Home » Personal collection » Acorn ADFS disks » Electron » MTF_finished_programs.ADF » TAPE3/B/FRACTALS
TAPE3/B/FRACTALS
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » Personal collection » Acorn ADFS disks » Electron » MTF_finished_programs.ADF |
Filename: | TAPE3/B/FRACTALS |
Read OK: | ✔ |
File size: | 03C7 bytes |
Load address: | FFFF0E00 |
Exec address: | FFFF8023 |
Duplicates
There are 3 duplicate copies of this file in the archive:
- Personal collection » Acorn ADFS disks » Electron » MTF_finished_programs.ADF » TAPE3/B/FRACTALS
- Personal collection » Acorn ADFS disks » Electron » Finished_programs.ADF » TAPE3/B/FRACTALS
- Personal collection » Acorn hard disk » zipped_disks » elk03 » finished/TAPE3/B/FRACTALS
- Personal collection » Acorn tapes » Own_Work » box02_tape03b_c15_acorn_thunt.wav » FRACTALS
File contents
10 REM Fern 20 DATA 4,120,520,0,0,0,0,.16,0,0,.85,.04,-.04,.85,0,1.6,.2,-.26,.23,.22,0,1.6,-.15,.28,.26,.24,0,.44 30 REM Tree 40 DATA 4,2000,600,0,0,0,0,.5,0,0,.42,-.42,.42,.42,0,.2,.42,.42,-.42,.42,0,.2,.1,0,0,.1,0,.2 50 REM Sierpinski triangle 60 DATA 3,10,0,0,.5,0,0,.5,1,1,.5,0,0,.5,1,50,.5,0,0,.5,50,50 70 REM Figure 80 DATA 4,1024,0,0,0,-.5,.5,0,.5,0,.5,0,0,.5,0,.5,0,.5,-.5,0,.5,1,.333,0,0,.333,.333,.333 90 MODE 6 100 PRINT 110 PRINT"Which fractal?":PRINT"1. Fern":PRINT"2. Tree":PRINT"3. Sierpinski triangle":PRINT"4. Figure" 120 K$=GET$ 130 RESTORE 20 140 IF K$="2" THEN RESTORE 40 150 IF K$="3" THEN RESTORE 60 160 IF K$="4" THEN RESTORE 80 170 MODE 4 180 VDU 23,1,0;0;0;0; 190 VDU 19,0,7;0;19,1,0;0;:CLS 200 PROCINIT 210 PROCREC(9,0,0) 220 END 230 DEFPROCREC(L,X,Y) 240 IF L=1 PLOT 69,SC*X+XS,SC*Y+YS:ENDPROC 250 LOCAL Q% 260 FOR Q%=0 TO N% 270 PROCREC(L-1,X*A(Q%)+Y*B(Q%)+E(Q%),X*C(Q%)+Y*D(Q%)+F(Q%)) 280 NEXT 290 ENDPROC 300 DEFPROCINIT 310 READ N%,SC,XS,YS:N%=N%-1 320 DIM A(N%),B(N%),C(N%),D(N%),E(N%),F(N%) 330 FOR Q%=0 TO N% 340 READ A(Q%),B(Q%),C(Q%),D(Q%),E(Q%),F(Q%) 350 NEXT 360 ENDPROC
� Fern d � 4,120,520,0,0,0,0,.16,0,0,.85,.04,-.04,.85,0,1.6,.2,-.26,.23,.22,0,1.6,-.15,.28,.26,.24,0,.44 � Tree ([ � 4,2000,600,0,0,0,0,.5,0,0,.42,-.42,.42,.42,0,.2,.42,.42,-.42,.42,0,.2,.1,0,0,.1,0,.2 2 � Sierpinski triangle << � 3,10,0,0,.5,0,0,.5,1,1,.5,0,0,.5,1,50,.5,0,0,.5,50,50 F � Figure PX � 4,1024,0,0,0,-.5,.5,0,.5,0,.5,0,0,.5,0,.5,0,.5,-.5,0,.5,1,.333,0,0,.333,.333,.333 Z � 6 d � nS �"Which fractal?":�"1. Fern":�"2. Tree":�"3. Sierpinski triangle":�"4. Figure" x K$=� � � �TT@ � � K$="2" � � �Th@ � � K$="3" � � �T|@ � � K$="4" � � �DP@ � � 4 � � 23,1,0;0;0;0; � � 19,0,7;0;19,1,0;0;:� � �INIT � �REC(9,0,0) � � � ��REC(L,X,Y) �! � L=1 � 69,SC*X+XS,SC*Y+YS:� � � Q% � Q%=0 � N% : �REC(L-1,X*A(Q%)+Y*B(Q%)+E(Q%),X*C(Q%)+Y*D(Q%)+F(Q%)) � " � , ��INIT 6 � N%,SC,XS,YS:N%=N%-1 @* � A(N%),B(N%),C(N%),D(N%),E(N%),F(N%) J � Q%=0 � N% T* � A(Q%),B(Q%),C(Q%),D(Q%),E(Q%),F(Q%) ^ � h � �
