Home » Archimedes archive » Acorn User » AU 1993-06.adf » !Render_Render » Examples/s/blocks
Examples/s/blocks
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » Archimedes archive » Acorn User » AU 1993-06.adf » !Render_Render |
Filename: | Examples/s/blocks |
Read OK: | ✔ |
File size: | 08B2 bytes |
Load address: | 0000 |
Exec address: | 0000 |
File contents
sprite {txtsprt} material { plastic 0,0,0.2 0.8,0.8,0.8 10 red 0.4,0,0 0.6,0,0 4 green 0,0.4,0 0,0.6,0 4 gold 0.8,0.1,0 0.6,0.4,0.1 10 } define { sphere shape { 12 0,COS(PI*1/11),0 -SIN(PI*1/11),0,0 0,0,-SIN(PI*1/11)} shape { 12 0,COS(PI*2/11),0 -SIN(PI*2/11),0,0 0,0,-SIN(PI*2/11)} shape { 12 0,COS(PI*3/11),0 -SIN(PI*3/11),0,0 0,0,-SIN(PI*3/11)} shape { 12 0,COS(PI*4/11),0 -SIN(PI*4/11),0,0 0,0,-SIN(PI*4/11)} shape { 12 0,COS(PI*5/11),0 -SIN(PI*5/11),0,0 0,0,-SIN(PI*5/11)} shape { 12 0,COS(PI*6/11),0 -SIN(PI*6/11),0,0 0,0,-SIN(PI*6/11)} shape { 12 0,COS(PI*7/11),0 -SIN(PI*7/11),0,0 0,0,-SIN(PI*7/11)} shape { 12 0,COS(PI*8/11),0 -SIN(PI*8/11),0,0 0,0,-SIN(PI*8/11)} shape { 12 0,COS(PI*9/11),0 -SIN(PI*9/11),0,0 0,0,-SIN(PI*9/11)} shape { 12 0,COS(PI*10/11),0 -SIN(PI*10/11),0,0 0,0,-SIN(PI*10/11)} point {0,1,0} point {0,-1,0} surface {curve 0 12,10 TRUE,FALSE} link {curve 0,11,120} link {curve 11,10,120} link {curve 10,9,120} link {curve 9,8,120} link {curve 8,7,120} link {curve 7,6,120} link {curve 6,5,120} link {curve 5,4,120} link {curve 4,3,120} link {curve 3,2,120} link {curve 2,1,120} link {curve 1,0,120} link {curve 108,109,121} link {curve 109,110,121} link {curve 110,111,121} link {curve 111,112,121} link {curve 112,113,121} link {curve 113,114,121} link {curve 114,115,121} link {curve 115,116,121} link {curve 116,117,121} link {curve 117,118,121} link {curve 118,119,121} link {curve 119,108,121} } define { cube point { -1,1,-1 1,1,-1 1,-1,-1 -1,-1,-1 -1,1,1 1,1,1, 1,-1,1, -1,-1,1 } link { flat 0,1,2,3} link { flat 1,5,6,2} link { flat 5,4,7,6} link { flat 4,0,3,7} link { flat 4,5,1,0} link { flat 6,7,3,2} } sphere { 0,1,0 texture { screendump 0.4,0.6,15 fit {12,10} map {0.5,1} map {0.5,0} } } cube { -3,1,0.25 red rotate {0,60,0} } cube { -1,0.25,-2 green scale {1,0.25,0.25} rotate {0,20,0} } sphere { 1.5,0.6,-1 gold scale {0.6,0.6,0.6} } sphere { -1.5,0.5,-0.8 plastic scale {0.5,0.5,0.5} } display {blocks 1024,1024 medium 1280,1024} view {3,3,-4 25,-45,0} light {160,40 210,-20 140,60 90,20} ambient {0.05,0.05,0.05}
