Home » Archimedes archive » Archimedes World » AW-1996-09.adf » !AcornAns_AcornAns » Gaussian
Gaussian
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » Archimedes archive » Archimedes World » AW-1996-09.adf » !AcornAns_AcornAns |
Filename: | Gaussian |
Read OK: | ✔ |
File size: | 0B60 bytes |
Load address: | 0000 |
Exec address: | 0000 |
File contents
10REM Demo of pseudo random number generation for a random variable 20REM with gaussian distribution. 30: 40PROCreadmonitortype 50MODE mo% 60PROCass 70: 80!seed%=-TIME 90A%=640 100DIM sum%(A%-1) 110scale=2 120REPEAT 130 r% = USR rnd_gauss% 140 x% = (r%+321060)/1003 150 IF x%>=0 AND x%<=639 THEN 160 sum%(x%) += 1 170 y%=sum%(x%)*scale 180 IF y%<1024 THEN 190 PLOT 69, x%*2, y% 200 ELSE 210 scale=scale/2 220 CLS 230 FOR i%=0 TO A%-1 240 IF sum%(i%) LINE i%*2, 0, i%*2, sum%(i%)*scale 250 NEXT 260 ENDIF 270 ENDIF 280UNTIL FALSE 290: 300END 310: 320: 330DEF PROCass 340DIM code% 1024 350FOR pass%=0 TO 2 STEP 2 360P%=code% 370[OPT pass% 380: 390.seed% 400DCD -1 ;bits b0-b31 of seed 410DCD -1 ;bit b32 of seed (in lsb of word) 420: 430.rnd_gauss% ;Returns 65536 * ( pseudo randon variable with 440: ; approx distribution N(0,1) ) 450: 460: ;NB The approx gaussian distn is achieved via 470: ; the sum of n pseudo U[0,65535] random 480: ; variables & application of the central 490: ; limit theorem. 500: ; Here we use n=8, giving an actual range of 510: ; -(sqrt24)*65536 to +(sqrt24)*65536. 520: ; For general n, recall we need to return 530: ; (sum n U[0,65535] random variables) * 540: ; 2sqrt(3n)*65536/(65535n) - 550: ; sqrt(3n)*65536 560: 570ADR 0, seed% 580LDMIA 0, {1, 2} 590: 600MOVS 2, 2, LSR #1 610MOVS 3, 1, RRX 620ADC 2, 2, 2 630EOR 3, 3, 1, LSL #12 640EOR 1, 3, 3, LSR #20 650MOV 4, 1, LSR #16 660MOV 3, 1, LSL #16 670ADD 4, 4, 3, LSR #16 680: 690MOVS 2, 2, LSR #1 700MOVS 3, 1, RRX 710ADC 2, 2, 2 720EOR 3, 3, 1, LSL #12 730EOR 1, 3, 3, LSR #20 740ADD 4, 4, 1, LSR #16 750MOV 3, 1, LSL #16 760ADD 4, 4, 3, LSR #16 770: 780MOVS 2, 2, LSR #1 790MOVS 3, 1, RRX 800ADC 2, 2, 2 810EOR 3, 3, 1, LSL #12 820EOR 1, 3, 3, LSR #20 830ADD 4, 4, 1, LSR #16 840MOV 3, 1, LSL #16 850ADD 4, 4, 3, LSR #16 860: 870MOVS 2, 2, LSR #1 880MOVS 3, 1, RRX 890ADC 2, 2, 2 900EOR 3, 3, 1, LSL #12 910EOR 1, 3, 3, LSR #20 920ADD 4, 4, 