00000000 0d 00 0a 0b 20 f4 20 46 65 72 6e 0d 00 14 64 20 |.... . Fern...d | 00000010 dc 20 34 2c 31 32 30 2c 35 32 30 2c 30 2c 30 2c |. 4,120,520,0,0,| 00000020 30 2c 30 2c 2e 31 36 2c 30 2c 30 2c 2e 38 35 2c |0,0,.16,0,0,.85,| 00000030 2e 30 34 2c 2d 2e 30 34 2c 2e 38 35 2c 30 2c 31 |.04,-.04,.85,0,1| 00000040 2e 36 2c 2e 32 2c 2d 2e 32 36 2c 2e 32 33 2c 2e |.6,.2,-.26,.23,.| 00000050 32 32 2c 30 2c 31 2e 36 2c 2d 2e 31 35 2c 2e 32 |22,0,1.6,-.15,.2| 00000060 38 2c 2e 32 36 2c 2e 32 34 2c 30 2c 2e 34 34 0d |8,.26,.24,0,.44.| 00000070 00 1e 0b 20 f4 20 54 72 65 65 0d 00 28 5b 20 dc |... . Tree..([ .| 00000080 20 34 2c 32 30 30 30 2c 36 30 30 2c 30 2c 30 2c | 4,2000,600,0,0,| 00000090 30 2c 30 2c 2e 35 2c 30 2c 30 2c 2e 34 32 2c 2d |0,0,.5,0,0,.42,-| 000000a0 2e 34 32 2c 2e 34 32 2c 2e 34 32 2c 30 2c 2e 32 |.42,.42,.42,0,.2| 000000b0 2c 2e 34 32 2c 2e 34 32 2c 2d 2e 34 32 2c 2e 34 |,.42,.42,-.42,.4| 000000c0 32 2c 30 2c 2e 32 2c 2e 31 2c 30 2c 30 2c 2e 31 |2,0,.2,.1,0,0,.1| 000000d0 2c 30 2c 2e 32 0d 00 32 1a 20 f4 20 53 69 65 72 |,0,.2..2. . Sier| 000000e0 70 69 6e 73 6b 69 20 74 72 69 61 6e 67 6c 65 0d |pinski triangle.| 000000f0 00 3c 3c 20 dc 20 33 2c 31 30 2c 30 2c 30 2c 2e |.<< . 3,10,0,0,.| 00000100 35 2c 30 2c 30 2c 2e 35 2c 31 2c 31 2c 2e 35 2c |5,0,0,.5,1,1,.5,| 00000110 30 2c 30 2c 2e 35 2c 31 2c 35 30 2c 2e 35 2c 30 |0,0,.5,1,50,.5,0| 00000120 2c 30 2c 2e 35 2c 35 30 2c 35 30 0d 00 46 0d 20 |,0,.5,50,50..F. | 00000130 f4 20 46 69 67 75 72 65 0d 00 50 58 20 dc 20 34 |. Figure..PX . 4| 00000140 2c 31 30 32 34 2c 30 2c 30 2c 30 2c 2d 2e 35 2c |,1024,0,0,0,-.5,| 00000150 2e 35 2c 30 2c 2e 35 2c 30 2c 2e 35 2c 30 2c 30 |.5,0,.5,0,.5,0,0| 00000160 2c 2e 35 2c 30 2c 2e 35 2c 30 2c 2e 35 2c 2d 2e |,.5,0,.5,0,.5,-.| 00000170 35 2c 30 2c 2e 35 2c 31 2c 2e 33 33 33 2c 30 2c |5,0,.5,1,.333,0,| 00000180 30 2c 2e 33 33 33 2c 2e 33 33 33 2c 2e 33 33 33 |0,.333,.333,.333| 00000190 0d 00 5a 08 20 eb 20 36 0d 00 64 06 20 f1 0d 00 |..Z. . 6..d. ...