00000000 73 70 72 69 74 65 20 7b 74 78 74 73 70 72 74 7d |sprite {txtsprt}| 00000010 0a 0a 6d 61 74 65 72 69 61 6c 20 7b 0a 0a 70 6c |..material {..pl| 00000020 61 73 74 69 63 20 20 30 2c 30 2c 30 2e 32 20 20 |astic 0,0,0.2 | 00000030 20 20 30 2e 38 2c 30 2e 38 2c 30 2e 38 20 20 31 | 0.8,0.8,0.8 1| 00000040 30 0a 72 65 64 20 20 20 20 20 20 30 2e 34 2c 30 |0.red 0.4,0| 00000050 2c 30 20 20 20 20 30 2e 36 2c 30 2c 30 20 20 20 |,0 0.6,0,0 | 00000060 20 20 20 34 0a 67 72 65 65 6e 20 20 20 20 30 2c | 4.green 0,| 00000070 30 2e 34 2c 30 20 20 20 20 30 2c 30 2e 36 2c 30 |0.4,0 0,0.6,0| 00000080 20 20 20 20 20 20 34 0a 67 6f 6c 64 20 20 20 20 | 4.gold | 00000090 20 30 2e 38 2c 30 2e 31 2c 30 20 20 30 2e 36 2c | 0.8,0.1,0 0.6,| 000000a0 30 2e 34 2c 30 2e 31 20 20 31 30 0a 7d 0a 0a 64 |0.4,0.1 10.}..d| 000000b0 65 66 69 6e 65 20 7b 20 73 70 68 65 72 65 0a 0a |efine { sphere..| 000000c0 73 68 61 70 65 20 7b 20 31 32 20 20 30 2c 43 4f |shape { 12 0,CO| 000000d0 53 28 50 49 2a 31 2f 31 31 29 2c 30 20 20 20 2d |S(PI*1/11),0 -| 000000e0 53 49 4e 28 50 49 2a 31 2f 31 31 29 2c 30 2c 30 |SIN(PI*1/11),0,0| 000000f0 20 20 20 30 2c 30 2c 2d 53 49 4e 28 50 49 2a 31 | 0,0,-SIN(PI*1| 00000100 2f 31 31 29 7d 0a 73 68 61 70 65 20 7b 20 31 32 |/11)}.shape { 12| 00000110 20 20 30 2c 43 4f 53 28 50 49 2a 32 2f 31 31 29 | 0,COS(PI*2/11)| 00000120 2c 30 20 20 20 2d 53 49 4e 28 50 49 2a 32 2f 31 |,0 -SIN(PI*2/1| 00000130 31 29 2c 30 2c 30 20 20 20 30 2c 30 2c 2d 53 49 |1),0,0 0,0,-SI| 00000140 4e 28 50 49 2a 32 2f 31 31 29 7d 0a 73 68 61 70 |N(PI*2/11)}.shap| 00000150 65 20 7b 20 31 32 20 20 30 2c 43 4f 53 28 50 49 |e { 12 0,COS(PI| 00000160 2a 33 2f 31 31 29 2c 30 20 20 20 2d 53 49 4e 28 |*3/11),0 -SIN(| 00000170 50 49 2a 33 2f 31 31 29 2c 30 2c 30 20 20 20 30 |PI*3/11),0,0 0| 00000180 2c 30 2c 2d 53 49 4e 28 50 49 2a 33 2f 31 31 29 |,0,-SIN(PI*3/11)| 00000190 7d 0a 73 68 61 70 65 20 7b 20 31 32 20 20 30 2c |}.shape { 12 0,| 000001a0 43 4f 53 28 50 49 2a 34 2f 31 31 29 2c 30 20 20 |COS(PI*4/11),0 | 000001b0 20 2d 53 49 4e 28 50 49 2a 34 2f 31 31 29 2c 30 | -SIN(PI*4/11),0| 000001c0 2c 30 20 20 20 30 2c 30 2c 2d 53 49 4e 28 50 49 |,0 0,0,-SIN(PI| 000001d0 2a 34 2f 31 31 29 7d 0a 73 68 61 70 65 20 7b 20 |*4/11)}.shape { | 000001e0 31 32 20 20 30 2c 43 4f 53 28 50 49 2a 35 2f 31 |12 0,COS(PI*5/1| 000001f0 31 29 2c 30 20 20 20 2d 53 49 4e 28 50 49 2a 35 |1),0 -SIN(PI*5| 00000200 2f 31 31 29 2c 30 2c 30 20 20 20 30 2c 30 2c 2d |/11),0,0 0,0,-| 00000210 53 49 4e 28 50 49 2a 35 2f 31 31 29 7d 0a 73 68 |SIN(PI*5/11)}.sh| 00000220 61 70 65 20 7b 20 31 32 20 20 30 2c 43 4f 53 28 |ape { 12 0,COS(| 00000230 50 49 2a 36 2f 31 31 29 2c 30 20 20 20 2d 53 49 |PI*6/11),0 -SI| 00000240 4e 28 50 49 2a 36 2f 31 31 29 2c 30 2c 30 20 