1, LSR #16 930MOV 3, 1, LSL #16 940ADD 4, 4, 3, LSR #16 ;sum now in 4 950: 960STMIA 0, {1, 2} 970: 980RSB 0, 4, 4, ASL #3 990RSB 1, 4, 4, ASL #2 1000ADD 0, 1, 0, ASL #4 1010ADD 0, 0, 4, ASL #9 1020ADD 1, 4, 4, ASL #4 1030ADD 1, 1, 4, ASL #6 1040ADD 0, 0, 1, LSR #10 1050MOV 0, 0, LSR #9 1060SUB 0, 0, #&4E000 1070SUB 0, 0, #&00620 1080SUB 0, 0, #&00004 1090: 1100MOVS PC, 14 1110: 1120] 1130NEXT 1140ENDPROC 1150: 1160DEF PROCreadmonitortype 1170SYS "OS_Byte",161,133 TO ,,type% 1180type%=(type% AND 12) DIV 4 1190IF type%=1 mo%=18 ELSE mo%=0 1200ENDPROC
C� Demo of pseudo random number generation for a random variable !� with gaussian distribution. : (�readmonitortype 2 � mo% <�ass F: P !seed%=-� Z A%=640 d� sum%(A%-1) nscale=2 x� � r% = � rnd_gauss% � x% = (r%+321060)/1003 � � x%>=0 � x%<=639 � � sum%(x%) += 1 � y%=sum%(x%)*scale � � y%<1024 � � � 69, x%*2, y% � � � scale=scale/2 � � � � i%=0 � A%-1 �2 � sum%(i%) � i%*2, 0, i%*2, sum%(i%)*scale � � � � � � ": ,� 6: @: J � �ass T� code% 1024 ^� pass%=0 � 2 � 2 hP%=code% r[OPT pass% |: � .seed% �,DCD -1 ;bits b0-b31 of seed �:DCD -1 ;bit b32 of seed (in lsb of word) �: �F.rnd_gauss% ;Returns 65536 * ( pseudo randon variable with �F: ; approx distribution N(0,1) ) �: �E: ;NB The approx gaussian distn is achieved via �A: ; the sum of n pseudo U[0,65535] random �B: ; variables & application of the central �*: ; limit theorem. �F: ; Here we use n=8, giving an actual range of �?: ; -(sqrt24)*65536 to +(sqrt24)*65536. C: ; For general n, recall we need to return B: ; (sum n U[0,65535] random variables) * B: ; 2sqrt(3n)*65536/(65535n) - &,: ; sqrt(3n)*65536 0: :ADR 0, seed% DLDMIA 0, {1, 2} N: XMOVS 2, 2, LSR #1 bMOVS 3, 1, RRX lADC 2, 2, 2 v� 3, 3, 1, LSL #12 �� 1, 3, 3, LSR #20 �MOV 4, 1, LSR #16 �MOV 3, 1, LSL #16 �ADD 4, 4, 3, LSR #16 �: �MOVS 2, 2, LSR #1 �MOVS 3, 1, RRX �ADC 2, 2, 2 �� 3, 3, 1, LSL #12 �� 1, 3, 3, LSR #20 �ADD 4, 4, 1, LSR #16 �MOV 3, 1, LSL #16 �ADD 4, 4, 3, LSR #16 : MOVS 2, 2, LSR #1 MOVS 3, 1, RRX ADC 2, 2, 2 *� 3, 3, 1, LSL #12 4� 1, 3, 3, LSR #20 >ADD 4, 4, 1, LSR #16 HMOV 3, 1, LSL #16 RADD 4, 4, 3, LSR #16 \: fMOVS 2, 2, LSR #1 pMOVS 3, 1, RRX zADC 2, 2, 2 �� 3, 3, 1, LSL #12 �� 1, 3, 3, LSR #20 �ADD 4, 4, 1, LSR #16 �MOV 3, 1, LSL #16 �/ADD 4, 4, 3, LSR #16 ;sum now in 4 �: �STMIA 0, {1, 2} �: �RSB 0, 4, 4, ASL #3 �RSB 1, 4, 4, ASL #2 �ADD 0, 1, 0, ASL #4 �ADD 0, 0, 4, ASL #9 �ADD 1, 4, 4, ASL #4 ADD 1, 1, 4, ASL #6 ADD 0, 0, 1, LSR #10 MOV 0, 0, LSR #9 $SUB 0, 0, #&4E000 .SUB 0, 0, #&00620 8SUB 0, 0, #&00004 B: LMOVS PC, 14 V: `] j� t� ~: �� �readmonitortype �"ș "OS_Byte",161,133 � ,,type% �type%=(type% � 12) � 4 �� type%=1 mo%=18 � mo%=0 �� �
00000000 0d 00 0a 43 f4 20 44 65 6d 6f 20 6f 66 20 70 73 |...C. Demo of ps| 00000010 65 75 64 6f 20 72 61 6e 64 6f 6d 20 6e 75 6d 62 |eudo random numb| 00000020 65 72 20 67 65 6e 65 72 61 74 69 6f 6e 20 66 6f |er generation fo| 00000030 72 20 61 20 72 61 6e 64 6f 6d 20 76 61 72 69 61 |r a random varia| 00000040 62 6c 65 0d 00 14 21 f4 20 77 69 74 68 20 67 61 |ble...!. with ga| 00000050 75 73 73 69 61 6e 20 64 69 73 74 72 69 62 75 74 |ussian distribut| 00000060 69 6f 6e 2e 0d 00 1e 05 3a 0d 00 28 14 f2 72 65 |ion.....:..(..re| 00000070 61 64 6d 6f 6e 69 74 6f 72 74 79 70 65 0d 00 32 |admonitortype..2| 00000080 09 eb 20 6d 6f 25 0d 00 3c 08 f2 61 73 73 0d 00 |.. mo%..<..ass..| 00000090 46 05 3a 0d 00 50 0d 21 73 65 65 64 25 3d 2d 91 |F.:..P.!seed%=-.| 000000a0 0d 00 5a 0a 41 25 3d 36 34 30 0d 00 64 10 de 20 |..Z.A%=640..d.. | 000000b0 73 75 6d 25 28 41 25 2d 31 29 0d 00 6e 0b 73 63 |sum%(A%-1)..n.sc| 000000c0 61 6c 65 3d 32 0d 00 78 05 f5 0d 00 82 16 20 72 |ale=2..x...... r| 000000d0 25 20 3d 20 ba 20 72 6e 64 5f 67 61 75 73 73 25 |% = . rnd_gauss%| 000000e0 0d 00 8c 1a 20 78 25 20 3d 20 28 72 25 2b 33 32 |.... x% = (r%+32| 000000f0 31 30 36 30 29 2f 31 30 30 33 0d 00 96 18 20 e7 |1060)/1003.... .| 00000100 20 78 25 3e 3d 30 20 80 20 78 25 3c 3d 36 33 39 | x%>=0 . x%<=639| 00000110 20 8c 0d 00 a0 13 20 20 73 75 6d 25 28 78 25 29 | ..... sum%(x%)| 00000120 20 2b 3d 20 31 0d 00 aa 17 20 20 79 25 3d 73 75 | += 1.... y%=su| 00000130 6d 25 28 78 25 29 2a 73 63 61 6c 65 0d 00 b4 11 |m%(x%)*scale....| 00000140 20 20 e7 20 79 25 3c 31 30 32 34 20 8c 0d 00 be | . y%<1024 ....| 00000150 15 20 20 20 f0 20 36 39 2c 20 78 25 2a 32 2c 20 |. . 69, x%*2, | 00000160 79 25 0d 00 c8 07 20 20 cc 0d 00 d2 14 20 20 20 |y%.... ..... | 00000170 73 63 61 6c 65 3d 73 63 61 6c 65 2f 32 0d 00 dc |scale=scale/2...