Home » Archimedes archive » Acorn Computing » 1993 09 Mega Disk.adf » 93_09 » Miscellany/!4dMandia/docums/Teknic

Miscellany/!4dMandia/docums/Teknic

This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.

Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.

Tape/disk: Home » Archimedes archive » Acorn Computing » 1993 09 Mega Disk.adf » 93_09
Filename: Miscellany/!4dMandia/docums/Teknic
Read OK:
File size: 33FA bytes
Load address: 0000
Exec address: 0000
File contents
Technical Stuff .....

I HATE proof reading, so if the following looses sense at any time
I must apologise. I wrote this some time ago and have not checked
it since then...

 This explanation is not really technical, but does require a 
reasonable understanding of *Basic* maths. Nothing else is
assumed, which means what follows is suitable to anyone who is a
beginner in fractals. So if you're just curious or are
interested in how such fractals work ... read on!

 1.What is a fractal?
 Well put simply it is just a mathematical equation into which 
you feed a couple (or more) values, and feed the result back into 
the equation. You run this process a number of times, forever, or 
until a limit is reached. Depending on the final, or each result 
the equation gives, the output picture (or anything else for that 
matter) is obtained. For the Julia Set fractal, this process is 
repeated for every pixel on the screen. Another feature of
fractals is that if you zoom into a fractal image, it never looses
it's  complexity.

 In life there are an amazing number of examples of fractal 
geometry. The best one is a coastline: Look at a map of England 
(or Norway ) and examine the coastline - all  crinkly and bumpy.
Now get a map which covers a smaller area, for  example of
Humberside, and examine the coastline ... it's still  crinkly and
uneven. You can carry on zooming in, even to the side  of a rock
pool and it will still be bumpy. This is the fractal geometry of
nature. (Of course you can not zoom in and look further than
atomic level due to the size and energy of photons!)
 Other places include plants, for instance a fern: on each branch 
is a smaller branch which is a copy of the parent, and on each 
branch on each branch there is a copy of the parent ... this does 
not go on forever, but quite some way.
 My carpet (it's one of those with curly patterns) even looks 
like it was designed using a fractal (julia set) generator. Life 
is even based on a fractal type mechanism. In nature fractals can 
be found every where.
 Have you looked at a butterfly, all similar for each species, 
but slightly different. To me they look like beautiful examples 
of how beautiful fractal type pictures look.
 'Before' the universe scientists believe that there was nothing, 
but chaos..................

 You might say '... but what real use do fractals have?'. The 
correct answer is: Many, such as image enhancing, image 
compressing, simulations of life (eg plants), encoding, and many
more.
 With a scanned sheet of text, the quality is not always perfect
and for correct OCR (Optical Character Recognition) the quality
needs to be improved. This can be done by using a fractal
algorithm to tidy up the image.
 A large picture can take anything up to, and more than, one mega
byte (1048576 bytes) and a floppy can be filled up Very quickly.
Also if you try to zoom in resolution is lost. But if the screen
is turned into a fractal algorithm, only a few bytes will be
taken up to store it, and if you zoom in (up to a point where it
usually becomes inaccurate) resolution will not be lost. 
 Biologists now believe that DNA in out bodies is not just a blue 
print for ourselves, but a fractal algorithm which is run to 
grow us. Some fractals can very well simulate plant growth and 
come up with a very natural looking specimen.

(I presume you know what a pixel is - for those who do not know 
it is just a dot on the screen. This whole display is made up of 
many pixels, usually around 160000.)


2.Your first fractal.

 Bifurcate is the original chaos formula and is made up of a very 
simple formal which was first used to describe animal 
populations:

        New popul = Growth Rate * Old popul * ( 1 - Old popul )

where popul(ation) is a value between 0 and 1. With growth rates 
less than 200%. Over 200% and the equation splits (bifurcates) 
into 2, then 4, then becomes chaotic. This can also be used as a 
pseudo-random number generator, with the best random output growth 
rate of 4 (400%). Some simple 8-bit computers (eg. Spectrum etc.) 
actually use this method for generating random numbers.
 The formula is plotted with time across the bottom axis (X) and 
population on the side axis (Y).
 This is a very simple fractal, but some can be very complex. We 
shall not go into these as this is only an introduction into 
basic fractals.


3.Complex numbers.

 These are not as they sound, but the idea is strange. Complex 
numbers were invented to solve a problem: You can not work out 
the square root of a negative number. As the square root is the 
number multiplied by itself to get the first number, and any
number (even negative) multiplied by itself always gives a 
positive result, then the square root of -1 is impossible 
(imaginary). To over come this difficulty it was decided that
the imaginary number (represented by the letter 'i') squared was 
equal to negative 1. I.E. i*i=-1 and i^2=-1. That is the only difficult 
bit!
 Here are some examples of what complex numbers look like when 
written down: 4+7i (where 4 is real part and 7i the imaginary), 
99-42i, 0+2i, 0+0i, 7-0i, a+bi (where a and b are both real 
integers).
 The other thing to know is that every complex number is made up 
of two other numbers, one the real, one the imaginary. These two 
names have no real meaning, it is just to distinguish between 
them - they could be called any thing e.g. Starsky and Hutch. 
Also a complex number is usually represented by the letter 'Z' 
although it could be any letter. To keep it simple I usually take 
Z to be made out of the two numbers 'a' and 'bi' where the 'i' 
represents an imaginary number.
 Adding and multiplying two complex numbers is easy:
To add, you just add (or multiply) the parts separately, this is
shown here:

 3+4i + 6+2i  = 9+6i
 9-6i + 2+2i  = 11-4i
-2-3i + 4-i   = 2-4i

Multiplying is only slightly more difficult, you must remember 
that i^2=-1. Here is a worked example: 

(3-2i)*(7+4i) = 21+12i-14i-8i^2
= 21-2i-8i^2 and as i^2=-1 then (3-2i)*(7+4i)=21-2i-(8*-1)=  29-2i