20 |N(PI*6/11),0,0 | 00000250 20 30 2c 30 2c 2d 53 49 4e 28 50 49 2a 36 2f 31 | 0,0,-SIN(PI*6/1| 00000260 31 29 7d 0a 73 68 61 70 65 20 7b 20 31 32 20 20 |1)}.shape { 12 | 00000270 30 2c 43 4f 53 28 50 49 2a 37 2f 31 31 29 2c 30 |0,COS(PI*7/11),0| 00000280 20 20 20 2d 53 49 4e 28 50 49 2a 37 2f 31 31 29 | -SIN(PI*7/11)| 00000290 2c 30 2c 30 20 20 20 30 2c 30 2c 2d 53 49 4e 28 |,0,0 0,0,-SIN(| 000002a0 50 49 2a 37 2f 31 31 29 7d 0a 73 68 61 70 65 20 |PI*7/11)}.shape | 000002b0 7b 20 31 32 20 20 30 2c 43 4f 53 28 50 49 2a 38 |{ 12 0,COS(PI*8| 000002c0 2f 31 31 29 2c 30 20 20 20 2d 53 49 4e 28 50 49 |/11),0 -SIN(PI| 000002d0 2a 38 2f 31 31 29 2c 30 2c 30 20 20 20 30 2c 30 |*8/11),0,0 0,0| 000002e0 2c 2d 53 49 4e 28 50 49 2a 38 2f 31 31 29 7d 0a |,-SIN(PI*8/11)}.| 000002f0 73 68 61 70 65 20 7b 20 31 32 20 20 30 2c 43 4f |shape { 12 0,CO| 00000300 53 28 50 49 2a 39 2f 31 31 29 2c 30 20 20 20 2d |S(PI*9/11),0 -| 00000310 53 49 4e 28 50 49 2a 39 2f 31 31 29 2c 30 2c 30 |SIN(PI*9/11),0,0| 00000320 20 20 20 30 2c 30 2c 2d 53 49 4e 28 50 49 2a 39 | 0,0,-SIN(PI*9| 00000330 2f 31 31 29 7d 0a 73 68 61 70 65 20 7b 20 31 32 |/11)}.shape { 12| 00000340 20 20 30 2c 43 4f 53 28 50 49 2a 31 30 2f 31 31 | 0,COS(PI*10/11| 00000350 29 2c 30 20 20 2d 53 49 4e 28 50 49 2a 31 30 2f |),0 -SIN(PI*10/| 00000360 31 31 29 2c 30 2c 30 20 20 30 2c 30 2c 2d 53 49 |11),0,0 0,0,-SI| 00000370 4e 28 50 49 2a 31 30 2f 31 31 29 7d 0a 0a 70 6f |N(PI*10/11)}..po| 00000380 69 6e 74 20 7b 30 2c 31 2c 30 7d 0a 70 6f 69 6e |int {0,1,0}.poin| 00000390 74 20 7b 30 2c 2d 31 2c 30 7d 0a 0a 73 75 72 66 |t {0,-1,0}..surf| 000003a0 61 63 65 20 7b 63 75 72 76 65 20 20 30 20 31 32 |ace {curve 0 12| 000003b0 2c 31 30 20 20 54 52 55 45 2c 46 41 4c 53 45 7d |,10 TRUE,FALSE}| 000003c0 0a 6c 69 6e 6b 20 7b 63 75 72 76 65 20 30 2c 31 |.link {curve 0,1| 000003d0 31 2c 31 32 30 7d 20 6c 69 6e 6b 20 7b 63 75 72 |1,120} link {cur| 000003e0 76 65 20 31 31 2c 31 30 2c 31 32 30 7d 20 6c 69 |ve 11,10,120} li| 000003f0 6e 6b 20 7b 63 75 72 76 65 20 31 30 2c 39 2c 31 |nk {curve 10,9,1| 00000400 32 30 7d 20 0a 6c 69 6e 6b 20 7b 63 75 72 76 65 |20} .link {curve| 00000410 20 39 2c 38 2c 31 32 30 7d 20 20 6c 69 6e 6b 20 | 9,8,120} link | 00000420 7b 63 75 72 76 65 20 38 2c 37 2c 31 32 30 7d 20 |{curve 8,7,120} | 00000430 20 20 6c 69 6e 6b 20 7b 63 75 72 76 65 20 37 2c | link {curve 7,| 00000440 36 2c 31 32 30 7d 20 0a 6c 69 6e 6b 20 7b 63 75 |6,120} .link {cu| 00000450 72 76 65 20 36 2c 35 2c 31 32 30 7d 20 20 6c 69 |rve 6,5,120} li| 00000460 6e 6b 20 7b 63 75 72 76 65 20 35 2c 34 2c 31 32 |nk {curve 