20 3a 20 4b 65 76 69 |. Author : Kevi| 00000060 6e 20 4a 20 53 77 69 6e 74 6f 6e 0d 00 32 20 f4 |n J Swinton..2 .| 00000070 20 56 65 72 73 69 6f 6e 20 3a 20 41 63 6f 72 6e | Version : Acorn| 00000080 20 41 35 30 30 30 2e 31 2e 30 30 0d 00 3c 26 f4 | A5000.1.00..<&.| 00000090 20 44 61 74 65 20 20 20 20 3a 20 4d 6f 6e 64 61 | Date : Monda| 000000a0 79 20 31 34 74 68 20 4d 61 72 63 68 20 31 39 39 |y 14th March 199| 000000b0 34 0d 00 46 04 0d 00 50 04 0d 00 5a 23 ee 20 85 |4..F...P...Z#. .| 000000c0 20 eb 20 eb 20 3a 20 f6 20 3a 20 f1 20 22 20 61 | . . : . : . " a| 000000d0 74 20 4c 69 6e 65 20 22 3b 9e 3a e0 0d 00 64 04 |t Line ";.:...d.| 000000e0 0d 00 6e 04 0d 00 78 4e f4 20 2d 2d 2d 2d 2d 2d |..n...xN. ------| 000000f0 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| * 00000130 2d 2d 0d 00 82 2f f4 20 20 20 20 20 20 20 20 20 |--.../. | 00000140 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00000150 20 20 20 20 20 4d 41 49 4e 20 50 52 4f 47 52 41 | MAIN PROGRA| 00000160 4d 0d 00 8c 4e f4 20 2d 2d 2d 2d 2d 2d 2d 2d 2d |M...N. ---------| 00000170 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| * 000001a0 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0d |---------------.| 000001b0 00 96 04 0d 00 a0 04 0d 00 aa 10 eb 20 32 37 2b |............ 27+| 000001c0 31 32 38 20 3a 20 87 0d 00 b4 04 0d 00 be 16 20 |128 : ......... | 000001d0 f2 65 64 75 72 65 5f 49 6e 69 74 69 61 6c 69 73 |.edure_Initialis| 000001e0 65 0d 00 c8 10 20 f2 65 64 75 72 65 5f 43 75 62 |e.... .edure_Cub| 000001f0 65 0d 00 d2 04 0d 00 dc 05 e0 0d 00 e6 04 0d 00 |e...............| 00000200 f0 04 0d 00 fa 4e f4 20 2d 2d 2d 2d 2d 2d 2d 2d |.....N. --------| 00000210 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| * 00000250 0d 01 04 40 f4 20 20 20 20 20 20 20 20 20 50 52 |...@. PR| 00000260 4f 43 45 44 55 52 45 20 54 4f 20 49 4e 49 54 49 |OCEDURE TO INITI| 00000270 41 4c 49 53 45 20 45 56 45 52 59 54 48 49 4e 47 |ALISE EVERYTHING| 00000280 20 57 45 20 4e 45 45 44 20 54 4f 20 4b 4e 4f 57 | WE NEED TO KNOW| 00000290 0d 01 0e 4e f4 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |...N. ----------| 000002a0 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| * 000002d0 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0d 01 |--------------..| 000002e0 18 04 0d 01 22 04 0d 01 2c 17 dd 20 f2 65 64 75 |...."...,.. .edu| 000002f0 72 65 5f 49 6e 69 74 69 61 6c 69 73 65 0d 01 36 |re_Initialise..6| 00000300 04 0d 01 40 3b 20 f4 20 2a 2a 2a 20 50 6c 61 63 |...@; . *** Plac| 00000310 65 20 6f 75 72 20 6f 72 69 67 69 6e 20 69 6e 20 |e our origin in | 00000320 74 68 65 20 6d 69 64 64 6c 65 20 6f 66 20 74 68 |the middle of th| 00000330 65 20 73 63 72 65 65 6e 20 2a 2a 2a 0d 01 4a 11 |e screen ***..J.| 00000340 20 c8 91 20 36 34 30 20 2c 20 35 31 32 0d 01 54 | .. 640 , 512..T| 00000350 04 0d 01 5e 39 20 f4 20 2a 2a 2a 20 44 69 6d 65 |...^9 . *** Dime| 00000360 6e 73 69 6f 6e 20 61 6c 6c 20 74 68 65 20 61 72 |nsion all the ar| 00000370 72 61 79 73 20 74 68 61 74 20 77 65 20 77 69 6c |rays that we wil| 00000380 6c 20 6e 65 65 64 20 2a 2a 2a 0d 01 68 4e 20 de |l need ***..hN .| 00000390 20 61 72 72 61 79 5f 66 6f 72 5f 74 68 65 5f 33 | array_for_the_3| 000003a0 44 5f 70 6f 69 6e 74 73 28 20 38 20 2c 20 33 20 |D_points( 8 , 3 | 000003b0 29 20 3a 20 f4 20 38 20 70 6f 69 6e 74 73 2c 20 |) : . 8 points, | 000003c0 65 61 63 68 20 62 65 69 6e 67 20 61 6e 20 58 2c |each being an X,| 000003d0 59 2c 5a 20 28 33 44 29 0d 01 72 4e 20 de 20 61 |Y,Z (3D)..rN . a| 000003e0 72 72 61 79 5f 66 6f 72 5f 74 68 65 5f 32 44 5f |rray_for_the_2D_| 000003f0 70 6f 69 6e 74 73 28 20 38 20 2c 20 32 20 29 20 |points( 8 , 2 ) | 00000400 3a 20 f4 20 38 20 70 6f 69 6e 74 73 2c 20 65 61 |: . 8 points, ea| 00000410 63 68 20 62 65 69 6e 67 20 61 6e 20 58 2c 59 20 |ch being an X,Y | 00000420 20 20 28 32 44 29 0d 01 7c 5d 20 de 20 61 72 72 | (2D)..|] . arr| 00000430 61 79 5f 66 6f 72 5f 74 68 65 5f 6c 69 6e 6b 73 |ay_for_the_links| 00000440 28 20 31 32 20 2c 20 32 20 29 20 20 20 20 3a 20 |( 12 , 2 ) : | 00000450 f4 20 31 32 20 6c 69 6e 6b 73 2c 20 65 61 63 68 |. 