| 00000180 08 20 20 20 db 0d 00 e6 14 20 20 20 e3 20 69 25 |. ..... . i%| 00000190 3d 30 20 b8 20 41 25 2d 31 0d 00 f0 32 20 20 20 |=0 . A%-1...2 | 000001a0 20 e7 20 73 75 6d 25 28 69 25 29 20 86 20 69 25 | . sum%(i%) . i%| 000001b0 2a 32 2c 20 30 2c 20 69 25 2a 32 2c 20 73 75 6d |*2, 0, i%*2, sum| 000001c0 25 28 69 25 29 2a 73 63 61 6c 65 0d 00 fa 08 20 |%(i%)*scale.... | 000001d0 20 20 ed 0d 01 04 07 20 20 cd 0d 01 0e 06 20 cd | ..... ..... .| 000001e0 0d 01 18 07 fd 20 a3 0d 01 22 05 3a 0d 01 2c 05 |..... ...".:..,.| 000001f0 e0 0d 01 36 05 3a 0d 01 40 05 3a 0d 01 4a 0a dd |...6.:..@.:..J..| 00000200 20 f2 61 73 73 0d 01 54 10 de 20 63 6f 64 65 25 | .ass..T.. code%| 00000210 20 31 30 32 34 0d 01 5e 15 e3 20 70 61 73 73 25 | 1024..^.. pass%| 00000220 3d 30 20 b8 20 32 20 88 20 32 0d 01 68 0c 50 25 |=0 . 2 . 2..h.P%| 00000230 3d 63 6f 64 65 25 0d 01 72 0e 5b 4f 50 54 20 70 |=code%..r.[OPT p| 00000240 61 73 73 25 0d 01 7c 05 3a 0d 01 86 0a 2e 73 65 |ass%..|.:.....se| 00000250 65 64 25 0d 01 90 2c 44 43 44 20 20 20 20 20 20 |ed%...,DCD | 00000260 20 2d 31 20 20 20 20 20 20 20 20 3b 62 69 74 73 | -1 ;bits| 00000270 20 62 30 2d 62 33 31 20 6f 66 20 73 65 65 64 0d | b0-b31 of seed.| 00000280 01 9a 3a 44 43 44 20 20 20 20 20 20 20 2d 31 20 |..:DCD -1 | 00000290 20 20 20 20 20 20 20 3b 62 69 74 20 20 62 33 32 | ;bit b32| 000002a0 20 6f 66 20 73 65 65 64 20 28 69 6e 20 6c 73 62 | of seed (in lsb| 000002b0 20 6f 66 20 77 6f 72 64 29 0d 01 a4 05 3a 0d 01 | of word)....:..| 000002c0 ae 46 2e 72 6e 64 5f 67 61 75 73 73 25 20 20 20 |.F.rnd_gauss% | 000002d0 20 20 20 20 20 20 3b 52 65 74 75 72 6e 73 20 36 | ;Returns 6| 000002e0 35 35 33 36 20 2a 20 28 20 70 73 65 75 64 6f 20 |5536 * ( pseudo | 000002f0 72 61 6e 64 6f 6e 20 76 61 72 69 61 62 6c 65 20 |randon variable | 00000300 77 69 74 68 0d 01 b8 46 3a 20 20 20 20 20 20 20 |with...F: | 00000310 20 20 20 20 20 20 20 20 20 20 20 20 3b 20 20 20 | ; | 00000320 20 20 20 20 20 20 20 20 20 20 20 20 20 20 61 70 | ap| 00000330 70 72 6f 78 20 64 69 73 74 72 69 62 75 74 69 6f |prox distributio| 00000340 6e 20 4e 28 30 2c 31 29 20 29 0d 01 c2 05 3a 0d |n N(0,1) )....:.