5,4,12| 00000470 30 7d 20 20 20 6c 69 6e 6b 20 7b 63 75 72 76 65 |0} link {curve| 00000480 20 34 2c 33 2c 31 32 30 7d 20 0a 6c 69 6e 6b 20 | 4,3,120} .link | 00000490 7b 63 75 72 76 65 20 33 2c 32 2c 31 32 30 7d 20 |{curve 3,2,120} | 000004a0 20 6c 69 6e 6b 20 7b 63 75 72 76 65 20 32 2c 31 | link {curve 2,1| 000004b0 2c 31 32 30 7d 20 20 20 6c 69 6e 6b 20 7b 63 75 |,120} link {cu| 000004c0 72 76 65 20 31 2c 30 2c 31 32 30 7d 0a 0a 6c 69 |rve 1,0,120}..li| 000004d0 6e 6b 20 7b 63 75 72 76 65 20 31 30 38 2c 31 30 |nk {curve 108,10| 000004e0 39 2c 31 32 31 7d 20 6c 69 6e 6b 20 7b 63 75 72 |9,121} link {cur| 000004f0 76 65 20 31 30 39 2c 31 31 30 2c 31 32 31 7d 20 |ve 109,110,121} | 00000500 6c 69 6e 6b 20 7b 63 75 72 76 65 20 31 31 30 2c |link {curve 110,| 00000510 31 31 31 2c 31 32 31 7d 0a 6c 69 6e 6b 20 7b 63 |111,121}.link {c| 00000520 75 72 76 65 20 31 31 31 2c 31 31 32 2c 31 32 31 |urve 111,112,121| 00000530 7d 20 6c 69 6e 6b 20 7b 63 75 72 76 65 20 31 31 |} link {curve 11| 00000540 32 2c 31 31 33 2c 31 32 31 7d 20 6c 69 6e 6b 20 |2,113,121} link | 00000550 7b 63 75 72 76 65 20 31 31 33 2c 31 31 34 2c 31 |{curve 113,114,1| 00000560 32 31 7d 20 0a 6c 69 6e 6b 20 7b 63 75 72 76 65 |21} .link {curve| 00000570 20 31 31 34 2c 31 31 35 2c 31 32 31 7d 20 6c 69 | 114,115,121} li| 00000580 6e 6b 20 7b 63 75 72 76 65 20 31 31 35 2c 31 31 |nk {curve 115,11| 00000590 36 2c 31 32 31 7d 20 6c 69 6e 6b 20 7b 63 75 72 |6,121} link {cur| 000005a0 76 65 20 31 31 36 2c 31 31 37 2c 31 32 31 7d 20 |ve 116,117,121} | 000005b0 0a 6c 69 6e 6b 20 7b 63 75 72 76 65 20 31 31 37 |.link {curve 117| 000005c0 2c 31 31 38 2c 31 32 31 7d 20 6c 69 6e 6b 20 7b |,118,121} link {| 000005d0 63 75 72 76 65 20 31 31 38 2c 31 31 39 2c 31 32 |curve 118,119,12| 000005e0 31 7d 20 6c 69 6e 6b 20 7b 63 75 72 76 65 20 31 |1} link {curve 1| 000005f0 31 39 2c 31 30 38 2c 31 32 31 7d 0a 7d 0a 0a 64 |19,108,121}.}..d| 00000600 65 66 69 6e 65 20 7b 20 63 75 62 65 0a 0a 70 6f |efine { cube..po| 00000610 69 6e 74 20 7b 20 2d 31 2c 31 2c 2d 31 20 20 31 |int { -1,1,-1 1| 00000620 2c 31 2c 2d 31 20 20 31 2c 2d 31 2c 2d 31 20 20 |,1,-1 1,-1,-1 | 00000630 2d 31 2c 2d 31 2c 2d 31 0a 20 20 20 20 20 20 20 |-1,-1,-1. | 00000640 20 2d 31 2c 31 2c 31 20 20 20 31 2c 31 2c 31 2c | -1,1,1 1,1,1,| 00000650 20 20 31 2c 2d 31 2c 31 2c 20 20 2d 31 2c 2d 31 | 1,-1,1, -1,-1| 00000660 2c 31 20 20 20 7d 0a 0a 6c 69 6e 6b 20 7b 20 66 |,1 }..link { f| 00000670 6c 61 74 20 30 2c 31 2c 32 2c 33 7d 20 6c 69 6e |lat 0,1,2,3} lin| 00000680 6b 20 7b 20 66 6c 61 74 20 31 2c 35 2c 36 2c 32 |k { flat 1,5,6,2| 00000690 