If you want to square a complex number, then you just multiply it 
by itself. This is shown here:

 (3+4i)^2 = 9+12i+12i+16i^2 = 9+24i+16i^2 and as i^2=-1 then
 (3+4i)^2 = 9+24i+(16*-1) = -7+24i

A general formula would then be:

 (a+bi)^2 = a^2+abi+abi+(b^2*i^2) as i^2=-1 then =a^2+2abi-b^2

group the real and imaginary terms to form the general terms:

 a(n+1)=a(n)^2-b(n)^2
 b(n+1)=2*a(n)*b(n)i

 One more thing to do with complex numbers and fractals is, size. 
When we talk about size, we mean, on the two planes real and 
imaginary, the distance between the position and 0,0. You could 
look as the real and imaginary parts as sides of a right-angle
triangle where the distance is the hypotenuse. To find the 
hypotenuse you can use Pythagoras' theorem (a^2=b^2+c^2). So to 
find the size of a complex number, you square both the real and 
imaginary parts, add them together, and then square root this.
 A straight forward result in complex-number theory iterations 
guarantees that the iterations will drive Z to infinity, if and 
only at some stage Z reaches a size of 2 or greater. Very many 
points will reach 2 after only a few iterations, the ones that do 
not belong to the Mandlebrot Set.  

 Do not worry if you did not follow all that, it will become 
clear to you in time. Even if you could not possibly understand 
it all you only need to know of the general term for squaring a 
complex number (and the bit about size) for most fractals. Some
fractals such as the cubic Julia Set use cubing complex numbers,
but we will not go into those in great detail. Above only covers 
SOME of the complex-number theory, and if you want to further 
your knowledge then read some old A-level or degree mathematics
books on the subject.

4.The Julia Set

 This is the fractal that I choose because I have seen very few 
COLOUR julia sets, I have only seen ones which use inverse 
iteration methods (I will explain later) which only give 
monochrome images. The other reason is that this one shows how to 
plot a basic fractal using an individual pixel iteration method, 
and the Julia Set is an easy one to understand.
 Basically the Julia Set uses a Z^2+C formula which is iterated 
until a limit is reached, this is done for each pixel. There are 
an infinite number of different sets, each one is defined by the 
complex number 'C'. Both it's real and imaginary parts define the 
shape of the Julia Set and are usually (roughly) between -2 and 
2. There are two types of Julia Set - Wholly Connected and Wholly 
Dis-connected. Wholly Connected is usually with small parts to 
the complex-number 'C'.
 To plot a particular Julia Set you have the screen representing 
the real(X) and imaginary(Y) planes from -2 to 2. Then set a 
complex-number variable 'Z' to the co-ordinates on the screen. 
Set a variable count to zero. Set the complex-number variable 'C' 
to the value you want for the particular set. Now carry out the
following loop:

        .loop   Z=Z^2
                Z=Z+C
                count=count+1
                IF count>256 OR SIZE(Z)>2 GOTO end
                GOTO loop

 Assign the value of count to the colour of the pixel. If the 
size of Z has not risen equal to, or above 2, then the pixel is 
black, and belongs to the actual Julia Set. Do this for every 
pixel and the image will build up.
 An example program written in ARM BBC BASIC V is shown here: 
(example 2)
         1 PROCinit
        10 realMIN=-2
        20 imagMIN=-2
        30 realMAX=2
        40 imagMAX=2
        50 realC=-.75
        60 imagC=0
        70 xySIZE=256
        80 realINC=(realMAX-realMIN)/xySIZE
        90 imagINC=(imagMAX-imagMIN)/xySIZE
       100 imagZ=imagMIN
       110 Y=0
       120 REPEAT
       130 realZ=realMIN
       140 X=0
       150 REPEAT
       160 realZZ=realZ
       170 imagZZ=imagZ
       180 count=0
       190 REPEAT
       200 s=realZZ^2-imagZZ^2
       210 imagZZ=2*realZZ*imagZZ
       220 realZZ=s+realC
       230 imagZZ=imagZZ+imagC
       240 count+=1
       250 UNTIL (realZZ^2+imagZZ^2)>=2 OR count>=256
       260 PROCplot(X,Y,count)
       270 X+=1
       280 realZ+=realINC
       290 UNTIL X>=xySIZE
       300 Y+=1
       310 imagZ+=imagINC
       320 UNTIL Y>=xySIZE
       330 END
       340 :
       350 DEFPROCinit
       360 MODE13
       370 link=14:pc=15
       380 DIM MC &100
       390 FOR pass%=0 TO 2 STEP 2
       400 P%=MC
       410 [OPT pass%
       420 .vdu EQUD 148:EQUD -1
       430 .plot LDR r3,vdu
       440 ADD r3,r3,r1,LSL #8
       450 ADD r3,r3,r1,LSL #6
       460 STRB r2,[r3,r0]
       470 MOV pc,link
       480 ]
       490 NEXT
       500 SYS "OS_ReadVduVariables",vdu,vdu
       510 ENDPROC
       520 :
       530 DEFPROCplot(X,Y,count)
       540 A%=X:B%=Y
       550 C%=count MOD 256
       560 CALLplot
       570 ENDPROC


 You must realise that understanding how to program fractals can 
be slightly more difficult than understanding them, so if you do 
not feel that you are up to doing some more on programs to do 
with fractals
 The method for plotting can be what ever you like, here I choose 
to directly write to screen memory as you do not need to bother
dealing with there not being the same number of pixels as plot 
numbers. (ie a plot command can take roughly 0-1024 as a co-
ordinate, but the screen in mode 13 has only roughly 256 pixels 
across and up).
 In 256 colour screen modes such as MODE 13 it is easy to draw by 
directly writing to the screen as each pixel takes one byte. You 
just select the colour by writing a number between 0 and 256. All 
very simple compared with other number of colours modes. 
Normally it is a bad idea to write directly to hardware without 
going through the operating system, and on an Archimedes the 
screen memory does not stay in the same place as on a BBC, but 
Acorn have provided a nice little operating system call to find 
out exactly where to write to.
 In fact the above listing (example2) is a long version just to 
make how it works more clear. Don't bother trying to understand 
the machine code plotting routine if you have not come across 
this sort of thing before as it will just make it more difficult 
for you to understand. Here are a few example BASIC one liner's, 
the first one is the same as the above Julia Set plotter, but 
changed and compacted onto one line:

One line Julia Set plotter:

For Archi, but will have to type in using BASIC Editor.