| 00000350 01 cc 45 3a 20 20 20 20 20 20 20 20 20 20 20 20 |..E: | 00000360 20 20 20 20 20 20 20 3b 4e 42 20 54 68 65 20 61 | ;NB The a| 00000370 70 70 72 6f 78 20 67 61 75 73 73 69 61 6e 20 64 |pprox gaussian d| 00000380 69 73 74 6e 20 69 73 20 61 63 68 69 65 76 65 64 |istn is achieved| 00000390 20 76 69 61 0d 01 d6 41 3a 20 20 20 20 20 20 20 | via...A: | 000003a0 20 20 20 20 20 20 20 20 20 20 20 20 3b 20 20 20 | ; | 000003b0 74 68 65 20 73 75 6d 20 6f 66 20 6e 20 70 73 65 |the sum of n pse| 000003c0 75 64 6f 20 55 5b 30 2c 36 35 35 33 35 5d 20 72 |udo U[0,65535] r| 000003d0 61 6e 64 6f 6d 0d 01 e0 42 3a 20 20 20 20 20 20 |andom...B: | 000003e0 20 20 20 20 20 20 20 20 20 20 20 20 20 3b 20 20 | ; | 000003f0 20 76 61 72 69 61 62 6c 65 73 20 26 20 61 70 70 | variables & app| 00000400 6c 69 63 61 74 69 6f 6e 20 6f 66 20 74 68 65 20 |lication of the | 00000410 63 65 6e 74 72 61 6c 0d 01 ea 2a 3a 20 20 20 20 |central...*: | 00000420 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 3b | ;| 00000430 20 20 20 6c 69 6d 69 74 20 74 68 65 6f 72 65 6d | limit theorem| 00000440 2e 0d 01 f4 46 3a 20 20 20 20 20 20 20 20 20 20 |....F: | 00000450 20 20 20 20 20 20 20 20 20 3b 20 20 20 48 65 72 | ; Her| 00000460 65 20 77 65 20 75 73 65 20 6e 3d 38 2c 20 67 69 |e we use n=8, gi| 00000470 76 69 6e 67 20 61 6e 20 61 63 74 75 61 6c 20 72 |ving an actual r| 00000480 61 6e 67 65 20 6f 66 0d 01 fe 3f 3a 20 20 20 20 |ange of...?: | 00000490 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 3b | ;| 000004a0 20 20 20 2d 28 73 71 72 74 32 34 29 2a 36 35 35 | -(sqrt24)*655| 000004b0 33 36 20 74 6f 20 2b 28 73 71 72 74 32 34 29 2a |36 to +(sqrt24)*| 000004c0 36 35 35 33 36 2e 0d 02 08 43 3a 20 20 20 20 20 |65536....C: | 000004d0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 3b 20 | ; | 000004e0 20 20 46 6f 72 20 67 65 6e 65 72 61 6c 20 6e 2c | For general n,| 000004f0 20 72 65 63 61 6c 6c 20 77 65 20 6e 65 65 64 20 | recall we need | 00000500 74 6f 20 72 65 74 75 72 6e 0d 02 12 42 3a 20 20 |to return...B: | 00000510 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00000520 20 3b 20 20 20 20 28 73 75 6d 20 6e 20 55 5b 30 | ; (sum n U[0| 00000530 2c 36 35 35 33 35 5d 20 72 61 6e 64 6f 6d 20 76 |,65535] random v| 00000540 61 72 69 61 62 6c 65 73 29 20 2a 0d 02 1c 42 3a |ariables) *...B:| 00000550 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00000560 20 20 20 3b 20 20 20 20 20 32 73 71 72 74 28 33 | ; 2sqrt(3| 00000570 6e 29 2a 36 35 35 33 36 2f 28 36 35 35 33 35 6e |n)*65536/(65535n| 00000580 29 20 20 20 20 20 20 20 20 20 20 20 2d 0d 02 26 |) -..