7d 20 6c 69 6e 6b 20 7b 20 66 6c 61 74 20 35 2c |} link { flat 5,| 000006a0 34 2c 37 2c 36 7d 20 0a 6c 69 6e 6b 20 7b 20 66 |4,7,6} .link { f| 000006b0 6c 61 74 20 34 2c 30 2c 33 2c 37 7d 20 6c 69 6e |lat 4,0,3,7} lin| 000006c0 6b 20 7b 20 66 6c 61 74 20 34 2c 35 2c 31 2c 30 |k { flat 4,5,1,0| 000006d0 7d 20 6c 69 6e 6b 20 7b 20 66 6c 61 74 20 36 2c |} link { flat 6,| 000006e0 37 2c 33 2c 32 7d 0a 7d 0a 0a 73 70 68 65 72 65 |7,3,2}.}..sphere| 000006f0 20 7b 20 30 2c 31 2c 30 0a 0a 74 65 78 74 75 72 | { 0,1,0..textur| 00000700 65 20 7b 20 73 63 72 65 65 6e 64 75 6d 70 20 30 |e { screendump 0| 00000710 2e 34 2c 30 2e 36 2c 31 35 20 0a 0a 66 69 74 20 |.4,0.6,15 ..fit | 00000720 7b 31 32 2c 31 30 7d 0a 6d 61 70 20 7b 30 2e 35 |{12,10}.map {0.5| 00000730 2c 31 7d 0a 6d 61 70 20 7b 30 2e 35 2c 30 7d 20 |,1}.map {0.5,0} | 00000740 0a 7d 0a 0a 7d 0a 0a 63 75 62 65 20 7b 20 2d 33 |.}..}..cube { -3| 00000750 2c 31 2c 30 2e 32 35 20 20 20 20 20 20 20 20 72 |,1,0.25 r| 00000760 65 64 20 20 20 20 20 72 6f 74 61 74 65 20 7b 30 |ed rotate {0| 00000770 2c 36 30 2c 30 7d 20 7d 0a 63 75 62 65 20 7b 20 |,60,0} }.cube { | 00000780 20 2d 31 2c 30 2e 32 35 2c 2d 32 20 20 20 20 20 | -1,0.25,-2 | 00000790 20 67 72 65 65 6e 20 20 20 73 63 61 6c 65 20 7b | green scale {| 000007a0 31 2c 30 2e 32 35 2c 30 2e 32 35 7d 20 72 6f 74 |1,0.25,0.25} rot| 000007b0 61 74 65 20 7b 30 2c 32 30 2c 30 7d 20 7d 0a 73 |ate {0,20,0} }.s| 000007c0 70 68 65 72 65 20 7b 20 20 31 2e 35 2c 30 2e 36 |phere { 1.5,0.6| 000007d0 2c 2d 31 20 20 20 20 67 6f 6c 64 20 20 20 20 73 |,-1 gold s| 000007e0 63 61 6c 65 20 7b 30 2e 36 2c 30 2e 36 2c 30 2e |cale {0.6,0.6,0.| 000007f0 36 7d 20 7d 0a 73 70 68 65 72 65 20 7b 20 2d 31 |6} }.sphere { -1| 00000800 2e 35 2c 30 2e 35 2c 2d 30 2e 38 20 20 70 6c 61 |.5,0.5,-0.8 pla| 00000810 73 74 69 63 20 73 63 61 6c 65 20 7b 30 2e 35 2c |stic scale {0.5,| 00000820 30 2e 35 2c 30 2e 35 7d 20 7d 0a 0a 64 69 73 70 |0.5,0.5} }..disp| 00000830 6c 61 79 20 7b 62 6c 6f 63 6b 73 20 31 30 32 34 |lay {blocks 1024| 00000840 2c 31 30 32 34 20 6d 65 64 69 75 6d 20 31 32 38 |,1024 medium 128| 00000850 30 2c 31 30 32 34 7d 0a 0a 76 69 65 77 20 7b 33 |0,1024}..view {3| 00000860 2c 33 2c 2d 34 20 20 32 35 2c 2d 34 35 2c 30 7d |,3,-4 25,-45,0}| 00000870 0a 0a 6c 69 67 68 74 20 7b 31 36 30 2c 34 30 20 |..light {160,40 | 00000880 20 32 31 30 2c 2d 32 30 20 20 31 34 30 2c 36 30 | 210,-20 140,60| 00000890 20 39 30 2c 32 30 7d 0a 0a 61 6d 62 69 65 6e 74 | 90,20}..ambient| 000008a0 20 7b 30 2e 30 35 2c 30 2e 30 35 2c 30 2e 30 35 | {0.05,0.05,0.05| 000008b0 7d 0a |}.| 000008b2