10MO.13:C1=-.75:C2=0:S=245:rn=-2:in=-2:rx=2:ix=2:rin=(rx-rn)/S:
iin=(ix-in)/S:iZ=in:Y=0:REP.:rZ=rn:X=0:REP.:A=rZ:B=iZ:c=0:REP.:
s=A^2-B^2+C1:B=2*A*B+C2:A=s:c+=1:UN.(A^2+B^2)>=2ORc>=256:GCOL0,c 
 MOD 64 TINT c DIV4:POINT4*X,4*Y:X+=1:rZ+=rin:UN.X>=S:Y+=1:
iZ+=iin:UN.Y>=S

Less easily changed Archi version, and using only 64 colours.

10MODE13:C1=-.75:C2=0:S=245:inc=4/S:Y=0:iZ=-2:REP.:rZ=-2:X=0:
REP.:A=rZ:B=iZ:c=0:REP.:s=A^2-B^2+C1:B=2*A*B:A=s:c+=1:UNTIL
(A^2+B^2)>=2ORc>=256:GCOL0,c MOD 64:POINT4*X,4*Y:X+=1:rZ+=inc:
UNTILX>=S:Y+=1:iZ+=inc:UNTILY>=S

In both of the above, change S to the size of image required.



That concludes what I am going to say for now, but if anyone 
wants me to continue, send me �5 with S.A.E., or send me a 
letter, and I will put it in the public domain for you.


Bye .... for now ........