12 links, each| 00000460 20 62 65 69 6e 67 20 61 20 22 66 72 6f 6d 20 70 | being a "from p| 00000470 6f 69 6e 74 20 78 2c 20 74 6f 20 70 6f 69 6e 74 |oint x, to point| 00000480 20 79 22 0d 01 86 04 0d 01 90 49 20 f4 20 2a 2a | y".......I . **| 00000490 2a 20 52 65 61 64 20 61 6c 6c 20 74 68 65 20 69 |* Read all the i| 000004a0 6e 66 6f 72 6d 61 74 69 6f 6e 20 77 65 20 6e 65 |nformation we ne| 000004b0 65 64 20 69 6e 74 6f 20 6f 75 72 20 61 72 72 61 |ed into our arra| 000004c0 79 73 2e 20 46 69 72 73 74 6c 79 2c 20 2a 2a 2a |ys. Firstly, ***| 000004d0 0d 01 9a 49 20 f4 20 2a 2a 2a 20 72 65 61 64 20 |...I . *** read | 000004e0 69 6e 20 61 6c 6c 20 6f 75 72 20 70 6f 69 6e 74 |in all our point| 000004f0 73 20 74 68 61 74 20 6d 61 6b 65 20 75 70 20 74 |s that make up t| 00000500 68 65 20 63 75 62 65 2c 20 61 6e 64 20 74 68 65 |he cube, and the| 00000510 6e 20 20 20 20 20 2a 2a 2a 0d 01 a4 49 20 f4 20 |n ***...I . | 00000520 2a 2a 2a 20 72 65 61 64 20 69 6e 20 61 6c 6c 20 |*** read in all | 00000530 74 68 65 20 6c 69 6e 6b 73 20 74 68 61 74 20 6a |the links that j| 00000540 6f 69 6e 20 74 68 65 20 70 6f 69 6e 74 73 20 74 |oin the points t| 00000550 6f 67 65 74 68 65 72 2e 20 20 20 20 20 20 20 2a |ogether. *| 00000560 2a 2a 0d 01 ae 28 20 f2 65 64 75 72 65 5f 52 65 |**...( .edure_Re| 00000570 61 64 5f 50 6f 69 6e 74 73 5f 49 6e 74 6f 5f 54 |ad_Points_Into_T| 00000580 68 65 69 72 5f 41 72 72 61 79 0d 01 b8 27 20 f2 |heir_Array...' .| 00000590 65 64 75 72 65 5f 52 65 61 64 5f 4c 69 6e 6b 73 |edure_Read_Links| 000005a0 5f 49 6e 74 6f 5f 54 68 65 69 72 5f 41 72 72 61 |_Into_Their_Arra| 000005b0 79 0d 01 c2 04 0d 01 cc 0d 20 42 41 4e 4b 20 3d |y........ BANK =| 000005c0 20 31 0d 01 d6 25 20 f2 65 64 75 72 65 5f 53 77 | 1...% .edure_Sw| 000005d0 61 70 5f 54 68 65 5f 53 63 72 65 65 6e 5f 42 61 |ap_The_Screen_Ba| 000005e0 6e 6b 73 20 3a 20 db 0d 01 e0 25 20 f2 65 64 75 |nks : ....% .edu| 000005f0 72 65 5f 53 77 61 70 5f 54 68 65 5f 53 63 72 65 |re_Swap_The_Scre| 00000600 65 6e 5f 42 61 6e 6b 73 20 3a 20 db 0d 01 ea 04 |en_Banks : .....| 00000610 0d 01 f4 3d 20 f4 20 2a 2a 2a 20 49 6e 69 74 69 |...= . *** Initi| 00000620 61 6c 69 73 65 20 74 68 65 20 72 6f 74 61 74 69 |alise the rotati| 00000630 6f 6e 20 6f 66 20 74 68 65 20 6f 62 6a 65 63 74 |on of the object| 00000640 20 69 6e 20 73 70 61 63 65 20 2a 2a 2a 0d 01 fe | in space ***...| 00000650 13 20 58 5f 52 4f 54 41 54 49 4f 4e 20 3d 20 30 |. X_ROTATION = 0| 00000660 0d 02 08 13 20 59 5f 52 4f 54 41 54 49 4f 4e 20 |.... Y_ROTATION | 00000670 3d 20 30 0d 02 12 13 20 5a 5f 52 4f 54 41 54 49 |= 0.... Z_ROTATI| 00000680 4f 4e 20 3d 20 30 0d 02 1c 04 0d 02 26 3d 20 f4 |ON = 0......&= .| 00000690 20 2a 2a 2a 20 49 6e 69 74 69 61 6c 69 73 65 20 | *** Initialise | 000006a0 74 68 65 20 70 6f 73 69 74 69 6f 6e 20 6f 66 20 |the position of | 000006b0 74 68 65 20 6f 62 6a 65 63 74 20 69 6e 20 73 70 |the object in sp| 000006c0 61 63 65 20 2a 2a 2a 0d 02 30 3d 20 f4 20 2a 2a |ace ***..0= . **| 000006d0 2a 20 73 6f 20 74 68 61 74 20 69 74 20 69 73 20 |* so that it is | 000006e0 71 75 69 74 65 20 66 61 72 20 61 77 61 79 20 66 |quite far away f| 000006f0 72 6f 6d 20 75 73 20 20 20 20 20 20 20 20 20 20 |rom us | 00000700 20 2a 2a 2a 0d 02 3a 15 20 58 5f 50 4f 53 49 54 | ***..:. X_POSIT| 00000710 49 4f 4e 20 3d 20 2b 20 30 0d 02 44 15 20 59 5f |ION = + 0..D. Y_| 00000720 50 4f 53 49 54 49 4f 4e 20 3d 20 2b 20 30 0d 02 |POSITION = + 0..| 00000730 4e 15 20 5a 5f 50 4f 53 49 54 49 4f 4e 20 3d 20 |N. Z_POSITION = | 00000740 2b 35 30 0d 02 58 04 0d 02 62 05 e1 0d 02 6c 04 |+50..X...b....l.| 00000750 0d 02 76 04 0d 02 80 4e f4 20 2d 2d 2d 2d 2d 2d |..v....N. ------| 00000760 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| * 000007a0 2d 2d 0d 02 8a 44 f4 20 20 20 20 20 20 4d 41 49 |--...D. MAI| 000007b0 4e 20 50 52 4f 43 45 44 55 52 45 20 54 4f 20 43 |N PROCEDURE TO C| 000007c0 4f 4e 54 52 4f 4c 20 54 48 45 20 53 50 49 4e 4e |ONTROL THE SPINN| 000007d0 49 4e 47 20 43 55 42 45 20 4f 4e 20 54 48 45 20 |ING CUBE ON THE | 000007e0 53 43 52 45 45 4e 0d 02 94 4e f4 20 2d 2d 2d 2d |SCREEN...N. ----| 000007f0 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| * 00000830 2d 2d 2d 2d 0d 02 9e 04 0d 02 a8 04 0d 02 b2 11 |----............| 00000840 dd 20 f2 65 64 75 72 65 5f 43 75 62 65 0d 02 bc |. .edure_Cube...