&| 00000590 2c 3a 20 20 20 20 20 20 20 20 20 20 20 20 20 20 |,: | 000005a0 20 20 20 20 20 3b 20 20 20 20 20 73 71 72 74 28 | ; sqrt(| 000005b0 33 6e 29 2a 36 35 35 33 36 0d 02 30 05 3a 0d 02 |3n)*65536..0.:..| 000005c0 3a 16 41 44 52 20 20 20 20 20 20 20 30 2c 20 73 |:.ADR 0, s| 000005d0 65 65 64 25 0d 02 44 17 4c 44 4d 49 41 20 20 20 |eed%..D.LDMIA | 000005e0 20 20 30 2c 20 7b 31 2c 20 32 7d 0d 02 4e 05 3a | 0, {1, 2}..N.:| 000005f0 0d 02 58 1a 4d 4f 56 53 20 20 20 20 20 20 32 2c |..X.MOVS 2,| 00000600 20 32 2c 20 4c 53 52 20 23 31 0d 02 62 17 4d 4f | 2, LSR #1..b.MO| 00000610 56 53 20 20 20 20 20 20 33 2c 20 31 2c 20 52 52 |VS 3, 1, RR| 00000620 58 0d 02 6c 15 41 44 43 20 20 20 20 20 20 20 32 |X..l.ADC 2| 00000630 2c 20 32 2c 20 32 0d 02 76 1c 82 20 20 20 20 20 |, 2, 2..v.. | 00000640 20 20 33 2c 20 33 2c 20 31 2c 20 4c 53 4c 20 23 | 3, 3, 1, LSL #| 00000650 31 32 0d 02 80 1c 82 20 20 20 20 20 20 20 31 2c |12..... 1,| 00000660 20 33 2c 20 33 2c 20 4c 53 52 20 23 32 30 0d 02 | 3, 3, LSR #20..| 00000670 8a 1b 4d 4f 56 20 20 20 20 20 20 20 34 2c 20 31 |..MOV 4, 1| 00000680 2c 20 4c 53 52 20 23 31 36 0d 02 94 1b 4d 4f 56 |, LSR #16....MOV| 00000690 20 20 20 20 20 20 20 33 2c 20 31 2c 20 4c 53 4c | 3, 1, LSL| 000006a0 20 23 31 36 0d 02 9e 1e 41 44 44 20 20 20 20 20 | #16....ADD | 000006b0 20 20 34 2c 20 34 2c 20 33 2c 20 4c 53 52 20 23 | 4, 4, 3, LSR #| 000006c0 31 36 0d 02 a8 05 3a 0d 02 b2 1a 4d 4f 56 53 20 |16....:....MOVS | 000006d0 20 20 20 20 20 32 2c 20 32 2c 20 4c 53 52 20 23 | 2, 2, LSR #| 000006e0 31 0d 02 bc 17 4d 4f 56 53 20 20 20 20 20 20 33 |1....MOVS 3| 000006f0 2c 20 31 2c 20 52 52 58 0d 02 c6 15 41 44 43 20 |, 1, RRX....ADC | 00000700 20 20 20 20 20 20 32 2c 20 32 2c 20 32 0d 02 d0 | 2, 2, 2...| 00000710 1c 82 20 20 20 20 20 20 20 33 2c 20 33 2c 20 31 |.. 3, 3, 1| 00000720 2c 20 4c 53 4c 20 23 31 32 0d 02 da 1c 82 20 20 |, LSL #12..... | 00000730 20 20 20 20 20 31 2c 20 33 2c 20 33 2c 20 4c 53 | 1, 3, 3, LS| 00000740 52 20 23 32 30 0d 02 e4 1e 41 44 44 20 20 20 20 |R #20....ADD | 00000750 20 20 20 34 2c 20 34 2c 20 31 2c 20 4c 53 52 20 | 4, 4, 1, LSR | 00000760 23 31 36 0d 02 ee 1b 4d 4f 56 20 20 20 20 20 20 |#16....MOV | 00000770 20 33 2c 20 31 2c 20 4c 53 4c 20 23 31 36 0d 02 | 3, 1, LSL #16..