00000000  54 65 63 68 6e 69 63 61  6c 20 53 74 75 66 66 20  |Technical Stuff |
00000010  2e 2e 2e 2e 2e 0a 0a 49  20 48 41 54 45 20 70 72  |.......I HATE pr|
00000020  6f 6f 66 20 72 65 61 64  69 6e 67 2c 20 73 6f 20  |oof reading, so |
00000030  69 66 20 74 68 65 20 66  6f 6c 6c 6f 77 69 6e 67  |if the following|
00000040  20 6c 6f 6f 73 65 73 20  73 65 6e 73 65 20 61 74  | looses sense at|
00000050  20 61 6e 79 20 74 69 6d  65 0a 49 20 6d 75 73 74  | any time.I must|
00000060  20 61 70 6f 6c 6f 67 69  73 65 2e 20 49 20 77 72  | apologise. I wr|
00000070  6f 74 65 20 74 68 69 73  20 73 6f 6d 65 20 74 69  |ote this some ti|
00000080  6d 65 20 61 67 6f 20 61  6e 64 20 68 61 76 65 20  |me ago and have |
00000090  6e 6f 74 20 63 68 65 63  6b 65 64 0a 69 74 20 73  |not checked.it s|
000000a0  69 6e 63 65 20 74 68 65  6e 2e 2e 2e 0a 0a 20 54  |ince then..... T|
000000b0  68 69 73 20 65 78 70 6c  61 6e 61 74 69 6f 6e 20  |his explanation |
000000c0  69 73 20 6e 6f 74 20 72  65 61 6c 6c 79 20 74 65  |is not really te|
000000d0  63 68 6e 69 63 61 6c 2c  20 62 75 74 20 64 6f 65  |chnical, but doe|
000000e0  73 20 72 65 71 75 69 72  65 20 61 20 0a 72 65 61  |s require a .rea|
000000f0  73 6f 6e 61 62 6c 65 20  75 6e 64 65 72 73 74 61  |sonable understa|
00000100  6e 64 69 6e 67 20 6f 66  20 2a 42 61 73 69 63 2a  |nding of *Basic*|
00000110  20 6d 61 74 68 73 2e 20  4e 6f 74 68 69 6e 67 20  | maths. Nothing |
00000120  65 6c 73 65 20 69 73 0a  61 73 73 75 6d 65 64 2c  |else is.assumed,|
00000130  20 77 68 69 63 68 20 6d  65 61 6e 73 20 77 68 61  | which means wha|
00000140  74 20 66 6f 6c 6c 6f 77  73 20 69 73 20 73 75 69  |t follows is sui|
00000150  74 61 62 6c 65 20 74 6f  20 61 6e 79 6f 6e 65 20  |table to anyone |
00000160  77 68 6f 20 69 73 20 61  0a 62 65 67 69 6e 6e 65  |who is a.beginne|
00000170  72 20 69 6e 20 66 72 61  63 74 61 6c 73 2e 20 53  |r in fractals. S|
00000180  6f 20 69 66 20 79 6f 75  27 72 65 20 6a 75 73 74  |o if you're just|
00000190  20 63 75 72 69 6f 75 73  20 6f 72 20 61 72 65 0a  | curious or are.|
000001a0  69 6e 74 65 72 65 73 74  65 64 20 69 6e 20 68 6f  |interested in ho|
000001b0  77 20 73 75 63 68 20 66  72 61 63 74 61 6c 73 20  |w such fractals |
000001c0  77 6f 72 6b 20 2e 2e 2e  20 72 65 61 64 20 6f 6e  |work ... read on|
000001d0  21 0a 0a 20 31 2e 57 68  61 74 20 69 73 20 61 20  |!.. 1.What is a |
000001e0  66 72 61 63 74 61 6c 3f  0a 20 57 65 6c 6c 20 70  |fractal?. Well p|
000001f0  75 74 20 73 69 6d 70 6c  79 20 69 74 20 69 73 20  |ut simply it is |
00000200  6a 75 73 74 20 61 20 6d  61 74 68 65 6d 61 74 69  |just a mathemati|
00000210  63 61 6c 20 65 71 75 61  74 69 6f 6e 20 69 6e 74  |cal equation int|
00000220  6f 20 77 68 69 63 68 20  0a 79 6f 75 20 66 65 65  |o which .you fee|
00000230  64 20 61 20 63 6f 75 70  6c 65 20 28 6f 72 20 6d  |d a couple (or m|
00000240  6f 72 65 29 20 76 61 6c  75 65 73 2c 20 61 6e 64  |ore) values, and|
00000250  20 66 65 65 64 20 74 68  65 20 72 65 73 75 6c 74  | feed the result|
00000260  20 62 61 63 6b 20 69 6e  74 6f 20 0a 74 68 65 20  | back into .the |
00000270  65 71 75 61 74 69 6f 6e  2e 20 59 6f 75 20 72 75  |equation. You ru|
00000280  6e 20 74 68 69 73 20 70  72 6f 63 65 73 73 20 61  |n this process a|
00000290  20 6e 75 6d 62 65 72 20  6f 66 20 74 69 6d 65 73  | number of times|
000002a0  2c 20 66 6f 72 65 76 65  72 2c 20 6f 72 20 0a 75  |, forever, or .u|
000002b0  6e 74 69 6c 20 61 20 6c  69 6d 69 74 20 69 73 20  |ntil a limit is |
000002c0  72 65 61 63 68 65 64 2e  20 44 65 70 65 6e 64 69  |reached. Dependi|
000002d0  6e 67 20 6f 6e 20 74 68  65 20 66 69 6e 61 6c 2c  |ng on the final,|
000002e0  20 6f 72 20 65 61 63 68  20 72 65 73 75 6c 74 20  | or each result |
000002f0  0a 74 68 65 20 65 71 75  61 74 69 6f 6e 20 67 69  |.the equation gi|
00000300  76 65 73 2c 20 74 68 65  20 6f 75 74 70 75 74 20  |ves, the output |
00000310  70 69 63 74 75 72 65 20  28 6f 72 20 61 6e 79 74  |picture (or anyt|
00000320  68 69 6e 67 20 65 6c 73  65 20 66 6f 72 20 74 68  |hing else for th|
00000330  61 74 20 0a 6d 61 74 74  65 72 29 20 69 73 20 6f  |at .matter) is o|
00000340  62 74 61 69 6e 65 64 2e  20 46 6f 72 20 74 68 65  |btained. For the|
00000350  20 4a 75 6c 69 61 20 53  65 74 20 66 72 61 63 74  | Julia Set fract|