| 00000850 04 0d 02 c6 06 20 f5 0d 02 d0 04 0d 02 da 1e 20 |..... ......... | 00000860 20 20 20 f2 65 64 75 72 65 5f 52 6f 74 61 74 65 | .edure_Rotate| 00000870 5f 54 68 65 5f 43 75 62 65 0d 02 e4 1c 20 20 20 |_The_Cube.... | 00000880 20 f2 65 64 75 72 65 5f 44 72 61 77 5f 54 68 65 | .edure_Draw_The| 00000890 5f 43 75 62 65 0d 02 ee 24 20 20 20 20 f2 65 64 |_Cube...$ .ed| 000008a0 75 72 65 5f 53 77 61 70 5f 54 68 65 5f 53 63 72 |ure_Swap_The_Scr| 000008b0 65 65 6e 5f 42 61 6e 6b 73 0d 02 f8 04 0d 03 02 |een_Banks.......| 000008c0 59 20 20 20 20 58 5f 52 4f 54 41 54 49 4f 4e 20 |Y X_ROTATION | 000008d0 3d 20 58 5f 52 4f 54 41 54 49 4f 4e 20 2b 20 31 |= X_ROTATION + 1| 000008e0 20 3a 20 e7 20 58 5f 52 4f 54 41 54 49 4f 4e 20 | : . X_ROTATION | 000008f0 3e 3d 20 33 36 30 20 8c 20 58 5f 52 4f 54 41 54 |>= 360 . X_ROTAT| 00000900 49 4f 4e 20 3d 20 58 5f 52 4f 54 41 54 49 4f 4e |ION = X_ROTATION| 00000910 20 2d 20 33 36 30 0d 03 0c 59 20 20 20 20 59 5f | - 360...Y Y_| 00000920 52 4f 54 41 54 49 4f 4e 20 3d 20 59 5f 52 4f 54 |ROTATION = Y_ROT| 00000930 41 54 49 4f 4e 20 2b 20 31 20 3a 20 e7 20 59 5f |ATION + 1 : . Y_| 00000940 52 4f 54 41 54 49 4f 4e 20 3e 3d 20 33 36 30 20 |ROTATION >= 360 | 00000950 8c 20 59 5f 52 4f 54 41 54 49 4f 4e 20 3d 20 59 |. Y_ROTATION = Y| 00000960 5f 52 4f 54 41 54 49 4f 4e 20 2d 20 33 36 30 0d |_ROTATION - 360.| 00000970 03 16 59 20 20 20 20 5a 5f 52 4f 54 41 54 49 4f |..Y Z_ROTATIO| 00000980 4e 20 3d 20 5a 5f 52 4f 54 41 54 49 4f 4e 20 2b |N = Z_ROTATION +| 00000990 20 31 20 3a 20 e7 20 5a 5f 52 4f 54 41 54 49 4f | 1 : . Z_ROTATIO| 000009a0 4e 20 3e 3d 20 33 36 30 20 8c 20 5a 5f 52 4f 54 |N >= 360 . Z_ROT| 000009b0 41 54 49 4f 4e 20 3d 20 5a 5f 52 4f 54 41 54 49 |ATION = Z_ROTATI| 000009c0 4f 4e 20 2d 20 33 36 30 0d 03 20 04 0d 03 2a 0c |ON - 360.. ...*.| 000009d0 20 fd 20 31 20 3d 20 32 0d 03 34 04 0d 03 3e 05 | . 1 = 2..4...>.| 000009e0 e1 0d 03 48 04 0d 03 52 04 0d 03 5c 4e f4 20 2d |...H...R...\N. -| 000009f0 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| * 00000a30 2d 2d 2d 2d 2d 2d 2d 0d 03 66 40 f4 20 20 20 20 |-------..f@. | 00000a40 20 20 20 20 54 48 45 20 50 52 4f 43 45 44 55 52 | THE PROCEDUR| 00000a50 45 20 54 48 41 54 20 52 4f 54 41 54 45 53 20 54 |E THAT ROTATES T| 00000a60 48 45 20 38 20 50 4f 49 4e 54 53 20 4f 46 20 54 |HE 8 POINTS OF T| 00000a70 48 45 20 43 55 42 45 0d 03 70 4e f4 20 2d 2d 2d |HE CUBE..pN. ---| 00000a80 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| * 00000ac0 2d 2d 2d 2d 2d 0d 03 7a 04 0d 03 84 04 0d 03 8e |-----..z........| 00000ad0 1c dd 20 f2 65 64 75 72 65 5f 52 6f 74 61 74 65 |.. .edure_Rotate| 00000ae0 5f 54 68 65 5f 43 75 62 65 0d 03 98 04 0d 03 a2 |_The_Cube.......| 00000af0 1e 20 e3 20 70 6f 69 6e 74 5f 74 6f 5f 72 6f 74 |. . point_to_rot| 00000b00 61 74 65 20 3d 20 31 20 b8 20 38 0d 03 ac 04 0d |ate = 1 . 8.....| 00000b10 03 b6 4a 20 20 78 5f 70 6f 73 69 74 69 6f 6e 5f |..J x_position_| 00000b20 6f 66 5f 70 6f 69 6e 74 20 3d 20 61 72 72 61 79 |of_point = array| 00000b30 5f 66 6f 72 5f 74 68 65 5f 33 44 5f 70 6f 69 6e |_for_the_3D_poin| 00000b40 74 73 28 20 70 6f 69 6e 74 5f 74 6f 5f 72 6f 74 |ts( point_to_rot| 00000b50 61 74 65 20 2c 20 31 20 29 0d 03 c0 4a 20 20 79 |ate , 1 )...J y| 00000b60 5f 70 6f 73 69 74 69 6f 6e 5f 6f 66 5f 70 6f 69 |_position_of_poi| 00000b70 6e 74 20 3d 20 61 72 72 61 79 5f 66 6f 72 5f 74 |nt = array_for_t| 00000b80 68 65 5f 33 44 5f 70 6f 69 6e 74 73 28 20 70 6f |he_3D_points( po| 00000b90 69 6e 74 5f 74 6f 5f 72 6f 74 61 74 65 20 2c 20 |int_to_rotate , | 00000ba0 32 20 29 0d 03 ca 4a 20 20 7a 5f 70 6f 73 69 74 |2 )...J z_posit| 00000bb0 69 6f 6e 5f 6f 66 5f 70 6f 69 6e 74 20 3d 20 61 |ion_of_point = a| 00000bc0 72 72 61 79 5f 66 6f 72 5f 74 68 65 5f 33 44 5f |rray_for_the_3D_| 00000bd0 70 6f 69 6e 74 73 28 20 70 6f 69 6e 74 5f 74 6f |points( point_to| 00000be0 5f 72 6f 74 61 74 65 20 2c 20 33 20 29 0d 03 d4 |_rotate , 3 )...| 00000bf0 04 0d 03 de 40 20 20 f4 20 2a 2a 2a 20 46 6f 72 |....