| 00000780 f8 1e 41 44 44 20 20 20 20 20 20 20 34 2c 20 34 |..ADD 4, 4| 00000790 2c 20 33 2c 20 4c 53 52 20 23 31 36 0d 03 02 05 |, 3, LSR #16....| 000007a0 3a 0d 03 0c 1a 4d 4f 56 53 20 20 20 20 20 20 32 |:....MOVS 2| 000007b0 2c 20 32 2c 20 4c 53 52 20 23 31 0d 03 16 17 4d |, 2, LSR #1....M| 000007c0 4f 56 53 20 20 20 20 20 20 33 2c 20 31 2c 20 52 |OVS 3, 1, R| 000007d0 52 58 0d 03 20 15 41 44 43 20 20 20 20 20 20 20 |RX.. .ADC | 000007e0 32 2c 20 32 2c 20 32 0d 03 2a 1c 82 20 20 20 20 |2, 2, 2..*.. | 000007f0 20 20 20 33 2c 20 33 2c 20 31 2c 20 4c 53 4c 20 | 3, 3, 1, LSL | 00000800 23 31 32 0d 03 34 1c 82 20 20 20 20 20 20 20 31 |#12..4.. 1| 00000810 2c 20 33 2c 20 33 2c 20 4c 53 52 20 23 32 30 0d |, 3, 3, LSR #20.| 00000820 03 3e 1e 41 44 44 20 20 20 20 20 20 20 34 2c 20 |.>.ADD 4, | 00000830 34 2c 20 31 2c 20 4c 53 52 20 23 31 36 0d 03 48 |4, 1, LSR #16..H| 00000840 1b 4d 4f 56 20 20 20 20 20 20 20 33 2c 20 31 2c |.MOV 3, 1,| 00000850 20 4c 53 4c 20 23 31 36 0d 03 52 1e 41 44 44 20 | LSL #16..R.ADD | 00000860 20 20 20 20 20 20 34 2c 20 34 2c 20 33 2c 20 4c | 4, 4, 3, L| 00000870 53 52 20 23 31 36 0d 03 5c 05 3a 0d 03 66 1a 4d |SR #16..\.:..f.M| 00000880 4f 56 53 20 20 20 20 20 20 32 2c 20 32 2c 20 4c |OVS 2, 2, L| 00000890 53 52 20 23 31 0d 03 70 17 4d 4f 56 53 20 20 20 |SR #1..p.MOVS | 000008a0 20 20 20 33 2c 20 31 2c 20 52 52 58 0d 03 7a 15 | 3, 1, RRX..z.| 000008b0 41 44 43 20 20 20 20 20 20 20 32 2c 20 32 2c 20 |ADC 2, 2, | 000008c0 32 0d 03 84 1c 82 20 20 20 20 20 20 20 33 2c 20 |2..... 3, | 000008d0 33 2c 20 31 2c 20 4c 53 4c 20 23 31 32 0d 03 8e |3, 1, LSL #12...| 000008e0 1c 82 20 20 20 20 20 20 20 31 2c 20 33 2c 20 33 |.. 1, 3, 3| 000008f0 2c 20 4c 53 52 20 23 32 30 0d 03 98 1e 41 44 44 |, LSR #20....ADD| 00000900 20 20 20 20 20 20 20 34 2c 20 34 2c 20 31 2c 20 | 4, 4, 1, | 00000910 4c 53 52 20 23 31 36 0d 03 a2 1b 4d 4f 56 20 20 |LSR #16....MOV | 00000920 20 20 20 20 20 33 2c 20 31 2c 20 4c 53 4c 20 23 | 3, 1, LSL #| 00000930 31 36 0d 03 ac 2f 41 44 44 20 20 20 20 20 20 20 |16.../ADD | 00000940 34 2c 20 34 2c 20 33 2c 20 4c 53 52 20 23 31 36 |4, 4, 3, LSR #16| 00000950 20 20 20 20 3b 73 75 6d 20 6e 6f 77 20 69 6e 20 | ;sum now in | 00000960 34 0d 03 b6 05 3a 0d 03 c0 17 53 54 4d 49 41 20 |4....:....STMIA | 00000970 20 20 20 20 30 2c 20 7b 31 2c 20 32 7d 0d 03 ca | 0, {1, 2}...