00000360  61 6c 2c 20 74 68 69 73  20 70 72 6f 63 65 73 73  |al, this process|
00000370  20 69 73 20 0a 72 65 70  65 61 74 65 64 20 66 6f  | is .repeated fo|
00000380  72 20 65 76 65 72 79 20  70 69 78 65 6c 20 6f 6e  |r every pixel on|
00000390  20 74 68 65 20 73 63 72  65 65 6e 2e 20 41 6e 6f  | the screen. Ano|
000003a0  74 68 65 72 20 66 65 61  74 75 72 65 20 6f 66 0a  |ther feature of.|
000003b0  66 72 61 63 74 61 6c 73  20 69 73 20 74 68 61 74  |fractals is that|
000003c0  20 69 66 20 79 6f 75 20  7a 6f 6f 6d 20 69 6e 74  | if you zoom int|
000003d0  6f 20 61 20 66 72 61 63  74 61 6c 20 69 6d 61 67  |o a fractal imag|
000003e0  65 2c 20 69 74 20 6e 65  76 65 72 20 6c 6f 6f 73  |e, it never loos|
000003f0  65 73 0a 69 74 27 73 20  20 63 6f 6d 70 6c 65 78  |es.it's  complex|
00000400  69 74 79 2e 0a 0a 20 49  6e 20 6c 69 66 65 20 74  |ity... In life t|
00000410  68 65 72 65 20 61 72 65  20 61 6e 20 61 6d 61 7a  |here are an amaz|
00000420  69 6e 67 20 6e 75 6d 62  65 72 20 6f 66 20 65 78  |ing number of ex|
00000430  61 6d 70 6c 65 73 20 6f  66 20 66 72 61 63 74 61  |amples of fracta|
00000440  6c 20 0a 67 65 6f 6d 65  74 72 79 2e 20 54 68 65  |l .geometry. The|
00000450  20 62 65 73 74 20 6f 6e  65 20 69 73 20 61 20 63  | best one is a c|
00000460  6f 61 73 74 6c 69 6e 65  3a 20 4c 6f 6f 6b 20 61  |oastline: Look a|
00000470  74 20 61 20 6d 61 70 20  6f 66 20 45 6e 67 6c 61  |t a map of Engla|
00000480  6e 64 20 0a 28 6f 72 20  4e 6f 72 77 61 79 20 29  |nd .(or Norway )|
00000490  20 61 6e 64 20 65 78 61  6d 69 6e 65 20 74 68 65  | and examine the|
000004a0  20 63 6f 61 73 74 6c 69  6e 65 20 2d 20 61 6c 6c  | coastline - all|
000004b0  20 20 63 72 69 6e 6b 6c  79 20 61 6e 64 20 62 75  |  crinkly and bu|
000004c0  6d 70 79 2e 0a 4e 6f 77  20 67 65 74 20 61 20 6d  |mpy..Now get a m|
000004d0  61 70 20 77 68 69 63 68  20 63 6f 76 65 72 73 20  |ap which covers |
000004e0  61 20 73 6d 61 6c 6c 65  72 20 61 72 65 61 2c 20  |a smaller area, |
000004f0  66 6f 72 20 20 65 78 61  6d 70 6c 65 20 6f 66 0a  |for  example of.|
00000500  48 75 6d 62 65 72 73 69  64 65 2c 20 61 6e 64 20  |Humberside, and |
00000510  65 78 61 6d 69 6e 65 20  74 68 65 20 63 6f 61 73  |examine the coas|
00000520  74 6c 69 6e 65 20 2e 2e  2e 20 69 74 27 73 20 73  |tline ... it's s|
00000530  74 69 6c 6c 20 20 63 72  69 6e 6b 6c 79 20 61 6e  |till  crinkly an|
00000540  64 0a 75 6e 65 76 65 6e  2e 20 59 6f 75 20 63 61  |d.uneven. You ca|
00000550  6e 20 63 61 72 72 79 20  6f 6e 20 7a 6f 6f 6d 69  |n carry on zoomi|
00000560  6e 67 20 69 6e 2c 20 65  76 65 6e 20 74 6f 20 74  |ng in, even to t|
00000570  68 65 20 73 69 64 65 20  20 6f 66 20 61 20 72 6f  |he side  of a ro|
00000580  63 6b 0a 70 6f 6f 6c 20  61 6e 64 20 69 74 20 77  |ck.pool and it w|
00000590  69 6c 6c 20 73 74 69 6c  6c 20 62 65 20 62 75 6d  |ill still be bum|
000005a0  70 79 2e 20 54 68 69 73  20 69 73 20 74 68 65 20  |py. This is the |
000005b0  66 72 61 63 74 61 6c 20  67 65 6f 6d 65 74 72 79  |fractal geometry|
000005c0  20 6f 66 0a 6e 61 74 75  72 65 2e 20 28 4f 66 20  | of.nature. (Of |
000005d0  63 6f 75 72 73 65 20 79  6f 75 20 63 61 6e 20 6e  |course you can n|
000005e0  6f 74 20 7a 6f 6f 6d 20  69 6e 20 61 6e 64 20 6c  |ot zoom in and l|
000005f0  6f 6f 6b 20 66 75 72 74  68 65 72 20 74 68 61 6e  |ook further than|
00000600  0a 61 74 6f 6d 69 63 20  6c 65 76 65 6c 20 64 75  |.atomic level du|
00000610  65 20 74 6f 20 74 68 65  20 73 69 7a 65 20 61 6e  |e to the size an|
00000620  64 20 65 6e 65 72 67 79  20 6f 66 20 70 68 6f 74  |d energy of phot|
00000630  6f 6e 73 21 29 0a 20 4f  74 68 65 72 20 70 6c 61  |ons!). Other pla|
00000640  63 65 73 20 69 6e 63 6c  75 64 65 20 70 6c 61 6e  |ces include plan|
00000650  74 73 2c 20 66 6f 72 20  69 6e 73 74 61 6e 63 65  |ts, for instance|
00000660  20 61 20 66 65 72 6e 3a  20 6f 6e 20 65 61 63 68  | a fern: on each|
00000670  20 62 72 61 6e 63 68 20  0a 69 73 20 61 20 73 6d  | branch .is a sm|
00000680  61 6c 6c 65 72 20 62 72  61 6e 63 68 20 77 68 69  |aller branch whi|
00000690  63 68 20 69 73 20 61 20  63 6f 70 79 20 6f 66 20  |ch is a copy of |
000006a0  74 68 65 20 70 61 72 65  6e 74 2c 20 61 6e 64 20  |the parent, and |
000006b0  6f 6e 20 65 61 63 68 20  0a 62 72 61 6e 63 68 20  |on each .branch |