@ . *** For| 00000c00 6d 75 6c 61 20 66 6f 72 20 72 6f 74 61 74 69 6e |mula for rotatin| 00000c10 67 20 74 68 65 20 70 6f 69 6e 74 20 61 72 6f 75 |g the point arou| 00000c20 6e 64 20 74 68 65 20 58 20 61 78 69 73 20 2a 2a |nd the X axis **| 00000c30 2a 0d 03 e8 69 20 20 72 6f 74 61 74 65 64 5f 79 |*...i rotated_y| 00000c40 5f 76 61 6c 75 65 20 3d 20 79 5f 70 6f 73 69 74 |_value = y_posit| 00000c50 69 6f 6e 5f 6f 66 5f 70 6f 69 6e 74 20 2a 20 9b |ion_of_point * .| 00000c60 28 20 b2 20 58 5f 52 4f 54 41 54 49 4f 4e 20 29 |( . X_ROTATION )| 00000c70 20 2d 20 7a 5f 70 6f 73 69 74 69 6f 6e 5f 6f 66 | - z_position_of| 00000c80 5f 70 6f 69 6e 74 20 2a 20 b5 28 20 b2 20 58 5f |_point * .( . X_| 00000c90 52 4f 54 41 54 49 4f 4e 20 29 0d 03 f2 69 20 20 |ROTATION )...i | 00000ca0 72 6f 74 61 74 65 64 5f 7a 5f 76 61 6c 75 65 20 |rotated_z_value | 00000cb0 3d 20 79 5f 70 6f 73 69 74 69 6f 6e 5f 6f 66 5f |= y_position_of_| 00000cc0 70 6f 69 6e 74 20 2a 20 b5 28 20 b2 20 58 5f 52 |point * .( . X_R| 00000cd0 4f 54 41 54 49 4f 4e 20 29 20 2b 20 7a 5f 70 6f |OTATION ) + z_po| 00000ce0 73 69 74 69 6f 6e 5f 6f 66 5f 70 6f 69 6e 74 20 |sition_of_point | 00000cf0 2a 20 9b 28 20 b2 20 58 5f 52 4f 54 41 54 49 4f |* .( . X_ROTATIO| 00000d00 4e 20 29 0d 03 fc 2b 20 20 79 5f 70 6f 73 69 74 |N )...+ y_posit| 00000d10 69 6f 6e 5f 6f 66 5f 70 6f 69 6e 74 20 3d 20 72 |ion_of_point = r| 00000d20 6f 74 61 74 65 64 5f 79 5f 76 61 6c 75 65 0d 04 |otated_y_value..| 00000d30 06 2b 20 20 7a 5f 70 6f 73 69 74 69 6f 6e 5f 6f |.+ z_position_o| 00000d40 66 5f 70 6f 69 6e 74 20 3d 20 72 6f 74 61 74 65 |f_point = rotate| 00000d50 64 5f 7a 5f 76 61 6c 75 65 0d 04 10 04 0d 04 1a |d_z_value.......| 00000d60 40 20 20 f4 20 2a 2a 2a 20 46 6f 72 6d 75 6c 61 |@ . *** Formula| 00000d70 20 66 6f 72 20 72 6f 74 61 74 69 6e 67 20 74 68 | for rotating th| 00000d80 65 20 70 6f 69 6e 74 20 61 72 6f 75 6e 64 20 74 |e point around t| 00000d90 68 65 20 59 20 61 78 69 73 20 2a 2a 2a 0d 04 24 |he Y axis ***..$| 00000da0 69 20 20 72 6f 74 61 74 65 64 5f 78 5f 76 61 6c |i rotated_x_val| 00000db0 75 65 20 3d 20 78 5f 70 6f 73 69 74 69 6f 6e 5f |ue = x_position_| 00000dc0 6f 66 5f 70 6f 69 6e 74 20 2a 20 9b 28 20 b2 20 |of_point * .( . | 00000dd0 59 5f 52 4f 54 41 54 49 4f 4e 20 29 20 2b 20 7a |Y_ROTATION ) + z| 00000de0 5f 70 6f 73 69 74 69 6f 6e 5f 6f 66 5f 70 6f 69 |_position_of_poi| 00000df0 6e 74 20 2a 20 b5 28 20 b2 20 59 5f 52 4f 54 41 |nt * .( . Y_ROTA| 00000e00 54 49 4f 4e 20 29 0d 04 2e 69 20 20 72 6f 74 61 |TION )...i rota| 00000e10 74 65 64 5f 7a 5f 76 61 6c 75 65 20 3d 20 7a 5f |ted_z_value = z_| 00000e20 70 6f 73 69 74 69 6f 6e 5f 6f 66 5f 70 6f 69 6e |position_of_poin| 00000e30 74 20 2a 20 9b 28 20 b2 20 59 5f 52 4f 54 41 54 |t * .( . Y_ROTAT| 00000e40 49 4f 4e 20 29 20 2d 20 78 5f 70 6f 73 69 74 69 |ION ) - x_positi| 00000e50 6f 6e 5f 6f 66 5f 70 6f 69 6e 74 20 2a 20 b5 28 |on_of_point * .(| 00000e60 20 b2 20 59 5f 52 4f 54 41 54 49 4f 4e 20 29 0d | . Y_ROTATION ).| 00000e70 04 38 2b 20 20 78 5f 70 6f 73 69 74 69 6f 6e 5f |.8+ x_position_| 00000e80 6f 66 5f 70 6f 69 6e 74 20 3d 20 72 6f 74 61 74 |of_point = rotat| 00000e90 65 64 5f 78 5f 76 61 6c 75 65 0d 04 42 2b 20 20 |ed_x_value..B+ | 00000ea0 7a 5f 70 6f 73 69 74 69 6f 6e 5f 6f 66 5f 70 6f |z_position_of_po| 00000eb0 69 6e 74 20 3d 20 72 6f 74 61 74 65 64 5f 7a 5f |int = rotated_z_| 00000ec0 76 61 6c 75 65 0d 04 4c 04 0d 04 56 40 20 20 f4 |value..L...V@ .| 00000ed0 20 2a 2a 2a 20 46 6f 72 6d 75 6c 61 20 66 6f 72 | *** Formula for| 00000ee0 20 72 6f 74 61 74 69 6e 67 20 74 68 65 20 70 6f | rotating the po| 00000ef0 69 6e 74 20 61 72 6f 75 6e 64 20 74 68 65 20 5a |int around the Z| 00000f00 20 61 78 69 73 20 2a 2a 2a 0d 04 60 69 20 20 72 | axis ***..`i r| 00000f10 6f 74 61 74 65 64 5f 78 5f 76 61 6c 75 65 20 3d |otated_x_value =| 00000f20 20 78 5f 70 6f 73 69 74 69 6f 6e 5f 6f 66 5f 70 | x_position_of_p| 00000f30 6f 69 6e 74 20 2a 20 9b 28 20 b2 20 5a 5f 52 4f |oint * .( . Z_RO| 00000f40 54 41 54 49 4f 4e 20 29 20 2d 20 79 5f 70 6f 73 |TATION ) - y_pos| 00000f50 69 74 69 6f 6e 5f 6f 66 5f 70 6f 69 6e 74 20 2a |ition_of_point *| 00000f60 20 b5 28 20 b2 20 5a 5f 52 4f 54 41 54 49 4f 4e | .( . Z_ROTATION| 00000f70 20 29 0d 04 6a 69 20 20 72 6f 74 61 74 65 64 5f | )..ji rotated_| 00000f80 79 5f 76 61 6c 75 65 20 3d 20 78 5f 70 6f 73 69 |y_value = x_posi| 00000f90 74 69 6f 6e 5f 6f 66 5f 70 6f 69 6e 74 20 2a 20 |tion_of_point * | 00000fa0 b5 28 20 b2 20 5a 5f 52 4f 54 41 54 49 4f 4e 20 |.