| 00000980 05 3a 0d 03 d4 1d 52 53 42 20 20 20 20 20 20 20 |.:....RSB | 00000990 30 2c 20 34 2c 20 34 2c 20 41 53 4c 20 23 33 0d |0, 4, 4, ASL #3.| 000009a0 03 de 1d 52 53 42 20 20 20 20 20 20 20 31 2c 20 |...RSB 1, | 000009b0 34 2c 20 34 2c 20 41 53 4c 20 23 32 0d 03 e8 1d |4, 4, ASL #2....| 000009c0 41 44 44 20 20 20 20 20 20 20 30 2c 20 31 2c 20 |ADD 0, 1, | 000009d0 30 2c 20 41 53 4c 20 23 34 0d 03 f2 1d 41 44 44 |0, ASL #4....ADD| 000009e0 20 20 20 20 20 20 20 30 2c 20 30 2c 20 34 2c 20 | 0, 0, 4, | 000009f0 41 53 4c 20 23 39 0d 03 fc 1d 41 44 44 20 20 20 |ASL #9....ADD | 00000a00 20 20 20 20 31 2c 20 34 2c 20 34 2c 20 41 53 4c | 1, 4, 4, ASL| 00000a10 20 23 34 0d 04 06 1d 41 44 44 20 20 20 20 20 20 | #4....ADD | 00000a20 20 31 2c 20 31 2c 20 34 2c 20 41 53 4c 20 23 36 | 1, 1, 4, ASL #6| 00000a30 0d 04 10 1e 41 44 44 20 20 20 20 20 20 20 30 2c |....ADD 0,| 00000a40 20 30 2c 20 31 2c 20 4c 53 52 20 23 31 30 0d 04 | 0, 1, LSR #10..| 00000a50 1a 1a 4d 4f 56 20 20 20 20 20 20 20 30 2c 20 30 |..MOV 0, 0| 00000a60 2c 20 4c 53 52 20 23 39 0d 04 24 1b 53 55 42 20 |, LSR #9..$.SUB | 00000a70 20 20 20 20 20 20 30 2c 20 30 2c 20 23 26 34 45 | 0, 0, #&4E| 00000a80 30 30 30 0d 04 2e 1b 53 55 42 20 20 20 20 20 20 |000....SUB | 00000a90 20 30 2c 20 30 2c 20 23 26 30 30 36 32 30 0d 04 | 0, 0, #&00620..| 00000aa0 38 1b 53 55 42 20 20 20 20 20 20 20 30 2c 20 30 |8.SUB 0, 0| 00000ab0 2c 20 23 26 30 30 30 30 34 0d 04 42 05 3a 0d 04 |, #&00004..B.:..| 00000ac0 4c 14 4d 4f 56 53 20 20 20 20 20 20 50 43 2c 20 |L.MOVS PC, | 00000ad0 31 34 0d 04 56 05 3a 0d 04 60 05 5d 0d 04 6a 05 |14..V.:..`.]..j.| 00000ae0 ed 0d 04 74 05 e1 0d 04 7e 05 3a 0d 04 88 16 dd |...t....~.:.....| 00000af0 20 f2 72 65 61 64 6d 6f 6e 69 74 6f 72 74 79 70 | .readmonitortyp| 00000b00 65 0d 04 92 22 c8 99 20 22 4f 53 5f 42 79 74 65 |e...".. "OS_Byte| 00000b10 22 2c 31 36 31 2c 31 33 33 20 b8 20 2c 2c 74 79 |",161,133 . ,,ty| 00000b20 70 65 25 0d 04 9c 1a 74 79 70 65 25 3d 28 74 79 |pe%....type%=(ty| 00000b30 70 65 25 20 80 20 31 32 29 20 81 20 34 0d 04 a6 |pe% . 12) . 4...| 00000b40 1c e7 20 74 79 70 65 25 3d 31 20 6d 6f 25 3d 31 |.. type%=1 mo%=1| 00000b50 38 20 8b 20 6d 6f 25 3d 30 0d 04 b0 05 e1 0d ff |8 . mo%=0.......| 00000b60