000006c0  6f 6e 20 65 61 63 68 20  62 72 61 6e 63 68 20 74  |on each branch t|
000006d0  68 65 72 65 20 69 73 20  61 20 63 6f 70 79 20 6f  |here is a copy o|
000006e0  66 20 74 68 65 20 70 61  72 65 6e 74 20 2e 2e 2e  |f the parent ...|
000006f0  20 74 68 69 73 20 64 6f  65 73 20 0a 6e 6f 74 20  | this does .not |
00000700  67 6f 20 6f 6e 20 66 6f  72 65 76 65 72 2c 20 62  |go on forever, b|
00000710  75 74 20 71 75 69 74 65  20 73 6f 6d 65 20 77 61  |ut quite some wa|
00000720  79 2e 0a 20 4d 79 20 63  61 72 70 65 74 20 28 69  |y.. My carpet (i|
00000730  74 27 73 20 6f 6e 65 20  6f 66 20 74 68 6f 73 65  |t's one of those|
00000740  20 77 69 74 68 20 63 75  72 6c 79 20 70 61 74 74  | with curly patt|
00000750  65 72 6e 73 29 20 65 76  65 6e 20 6c 6f 6f 6b 73  |erns) even looks|
00000760  20 0a 6c 69 6b 65 20 69  74 20 77 61 73 20 64 65  | .like it was de|
00000770  73 69 67 6e 65 64 20 75  73 69 6e 67 20 61 20 66  |signed using a f|
00000780  72 61 63 74 61 6c 20 28  6a 75 6c 69 61 20 73 65  |ractal (julia se|
00000790  74 29 20 67 65 6e 65 72  61 74 6f 72 2e 20 4c 69  |t) generator. Li|
000007a0  66 65 20 0a 69 73 20 65  76 65 6e 20 62 61 73 65  |fe .is even base|
000007b0  64 20 6f 6e 20 61 20 66  72 61 63 74 61 6c 20 74  |d on a fractal t|
000007c0  79 70 65 20 6d 65 63 68  61 6e 69 73 6d 2e 20 49  |ype mechanism. I|
000007d0  6e 20 6e 61 74 75 72 65  20 66 72 61 63 74 61 6c  |n nature fractal|
000007e0  73 20 63 61 6e 20 0a 62  65 20 66 6f 75 6e 64 20  |s can .be found |
000007f0  65 76 65 72 79 20 77 68  65 72 65 2e 0a 20 48 61  |every where.. Ha|
00000800  76 65 20 79 6f 75 20 6c  6f 6f 6b 65 64 20 61 74  |ve you looked at|
00000810  20 61 20 62 75 74 74 65  72 66 6c 79 2c 20 61 6c  | a butterfly, al|
00000820  6c 20 73 69 6d 69 6c 61  72 20 66 6f 72 20 65 61  |l similar for ea|
00000830  63 68 20 73 70 65 63 69  65 73 2c 20 0a 62 75 74  |ch species, .but|
00000840  20 73 6c 69 67 68 74 6c  79 20 64 69 66 66 65 72  | slightly differ|
00000850  65 6e 74 2e 20 54 6f 20  6d 65 20 74 68 65 79 20  |ent. To me they |
00000860  6c 6f 6f 6b 20 6c 69 6b  65 20 62 65 61 75 74 69  |look like beauti|
00000870  66 75 6c 20 65 78 61 6d  70 6c 65 73 20 0a 6f 66  |ful examples .of|
00000880  20 68 6f 77 20 62 65 61  75 74 69 66 75 6c 20 66  | how beautiful f|
00000890  72 61 63 74 61 6c 20 74  79 70 65 20 70 69 63 74  |ractal type pict|
000008a0  75 72 65 73 20 6c 6f 6f  6b 2e 0a 20 27 42 65 66  |ures look.. 'Bef|
000008b0  6f 72 65 27 20 74 68 65  20 75 6e 69 76 65 72 73  |ore' the univers|
000008c0  65 20 73 63 69 65 6e 74  69 73 74 73 20 62 65 6c  |e scientists bel|
000008d0  69 65 76 65 20 74 68 61  74 20 74 68 65 72 65 20  |ieve that there |
000008e0  77 61 73 20 6e 6f 74 68  69 6e 67 2c 20 0a 62 75  |was nothing, .bu|
000008f0  74 20 63 68 61 6f 73 2e  2e 2e 2e 2e 2e 2e 2e 2e  |t chaos.........|
00000900  2e 2e 2e 2e 2e 2e 2e 2e  2e 0a 0a 20 59 6f 75 20  |........... You |
00000910  6d 69 67 68 74 20 73 61  79 20 27 2e 2e 2e 20 62  |might say '... b|
00000920  75 74 20 77 68 61 74 20  72 65 61 6c 20 75 73 65  |ut what real use|
00000930  20 64 6f 20 66 72 61 63  74 61 6c 73 20 68 61 76  | do fractals hav|
00000940  65 3f 27 2e 20 54 68 65  20 0a 63 6f 72 72 65 63  |e?'. The .correc|
00000950  74 20 61 6e 73 77 65 72  20 69 73 3a 20 4d 61 6e  |t answer is: Man|
00000960  79 2c 20 73 75 63 68 20  61 73 20 69 6d 61 67 65  |y, such as image|
00000970  20 65 6e 68 61 6e 63 69  6e 67 2c 20 69 6d 61 67  | enhancing, imag|
00000980  65 20 0a 63 6f 6d 70 72  65 73 73 69 6e 67 2c 20  |e .compressing, |
00000990  73 69 6d 75 6c 61 74 69  6f 6e 73 20 6f 66 20 6c  |simulations of l|
000009a0  69 66 65 20 28 65 67 20  70 6c 61 6e 74 73 29 2c  |ife (eg plants),|
000009b0  20 65 6e 63 6f 64 69 6e  67 2c 20 61 6e 64 20 6d  | encoding, and m|
000009c0  61 6e 79 0a 6d 6f 72 65  2e 0a 20 57 69 74 68 20  |any.more.. With |
000009d0  61 20 73 63 61 6e 6e 65  64 20 73 68 65 65 74 20  |a scanned sheet |
000009e0  6f 66 20 74 65 78 74 2c  20 74 68 65 20 71 75 61  |of text, the qua|
000009f0  6c 69 74 79 20 69 73 20  6e 6f 74 20 61 6c 77 61  |lity is not alwa|
00000a00  79 73 20 70 65 72 66 65  63 74 0a 61 6e 64 20 66  |ys perfect.and f|
00000a10  6f 72 20 63 6f 72 72 65  63 74 20 4f 43 52 20 28  |or correct OCR (|
00000a20  4f 70 74 69 63 61 6c 20  43 68 61 72 61 63 74 65  |Optical Characte|