( . Z_ROTATION | 00000fb0 29 20 2b 20 79 5f 70 6f 73 69 74 69 6f 6e 5f 6f |) + y_position_o| 00000fc0 66 5f 70 6f 69 6e 74 20 2a 20 9b 28 20 b2 20 5a |f_point * .( . Z| 00000fd0 5f 52 4f 54 41 54 49 4f 4e 20 29 0d 04 74 2b 20 |_ROTATION )..t+ | 00000fe0 20 78 5f 70 6f 73 69 74 69 6f 6e 5f 6f 66 5f 70 | x_position_of_p| 00000ff0 6f 69 6e 74 20 3d 20 72 6f 74 61 74 65 64 5f 78 |oint = rotated_x| 00001000 5f 76 61 6c 75 65 0d 04 7e 2b 20 20 79 5f 70 6f |_value..~+ y_po| 00001010 73 69 74 69 6f 6e 5f 6f 66 5f 70 6f 69 6e 74 20 |sition_of_point | 00001020 3d 20 72 6f 74 61 74 65 64 5f 79 5f 76 61 6c 75 |= rotated_y_valu| 00001030 65 0d 04 88 04 0d 04 92 41 20 20 f4 20 2a 2a 2a |e.......A . ***| 00001040 20 4e 6f 77 20 77 65 27 76 65 20 72 6f 74 61 74 | Now we've rotat| 00001050 65 64 20 74 68 65 20 6f 62 6a 65 63 74 20 61 62 |ed the object ab| 00001060 6f 75 74 20 69 74 73 65 6c 66 20 77 65 20 6d 75 |out itself we mu| 00001070 73 74 20 2a 2a 2a 0d 04 9c 41 20 20 f4 20 2a 2a |st ***...A . **| 00001080 2a 20 70 6f 73 69 74 69 6f 6e 20 69 74 20 69 6e |* position it in| 00001090 20 73 70 61 63 65 20 72 65 6c 61 74 69 76 65 20 | space relative | 000010a0 74 6f 20 77 68 65 72 65 20 57 45 20 61 72 65 20 |to where WE are | 000010b0 20 20 20 20 2a 2a 2a 0d 04 a6 3c 20 20 78 5f 70 | ***...< x_p| 000010c0 6f 73 69 74 69 6f 6e 5f 6f 66 5f 70 6f 69 6e 74 |osition_of_point| 000010d0 20 3d 20 78 5f 70 6f 73 69 74 69 6f 6e 5f 6f 66 | = x_position_of| 000010e0 5f 70 6f 69 6e 74 20 2b 20 58 5f 50 4f 53 49 54 |_point + X_POSIT| 000010f0 49 4f 4e 0d 04 b0 3c 20 20 79 5f 70 6f 73 69 74 |ION...< y_posit| 00001100 69 6f 6e 5f 6f 66 5f 70 6f 69 6e 74 20 3d 20 79 |ion_of_point = y| 00001110 5f 70 6f 73 69 74 69 6f 6e 5f 6f 66 5f 70 6f 69 |_position_of_poi| 00001120 6e 74 20 2b 20 59 5f 50 4f 53 49 54 49 4f 4e 0d |nt + Y_POSITION.| 00001130 04 ba 3c 20 20 7a 5f 70 6f 73 69 74 69 6f 6e 5f |..< z_position_| 00001140 6f 66 5f 70 6f 69 6e 74 20 3d 20 7a 5f 70 6f 73 |of_point = z_pos| 00001150 69 74 69 6f 6e 5f 6f 66 5f 70 6f 69 6e 74 20 2b |ition_of_point +| 00001160 20 5a 5f 50 4f 53 49 54 49 4f 4e 0d 04 c4 04 0d | Z_POSITION.....| 00001170 04 ce 49 20 20 f4 20 2a 2a 2a 20 43 6f 6e 76 65 |..I . *** Conve| 00001180 72 74 20 66 72 6f 6d 20 74 68 65 20 72 6f 74 61 |rt from the rota| 00001190 74 65 64 20 33 44 20 70 6f 73 69 74 69 6f 6e 20 |ted 3D position | 000011a0 69 6e 74 6f 20 74 68 65 20 72 65 6c 65 76 61 6e |into the relevan| 000011b0 74 20 20 20 20 2a 2a 2a 0d 04 d8 49 20 20 f4 20 |t ***...I . | 000011c0 2a 2a 2a 20 32 44 20 70 6f 73 69 74 69 6f 6e 2e |*** 2D position.| 000011d0 20 44 6f 6e 27 74 20 66 6f 72 67 65 74 20 74 68 | Don't forget th| 000011e0 61 74 20 74 68 69 73 20 69 6e 76 6f 6c 76 65 73 |at this involves| 000011f0 20 64 69 76 69 64 69 6e 67 20 20 20 20 20 2a 2a | dividing **| 00001200 2a 0d 04 e2 49 20 20 f4 20 2a 2a 2a 20 58 20 61 |*...I . *** X a| 00001210 6e 64 20 59 20 62 79 20 5a 2c 20 61 6e 64 20 61 |nd Y by Z, and a| 00001220 70 6c 6c 79 69 6e 67 20 61 20 70 65 72 73 70 65 |pllying a perspe| 00001230 63 74 69 76 65 20 66 61 63 74 6f 72 20 28 65 67 |ctive factor (eg| 00001240 2e 20 38 30 30 29 20 2a 2a 2a 0d 04 ec 6a 20 20 |. 800) ***...j | 00001250 61 72 72 61 79 5f 66 6f 72 5f 74 68 65 5f 32 44 |array_for_the_2D| 00001260 5f 70 6f 69 6e 74 73 28 20 70 6f 69 6e 74 5f 74 |_points( point_t| 00001270 6f 5f 72 6f 74 61 74 65 20 2c 20 31 20 29 20 3d |o_rotate , 1 ) =| 00001280 20 28 20 38 30 30 20 2a 20 78 5f 70 6f 73 69 74 | ( 800 * x_posit| 00001290 69 6f 6e 5f 6f 66 5f 70 6f 69 6e 74 20 29 20 2f |ion_of_point ) /| 000012a0 20 7a 5f 70 6f 73 69 74 69 6f 6e 5f 6f 66 5f 70 | z_position_of_p| 000012b0 6f 69 6e 74 0d 04 f6 6a 20 20 61 72 72 61 79 5f |oint...j array_| 000012c0 66 6f 72 5f 74 68 65 5f 32 44 5f 70 6f 69 6e 74 |for_the_2D_point| 000012d0 73 28 20 70 6f 69 6e 74 5f 74 6f 5f 72 6f 74 61 |s( point_to_rota| 000012e0 74 65 20 2c 20 32 20 29 20 3d 20 28 20 38 30 30 |te , 2 ) = ( 800| 000012f0 20 2a 20 79 5f 70 6f 73 69 74 69 6f 6e 5f 6f 66 | * y_position_of| 00001300 5f 70 6f 69 6e 74 20 29 20 2f 20 7a 5f 70 6f 73 |_point ) / z_pos| 00001310 69 74 69 6f 6e 5f 6f 66 5f 70 6f 69 6e 74 0d 05 |ition_of_point..