| 000001a0 6e 53 20 f1 22 57 68 69 63 68 20 66 72 61 63 74 |nS ."Which fract| 000001b0 61 6c 3f 22 3a f1 22 31 2e 20 46 65 72 6e 22 3a |al?":."1. Fern":| 000001c0 f1 22 32 2e 20 54 72 65 65 22 3a f1 22 33 2e 20 |."2. Tree":."3. | 000001d0 53 69 65 72 70 69 6e 73 6b 69 20 74 72 69 61 6e |Sierpinski trian| 000001e0 67 6c 65 22 3a f1 22 34 2e 20 46 69 67 75 72 65 |gle":."4. Figure| 000001f0 22 0d 00 78 09 20 4b 24 3d be 0d 00 82 0b 20 f7 |"..x. K$=..... .| 00000200 20 8d 54 54 40 0d 00 8c 16 20 e7 20 4b 24 3d 22 | .TT@.... . K$="| 00000210 32 22 20 8c 20 f7 20 8d 54 68 40 0d 00 96 17 20 |2" . . .Th@.... | 00000220 e7 20 4b 24 3d 22 33 22 20 8c 20 f7 20 8d 54 7c |. K$="3" . . .T|| 00000230 40 20 0d 00 a0 16 20 e7 20 4b 24 3d 22 34 22 20 |@ .... . K$="4" | 00000240 8c 20 f7 20 8d 44 50 40 0d 00 aa 08 20 eb 20 34 |. . .DP@.... . 4| 00000250 0d 00 b4 14 20 ef 20 32 33 2c 31 2c 30 3b 30 3b |.... . 23,1,0;0;| 00000260 30 3b 30 3b 0d 00 be 1b 20 ef 20 31 39 2c 30 2c |0;0;.... . 19,0,| 00000270 37 3b 30 3b 31 39 2c 31 2c 30 3b 30 3b 3a db 0d |7;0;19,1,0;0;:..| 00000280 00 c8 0a 20 f2 49 4e 49 54 0d 00 d2 10 20 f2 52 |... .INIT.... .R| 00000290 45 43 28 39 2c 30 2c 30 29 0d 00 dc 06 20 e0 0d |EC(9,0,0).... ..| 000002a0 00 e6 11 20 dd f2 52 45 43 28 4c 2c 58 2c 59 29 |... ..REC(L,X,Y)| 000002b0 0d 00 f0 21 20 e7 20 4c 3d 31 20 f0 20 36 39 2c |...! . L=1 . 69,| 000002c0 53 43 2a 58 2b 58 53 2c 53 43 2a 59 2b 59 53 3a |SC*X+XS,SC*Y+YS:| 000002d0 e1 0d 00 fa 09 20 ea 20 51 25 0d 01 04 10 20 e3 |..... . Q%.... .| 000002e0 20 51 25 3d 30 20 b8 20 4e 25 0d 01 0e 3a 20 f2 | Q%=0 . N%...: .| 000002f0 52 45 43 28 4c 2d 31 2c 58 2a 41 28 51 25 29 2b |REC(L-1,X*A(Q%)+| 00000300 59 2a 42 28 51 25 29 2b 45 28 51 25 29 2c 58 2a |Y*B(Q%)+E(Q%),X*| 00000310 43 28 51 25 29 2b 59 2a 44 28 51 25 29 2b 46 28 |C(Q%)+Y*D(Q%)+F(| 00000320 51 25 29 29 0d 01 18 06 20 ed 0d 01 22 06 20 e1 |Q%)).... ...". .| 00000330 0d 01 2c 0b 20 dd f2 49 4e 49 54 0d 01 36 1a 20 |..,. ..INIT..6. | 00000340 f3 20 4e 25 2c 53 43 2c 58 53 2c 59 53 3a 4e 25 |. N%,SC,XS,YS:N%| 00000350 3d 4e 25 2d 31 0d 01 40 2a 20 de 20 41 28 4e 25 |=N%-1..@* . A(N%| 00000360 29 2c 42 28 4e 25 29 2c 43 28 4e 25 29 2c 44 28 |),B(N%),C(N%),D(| 00000370 4e 25 29 2c 45 28 4e 25 29 2c 46 28 4e 25 29 0d |N%),E(N%),F(N%).| 00000380 01 4a 10 20 e3 20 51 25 3d 30 20 b8 20 4e 25 0d |.J. . Q%=0 . N%.| 00000390 01 54 2a 20 f3 20 41 28 51 25 29 2c 42 28 51 25 |.T* . A(Q%),B(Q%| 000003a0 29 2c 43 28 51 25 29 2c 44 28 51 25 29 2c 45 28 |),C(Q%),D(Q%),E(| 000003b0 51 25 29 2c 46 28 51 25 29 0d 01 5e 06 20 ed 0d |Q%),F(Q%)..^. ..| 000003c0 01 68 06 20 e1 0d ff |.h. ...| 000003c7