00000a30  72 20 52 65 63 6f 67 6e  69 74 69 6f 6e 29 20 74  |r Recognition) t|
00000a40  68 65 20 71 75 61 6c 69  74 79 0a 6e 65 65 64 73  |he quality.needs|
00000a50  20 74 6f 20 62 65 20 69  6d 70 72 6f 76 65 64 2e  | to be improved.|
00000a60  20 54 68 69 73 20 63 61  6e 20 62 65 20 64 6f 6e  | This can be don|
00000a70  65 20 62 79 20 75 73 69  6e 67 20 61 20 66 72 61  |e by using a fra|
00000a80  63 74 61 6c 0a 61 6c 67  6f 72 69 74 68 6d 20 74  |ctal.algorithm t|
00000a90  6f 20 74 69 64 79 20 75  70 20 74 68 65 20 69 6d  |o tidy up the im|
00000aa0  61 67 65 2e 0a 20 41 20  6c 61 72 67 65 20 70 69  |age.. A large pi|
00000ab0  63 74 75 72 65 20 63 61  6e 20 74 61 6b 65 20 61  |cture can take a|
00000ac0  6e 79 74 68 69 6e 67 20  75 70 20 74 6f 2c 20 61  |nything up to, a|
00000ad0  6e 64 20 6d 6f 72 65 20  74 68 61 6e 2c 20 6f 6e  |nd more than, on|
00000ae0  65 20 6d 65 67 61 0a 62  79 74 65 20 28 31 30 34  |e mega.byte (104|
00000af0  38 35 37 36 20 62 79 74  65 73 29 20 61 6e 64 20  |8576 bytes) and |
00000b00  61 20 66 6c 6f 70 70 79  20 63 61 6e 20 62 65 20  |a floppy can be |
00000b10  66 69 6c 6c 65 64 20 75  70 20 56 65 72 79 20 71  |filled up Very q|
00000b20  75 69 63 6b 6c 79 2e 0a  41 6c 73 6f 20 69 66 20  |uickly..Also if |
00000b30  79 6f 75 20 74 72 79 20  74 6f 20 7a 6f 6f 6d 20  |you try to zoom |
00000b40  69 6e 20 72 65 73 6f 6c  75 74 69 6f 6e 20 69 73  |in resolution is|
00000b50  20 6c 6f 73 74 2e 20 42  75 74 20 69 66 20 74 68  | lost. But if th|
00000b60  65 20 73 63 72 65 65 6e  0a 69 73 20 74 75 72 6e  |e screen.is turn|
00000b70  65 64 20 69 6e 74 6f 20  61 20 66 72 61 63 74 61  |ed into a fracta|
00000b80  6c 20 61 6c 67 6f 72 69  74 68 6d 2c 20 6f 6e 6c  |l algorithm, onl|
00000b90  79 20 61 20 66 65 77 20  62 79 74 65 73 20 77 69  |y a few bytes wi|
00000ba0  6c 6c 20 62 65 0a 74 61  6b 65 6e 20 75 70 20 74  |ll be.taken up t|
00000bb0  6f 20 73 74 6f 72 65 20  69 74 2c 20 61 6e 64 20  |o store it, and |
00000bc0  69 66 20 79 6f 75 20 7a  6f 6f 6d 20 69 6e 20 28  |if you zoom in (|
00000bd0  75 70 20 74 6f 20 61 20  70 6f 69 6e 74 20 77 68  |up to a point wh|
00000be0  65 72 65 20 69 74 0a 75  73 75 61 6c 6c 79 20 62  |ere it.usually b|
00000bf0  65 63 6f 6d 65 73 20 69  6e 61 63 63 75 72 61 74  |ecomes inaccurat|
00000c00  65 29 20 72 65 73 6f 6c  75 74 69 6f 6e 20 77 69  |e) resolution wi|
00000c10  6c 6c 20 6e 6f 74 20 62  65 20 6c 6f 73 74 2e 20  |ll not be lost. |
00000c20  0a 20 42 69 6f 6c 6f 67  69 73 74 73 20 6e 6f 77  |. Biologists now|
00000c30  20 62 65 6c 69 65 76 65  20 74 68 61 74 20 44 4e  | believe that DN|
00000c40  41 20 69 6e 20 6f 75 74  20 62 6f 64 69 65 73 20  |A in out bodies |
00000c50  69 73 20 6e 6f 74 20 6a  75 73 74 20 61 20 62 6c  |is not just a bl|
00000c60  75 65 20 0a 70 72 69 6e  74 20 66 6f 72 20 6f 75  |ue .print for ou|
00000c70  72 73 65 6c 76 65 73 2c  20 62 75 74 20 61 20 66  |rselves, but a f|
00000c80  72 61 63 74 61 6c 20 61  6c 67 6f 72 69 74 68 6d  |ractal algorithm|
00000c90  20 77 68 69 63 68 20 69  73 20 72 75 6e 20 74 6f  | which is run to|
00000ca0  20 0a 67 72 6f 77 20 75  73 2e 20 53 6f 6d 65 20  | .grow us. Some |
00000cb0  66 72 61 63 74 61 6c 73  20 63 61 6e 20 76 65 72  |fractals can ver|
00000cc0  79 20 77 65 6c 6c 20 73  69 6d 75 6c 61 74 65 20  |y well simulate |
00000cd0  70 6c 61 6e 74 20 67 72  6f 77 74 68 20 61 6e 64  |plant growth and|
00000ce0  20 0a 63 6f 6d 65 20 75  70 20 77 69 74 68 20 61  | .come up with a|
00000cf0  20 76 65 72 79 20 6e 61  74 75 72 61 6c 20 6c 6f  | very natural lo|
00000d00  6f 6b 69 6e 67 20 73 70  65 63 69 6d 65 6e 2e 0a  |oking specimen..|
00000d10  0a 28 49 20 70 72 65 73  75 6d 65 20 79 6f 75 20  |.(I presume you |
00000d20  6b 6e 6f 77 20 77 68 61  74 20 61 20 70 69 78 65  |know what a pixe|
00000d30  6c 20 69 73 20 2d 20 66  6f 72 20 74 68 6f 73 65  |l is - for those|
00000d40  20 77 68 6f 20 64 6f 20  6e 6f 74 20 6b 6e 6f 77  | who do not know|
00000d50  20 0a 69 74 20 69 73 20  6a 75 73 74 20 61 20 64  | .it is just a d|
00000d60  6f 74 20 6f 6e 20 74 68  65 20 73 63 72 65 65 6e  |ot on the screen|
00000d70  2e 20 54 68 69 73 20 77  68 6f 6c 65 20 64 69 73  |. This whole dis|
00000d80  70 6c 61 79 20 69 73 20  6d 61 64 65 20 75 70 20  |play is made up |