| 00001320 00 04 0d 05 0a 16 20 ed 20 70 6f 69 6e 74 5f 74 |...... . point_t| 00001330 6f 5f 72 6f 74 61 74 65 0d 05 14 04 0d 05 1e 05 |o_rotate........| 00001340 e1 0d 05 28 04 0d 05 32 04 0d 05 3c 4e f4 20 2d |...(...2...<N. -| 00001350 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| * 00001390 2d 2d 2d 2d 2d 2d 2d 0d 05 46 43 f4 20 20 20 20 |-------..FC. | 000013a0 20 20 54 48 45 20 50 52 4f 43 45 44 55 52 45 20 | THE PROCEDURE | 000013b0 54 48 41 54 20 44 52 41 57 53 20 54 48 45 20 4c |THAT DRAWS THE L| 000013c0 49 4e 4b 53 20 54 48 41 54 20 4d 41 4b 45 20 55 |INKS THAT MAKE U| 000013d0 50 20 54 48 45 20 43 55 42 45 0d 05 50 4e f4 20 |P THE CUBE..PN. | 000013e0 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| * 00001420 2d 2d 2d 2d 2d 2d 2d 2d 0d 05 5a 04 0d 05 64 04 |--------..Z...d.| 00001430 0d 05 6e 1a dd 20 f2 65 64 75 72 65 5f 44 72 61 |..n.. .edure_Dra| 00001440 77 5f 54 68 65 5f 43 75 62 65 0d 05 78 04 0d 05 |w_The_Cube..x...| 00001450 82 14 20 e3 20 6c 69 6e 6b 20 3d 20 31 20 b8 20 |.. . link = 1 . | 00001460 31 32 0d 05 8c 04 0d 05 96 3d 20 20 20 20 20 70 |12.......= p| 00001470 6f 69 6e 74 5f 74 6f 5f 6c 69 6e 6b 5f 66 72 6f |oint_to_link_fro| 00001480 6d 20 3d 20 61 72 72 61 79 5f 66 6f 72 5f 74 68 |m = array_for_th| 00001490 65 5f 6c 69 6e 6b 73 28 20 6c 69 6e 6b 20 2c 20 |e_links( link , | 000014a0 31 20 29 0d 05 a0 3d 20 20 20 20 20 70 6f 69 6e |1 )...= poin| 000014b0 74 5f 74 6f 5f 6c 69 6e 6b 5f 74 6f 20 20 20 3d |t_to_link_to =| 000014c0 20 61 72 72 61 79 5f 66 6f 72 5f 74 68 65 5f 6c | array_for_the_l| 000014d0 69 6e 6b 73 28 20 6c 69 6e 6b 20 2c 20 32 20 29 |inks( link , 2 )| 000014e0 0d 05 aa 04 0d 05 b4 4f 20 20 20 20 20 66 69 72 |.......O fir| 000014f0 73 74 5f 78 5f 70 6f 73 69 74 69 6f 6e 20 20 20 |st_x_position | 00001500 3d 20 61 72 72 61 79 5f 66 6f 72 5f 74 68 65 5f |= array_for_the_| 00001510 32 44 5f 70 6f 69 6e 74 73 28 20 70 6f 69 6e 74 |2D_points( point| 00001520 5f 74 6f 5f 6c 69 6e 6b 5f 66 72 6f 6d 20 2c 20 |_to_link_from , | 00001530 31 20 29 0d 05 be 4f 20 20 20 20 20 66 69 72 73 |1 )...O firs| 00001540 74 5f 79 5f 70 6f 73 69 74 69 6f 6e 20 20 20 3d |t_y_position =| 00001550 20 61 72 72 61 79 5f 66 6f 72 5f 74 68 65 5f 32 | array_for_the_2| 00001560 44 5f 70 6f 69 6e 74 73 28 20 70 6f 69 6e 74 5f |D_points( point_| 00001570 74 6f 5f 6c 69 6e 6b 5f 66 72 6f 6d 20 2c 20 32 |to_link_from , 2| 00001580 20 29 0d 05 c8 04 0d 05 d2 4f 20 20 20 20 20 73 | ).......O s| 00001590 65 63 6f 6e 64 5f 78 5f 70 6f 73 69 74 69 6f 6e |econd_x_position| 000015a0 20 20 3d 20 61 72 72 61 79 5f 66 6f 72 5f 74 68 | = array_for_th| 000015b0 65 5f 32 44 5f 70 6f 69 6e 74 73 28 20 70 6f 69 |e_2D_points( poi| 000015c0 6e 74 5f 74 6f 5f 6c 69 6e 6b 5f 74 6f 20 20 20 |nt_to_link_to | 000015d0 2c 20 31 20 29 0d 05 dc 4f 20 20 20 20 20 73 65 |, 1 )...O se| 000015e0 63 6f 6e 64 5f 79 5f 70 6f 73 69 74 69 6f 6e 20 |cond_y_position | 000015f0 20 3d 20 61 72 72 61 79 5f 66 6f 72 5f 74 68 65 | = array_for_the| 00001600 5f 32 44 5f 70 6f 69 6e 74 73 28 20 70 6f 69 6e |_2D_points( poin| 00001610 74 5f 74 6f 5f 6c 69 6e 6b 5f 74 6f 20 20 20 2c |t_to_link_to ,| 00001620 20 32 20 29 0d 05 e6 04 0d 05 f0 2f 20 20 20 20 | 2 )......./ | 00001630 20 ec 20 66 69 72 73 74 5f 78 5f 70 6f 73 69 74 | . first_x_posit| 00001640 69 6f 6e 20 20 2c 20 66 69 72 73 74 5f 79 5f 70 |ion , first_y_p| 00001650 6f 73 69 74 69 6f 6e 0d 05 fa 30 20 20 20 20 20 |osition...0 | 00001660 df 20 73 65 63 6f 6e 64 5f 78 5f 70 6f 73 69 74 |. second_x_posit| 00001670 69 6f 6e 20 2c 20 73 65 63 6f 6e 64 5f 79 5f 70 |ion , second_y_p| 00001680 6f 73 69 74 69 6f 6e 0d 06 04 04 0d 06 0e 0b 20 |osition........ | 00001690 ed 20 6c 69 6e 6b 0d 06 18 04 0d 06 22 05 e1 0d |. link......"...| 000016a0 06 2c 04 0d 06 36 04 0d 06 40 4e f4 20 2d 2d 2d |.,...6...@N. ---| 000016b0 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| * 000016f0 2d 2d 2d 2d 2d 0d 06 4a 48 f4 20 20 50 52 4f 43 |-----..JH. PROC| 00001700 45 44 55 52 45 20 54 4f 20 53 57 41 50 20 4f 55 |EDURE TO SWAP OU| 00001710 52 20 53 43 52 45 45 4e 53 2c 20 4b 45 45 50 49 |R SCREENS, KEEPI| 00001720 4e 47 20 54 48 45 20 41 4e 49 4d 41 54 49 4f 4e |NG THE ANIMATION| 00001730 20 46 4c 49 43 4b 45 52 20 46 52 45 45 0d 06 54 | FLICKER FREE..T| 00001740 4e f4 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |N. -------------| 00001750 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| * 00001780 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0d 06 5e 04 0d |-----------..^..| 00001790 06 68 04 0d 06 72 22 dd 20 f2 65 64 75 72 65 5f |.h...r". .edure_| 000017a0 53 77 61 70 5f 54 68 65 5f 53 63 72 65 65 6e 5f |Swap_The_Screen_| 000017b0 42 61 6e 6b 73 0d 06 7c 04 0d 06 86 07 20 c8 96 |Banks..|..... ..| 000017c0 0d 06 90 14 20 42 41 4e 4b 20 3d 20 42 41 4e 4b |.... BANK = BANK| 000017d0 20 82 20 33 0d 06 9a 12 20 c8 99 20 36 2c 31 31 | . 3.... .. 6,11| 000017e0 32 2c 42 41 4e 4b 0d 06 a4 16 20 c8 99 20 36 2c |2,BANK.... .. 6,| 000017f0 31 31 33 2c 42 41 4e 4b 20 82 20 33 0d 06 ae 06 |113,BANK . 3....| 00001800 20 db 0d 06 b8 04 0d 06 c2 05 e1 0d 06 cc 04 0d | ...............| 00001810 06 d6 04 0d 06 e0 4e f4 20 2d 2d 2d 2d 2d 2d 2d |......N. -------| 00001820 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| * 00001860 2d 0d 06 ea 48 f4 20 20 54 48 45 20 50 52 4f 43 |-...H. THE PROC| 00001870 45 44 55 52 45 20 54 48 41 54 20 52 45 41 44 53 |EDURE THAT READS| 00001880 20 54 48 45 20 38 20 50 4f 49 4e 54 53 20 49 4e | THE 8 POINTS IN| 00001890 54 4f 20 54 48 45 20 41 52 52 41 59 20 57 45 27 |TO THE ARRAY WE'| 000018a0 56 45 20 53 45 54 20 55 50 0d 06 f4 4e f4 20 2d |VE SET UP...N. -| 000018b0 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| * 000018f0 2d 2d 2d 2d 2d 2d 2d 0d 06 fe 04 0d 07 08 04 0d |-------.........| 00001900 07 12 29 dd 20 f2 65 64 75 72 65 5f 52 65 61 64 |..). .edure_Read| 00001910 5f 50 6f 69 6e 74 73 5f 49 6e 74 6f 5f 54 68 65 |_Points_Into_The| 00001920 69 72 5f 41 72 72 61 79 0d 07 1c 04 0d 07 26 0b |ir_Array......&.| 00001930 20 f7 20 8d 64 5a 47 0d 07 30 04 0d 07 3a 14 20 | . .dZG..0...:. | 00001940 e3 20 70 6f 69 6e 74 20 3d 20 31 20 b8 20 38 0d |. point = 1 . 8.| 00001950 07 44 04 0d 07 4e 2f 20 20 20 20 20 f3 20 58 5f |.D...N/ . X_| 00001960 50 4f 53 49 54 49 4f 4e 20 2c 20 59 5f 50 4f 53 |POSITION , Y_POS| 00001970 49 54 49 4f 4e 20 2c 20 5a 5f 50 4f 53 49 54 49 |ITION , Z_POSITI| 00001980 4f 4e 0d 07 58 04 0d 07 62 3a 20 20 20 20 20 61 |ON..X...b: a| 00001990 72 72 61 79 5f 66 6f 72 5f 74 68 65 5f 33 44 5f |rray_for_the_3D_| 000019a0 70 6f 69 6e 74 73 28 20 70 6f 69 6e 74 20 2c 20 |points( point , | 000019b0 31 20 29 20 3d 20 58 5f 50 4f 53 49 54 49 4f 4e |1 ) = X_POSITION| 000019c0 0d 07 6c 3a 20 20 20 20 20 61 72 72 61 79 5f 66 |..l: array_f| 000019d0 6f 72 5f 74 68 65 5f 33 44 5f 70 6f 69 6e 74 73 |or_the_3D_points| 000019e0 28 20 70 6f 69 6e 74 20 2c 20 32 20 29 20 3d 20 |( point , 2 ) = | 000019f0 59 5f 50 4f 53 49 54 49 4f 4e 0d 07 76 3a 20 20 |Y_POSITION..v: | 00001a00 20 20 20 61 72 72 61 79 5f 66 6f 72 5f 74 68 65 | array_for_the| 00001a10 5f 33 44 5f 70 6f 69 6e 74 73 28 20 70 6f 69 6e |_3D_points( poin| 00001a20 74 20 2c 20 33 20 29 20 3d 20 5a 5f 50 4f 53 49 |t , 3 ) = Z_POSI| 00001a30 54 49 4f 4e 0d 07 80 04 0d 07 8a 0c 20 ed 20 70 |TION........ . p| 00001a40 6f 69 6e 74 0d 07 94 04 0d 07 9e 05 e1 0d 07 a8 |oint............| 00001a50 04 0d 07 b2 04 0d 07 bc 33 f4 20 2a 2a 2a 20 54 |........3. *** T| 00001a60 68 65 20 64 61 74 61 20 66 6f 72 20 74 68 65 20 |he data for the | 00001a70 38 20 70 6f 69 6e 74 73 20 6f 66 20 74 68 65 20 |8 points of the | 00001a80 63 75 62 65 20 2a 2a 2a 0d 07 c6 04 0d 07 d0 04 |cube ***........| 00001a90 0d 07 da 40 dc 20 2d 31 30 2c 2b 31 30 20 2c 20 |...@. -10,+10 , | 00001aa0 2b 31 30 20 3a 20 52 45 4d 20 54 68 65 20 34 20 |+10 : REM The 4 | 00001ab0 70 6f 69 6e 74 73 20 66 6f 72 20 74 68 65 20 66 |points for the f| 00001ac0 72 6f 6e 74 20 6f 66 20 74 68 65 20 63 75 62 65 |ront of the cube| 00001ad0 0d 07 e4 13 dc 20 2b 31 30 2c 2b 31 30 20 2c 20 |..... +10,+10 , | 00001ae0 2b 31 30 0d 07 ee 13 dc 20 2b 31 30 2c 2d 31 30 |+10..... +10,-10| 00001af0 20 2c 20 2b 31 30 0d 07 f8 13 dc 20 2d 31 30 2c | , +10..... -10,| 00001b00 2d 31 30 20 2c 20 2b 31 30 0d 08 02 04 0d 08 0c |-10 , +10.......| 00001b10 40 dc 20 2d 31 30 2c 2b 31 30 20 2c 20 2d 31 30 |@. -10,+10 , -10| 00001b20 20 3a 20 52 45 4d 20 54 68 65 20 34 20 70 6f 69 | : REM The 4 poi| 00001b30 6e 74 73 20 66 6f 72 20 74 68 65 20 62 61 63 6b |nts for the back| 00001b40 20 20 6f 66 20 74 68 65 20 63 75 62 65 0d 08 16 | of the cube...| 00001b50 13 dc 20 2b 31 30 2c 2b 31 30 20 2c 20 2d 31 30 |.. +10,+10 , -10| 00001b60 0d 08 20 13 dc 20 2b 31 30 2c 2d 31 30 20 2c 20 |.. .. +10,-10 , | 00001b70 2d 31 30 0d 08 2a 13 dc 20 2d 31 30 2c 2d 31 30 |-10..*.. -10,-10| 00001b80 20 2c 20 2d 31 30 0d 08 34 04 0d 08 3e 04 0d 08 | , -10..4...>...| 00001b90 48 4e f4 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |HN. ------------| 00001ba0 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| * 00001bd0 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0d 08 52 48 |------------..RH| 00001be0 f4 20 20 54 48 45 20 50 52 4f 43 45 44 55 52 45 |. THE PROCEDURE| 00001bf0 20 54 48 41 54 20 52 45 41 44 53 20 54 48 45 20 | THAT READS THE | 00001c00 31 32 20 4c 49 4e 4b 53 20 49 4e 54 4f 20 54 48 |12 LINKS INTO TH| 00001c10 45 20 41 52 52 41 59 20 57 45 27 56 45 20 53 45 |E ARRAY WE'VE SE| 00001c20 54 20 55 50 0d 08 5c 4e f4 20 2d 2d 2d 2d 2d 2d |T UP..\N. ------| 00001c30 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| * 00001c70 2d 2d 0d 08 66 04 0d 08 70 04 0d 08 7a 28 dd 20 |--..f...p...z(. | 00001c80 f2 65 64 75 72 65 5f 52 65 61 64 5f 4c 69 6e 6b |.edure_Read_Link| 00001c90 73 5f 49 6e 74 6f 5f 54 68 65 69 72 5f 41 72 72 |s_Into_Their_Arr| 00001ca0 61 79 0d 08 84 04 0d 08 8e 0b 20 f7 20 8d 54 78 |ay........ . .Tx| 00001cb0 49 0d 08 98 04 0d 08 a2 14 20 e3 20 6c 69 6e 6b |I........ . link| 00001cc0 20 3d 20 31 20 b8 20 31 32 0d 08 ac 04 0d 08 b6 | = 1 . 12.......| 00001cd0 1e 20 20 20 20 20 f3 20 4a 4f 49 4e 5f 46 52 4f |. . JOIN_FRO| 00001ce0 4d 20 2c 20 4a 4f 49 4e 5f 54 4f 0d 08 c0 04 0d |M , JOIN_TO.....| 00001cf0 08 ca 34 20 20 20 20 20 61 72 72 61 79 5f 66 6f |..4 array_fo| 00001d00 72 5f 74 68 65 5f 6c 69 6e 6b 73 28 20 6c 69 6e |r_the_links( lin| 00001d10 6b 20 2c 20 31 20 29 20 3d 20 4a 4f 49 4e 5f 46 |k , 1 ) = JOIN_F| 00001d20 52 4f 4d 0d 08 d4 32 20 20 20 20 20 61 72 72 61 |ROM...2 arra| 00001d30 79 5f 66 6f 72 5f 74 68 65 5f 6c 69 6e 6b 73 28 |y_for_the_links(| 00001d40 20 6c 69 6e 6b 20 2c 20 32 20 29 20 3d 20 4a 4f | link , 2 ) = JO| 00001d50 49 4e 5f 54 4f 0d 08 de 04 0d 08 e8 0b 20 ed 20 |IN_TO........ . | 00001d60 6c 69 6e 6b 0d 08 f2 04 0d 08 fc 05 e1 0d 09 06 |link............| 00001d70 04 0d 09 10 04 0d 09 1a 3b f4 20 2a 2a 2a 20 54 |........;. *** T| 00001d80 68 65 20 64 61 74 61 20 66 6f 72 20 74 68 65 20 |he data for the | 00001d90 31 32 20 6c 69 6e 6b 73 20 74 6f 20 6d 61 6b 65 |12 links to make| 00001da0 20 75 70 20 74 68 65 20 63 75 62 65 20 2a 2a 2a | up the cube ***| 00001db0 0d 09 24 04 0d 09 2e 04 0d 09 38 35 dc 20 31 20 |..$.......85. 1 | 00001dc0 2c 20 32 20 3a 20 52 45 4d 20 54 68 65 20 6c 69 |, 2 : REM The li| 00001dd0 6e 6b 73 20 74 6f 20 6a 6f 69 6e 20 75 70 20 74 |nks to join up t| 00001de0 68 65 20 66 72 6f 6e 74 20 66 61 63 65 0d 09 42 |he front face..B| 00001df0 0b dc 20 32 20 2c 20 33 0d 09 4c 0b dc 20 33 20 |.. 2 , 3..L.. 3 | 00001e00 2c 20 34 0d 09 56 0b dc 20 34 20 2c 20 31 0d 09 |, 4..V.. 4 , 1..| 00001e10 60 04 0d 09 6a 35 dc 20 35 20 2c 20 36 20 3a 20 |`...j5. 5 , 6 : | 00001e20 52 45 4d 20 54 68 65 20 6c 69 6e 6b 73 20 74 6f |REM The links to| 00001e30 20 6a 6f 69 6e 20 75 70 20 74 68 65 20 62 61 63 | join up the bac| 00001e40 6b 20 20 66 61 63 65 0d 09 74 0b dc 20 36 20 2c |k face..t.. 6 ,| 00001e50 20 37 0d 09 7e 0b dc 20 37 20 2c 20 38 0d 09 88 | 7..~.. 7 , 8...| 00001e60 0b dc 20 38 20 2c 20 35 0d 09 92 04 0d 09 9c 43 |.. 8 , 5.......C| 00001e70 dc 20 31 20 2c 20 35 20 3a 20 52 45 4d 20 54 68 |. 1 , 5 : REM Th| 00001e80 65 20 6c 69 6e 6b 73 20 74 6f 20 6a 6f 69 6e 20 |e links to join | 00001e90 74 68 65 20 66 72 6f 6e 74 20 66 61 63 65 20 74 |the front face t| 00001ea0 6f 20 74 68 65 20 62 61 63 6b 20 66 61 63 65 0d |o the back face.| 00001eb0 09 a6 0b dc 20 32 20 2c 20 36 0d 09 b0 0b dc 20 |.... 2 , 6..... | 00001ec0 33 20 2c 20 37 0d 09 ba 0b dc 20 34 20 2c 20 38 |3 , 7..... 4 , 8| 00001ed0 0d ff |..| 00001ed2