00000d90  6f 66 20 0a 6d 61 6e 79  20 70 69 78 65 6c 73 2c  |of .many pixels,|
00000da0  20 75 73 75 61 6c 6c 79  20 61 72 6f 75 6e 64 20  | usually around |
00000db0  31 36 30 30 30 30 2e 29  0a 0a 0a 32 2e 59 6f 75  |160000.)...2.You|
00000dc0  72 20 66 69 72 73 74 20  66 72 61 63 74 61 6c 2e  |r first fractal.|
00000dd0  0a 0a 20 42 69 66 75 72  63 61 74 65 20 69 73 20  |.. Bifurcate is |
00000de0  74 68 65 20 6f 72 69 67  69 6e 61 6c 20 63 68 61  |the original cha|
00000df0  6f 73 20 66 6f 72 6d 75  6c 61 20 61 6e 64 20 69  |os formula and i|
00000e00  73 20 6d 61 64 65 20 75  70 20 6f 66 20 61 20 76  |s made up of a v|
00000e10  65 72 79 20 0a 73 69 6d  70 6c 65 20 66 6f 72 6d  |ery .simple form|
00000e20  61 6c 20 77 68 69 63 68  20 77 61 73 20 66 69 72  |al which was fir|
00000e30  73 74 20 75 73 65 64 20  74 6f 20 64 65 73 63 72  |st used to descr|
00000e40  69 62 65 20 61 6e 69 6d  61 6c 20 0a 70 6f 70 75  |ibe animal .popu|
00000e50  6c 61 74 69 6f 6e 73 3a  0a 0a 20 20 20 20 20 20  |lations:..      |
00000e60  20 20 4e 65 77 20 70 6f  70 75 6c 20 3d 20 47 72  |  New popul = Gr|
00000e70  6f 77 74 68 20 52 61 74  65 20 2a 20 4f 6c 64 20  |owth Rate * Old |
00000e80  70 6f 70 75 6c 20 2a 20  28 20 31 20 2d 20 4f 6c  |popul * ( 1 - Ol|
00000e90  64 20 70 6f 70 75 6c 20  29 0a 0a 77 68 65 72 65  |d popul )..where|
00000ea0  20 70 6f 70 75 6c 28 61  74 69 6f 6e 29 20 69 73  | popul(ation) is|
00000eb0  20 61 20 76 61 6c 75 65  20 62 65 74 77 65 65 6e  | a value between|
00000ec0  20 30 20 61 6e 64 20 31  2e 20 57 69 74 68 20 67  | 0 and 1. With g|
00000ed0  72 6f 77 74 68 20 72 61  74 65 73 20 0a 6c 65 73  |rowth rates .les|
00000ee0  73 20 74 68 61 6e 20 32  30 30 25 2e 20 4f 76 65  |s than 200%. Ove|
00000ef0  72 20 32 30 30 25 20 61  6e 64 20 74 68 65 20 65  |r 200% and the e|
00000f00  71 75 61 74 69 6f 6e 20  73 70 6c 69 74 73 20 28  |quation splits (|
00000f10  62 69 66 75 72 63 61 74  65 73 29 20 0a 69 6e 74  |bifurcates) .int|
00000f20  6f 20 32 2c 20 74 68 65  6e 20 34 2c 20 74 68 65  |o 2, then 4, the|
00000f30  6e 20 62 65 63 6f 6d 65  73 20 63 68 61 6f 74 69  |n becomes chaoti|
00000f40  63 2e 20 54 68 69 73 20  63 61 6e 20 61 6c 73 6f  |c. This can also|
00000f50  20 62 65 20 75 73 65 64  20 61 73 20 61 20 0a 70  | be used as a .p|
00000f60  73 65 75 64 6f 2d 72 61  6e 64 6f 6d 20 6e 75 6d  |seudo-random num|
00000f70  62 65 72 20 67 65 6e 65  72 61 74 6f 72 2c 20 77  |ber generator, w|
00000f80  69 74 68 20 74 68 65 20  62 65 73 74 20 72 61 6e  |ith the best ran|
00000f90  64 6f 6d 20 6f 75 74 70  75 74 20 67 72 6f 77 74  |dom output growt|
00000fa0  68 20 0a 72 61 74 65 20  6f 66 20 34 20 28 34 30  |h .rate of 4 (40|
00000fb0  30 25 29 2e 20 53 6f 6d  65 20 73 69 6d 70 6c 65  |0%). Some simple|
00000fc0  20 38 2d 62 69 74 20 63  6f 6d 70 75 74 65 72 73  | 8-bit computers|
00000fd0  20 28 65 67 2e 20 53 70  65 63 74 72 75 6d 20 65  | (eg. Spectrum e|
00000fe0  74 63 2e 29 20 0a 61 63  74 75 61 6c 6c 79 20 75  |tc.) .actually u|
00000ff0  73 65 20 74 68 69 73 20  6d 65 74 68 6f 64 20 66  |se this method f|
00001000  6f 72 20 67 65 6e 65 72  61 74 69 6e 67 20 72 61  |or generating ra|
00001010  6e 64 6f 6d 20 6e 75 6d  62 65 72 73 2e 0a 20 54  |ndom numbers.. T|
00001020  68 65 20 66 6f 72 6d 75  6c 61 20 69 73 20 70 6c  |he formula is pl|
00001030  6f 74 74 65 64 20 77 69  74 68 20 74 69 6d 65 20  |otted with time |
00001040  61 63 72 6f 73 73 20 74  68 65 20 62 6f 74 74 6f  |across the botto|
00001050  6d 20 61 78 69 73 20 28  58 29 20 61 6e 64 20 0a  |m axis (X) and .|
00001060  70 6f 70 75 6c 61 74 69  6f 6e 20 6f 6e 20 74 68  |population on th|
00001070  65 20 73 69 64 65 20 61  78 69 73 20 28 59 29 2e  |e side axis (Y).|
00001080  0a 20 54 68 69 73 20 69  73 20 61 20 76 65 72 79  |. This is a very|
00001090  20 73 69 6d 70 6c 65 20  66 72 61 63 74 61 6c 2c  | simple fractal,|
000010a0  20 62 75 74 20 73 6f 6d  65 20 63 61 6e 20 62 65  | but some can be|
000010b0  20 76 65 72 79 20 63 6f  6d 70 6c 65 78 2e 20 57  | very complex. W|
000010c0  65 20 0a 73 68 61 6c 6c  20 6e 6f 74 20 67 6f 20  |e .shall not go |
000010d0  69 6e 74 6f 20 74 68 65  73 65 20 61 73 20 74 68  |into these as th|
000010e0  69 73 20 69 73 20 6f 6e  6c 79 20 61 6e 20 69 6e  |is is only an in|
000010f0  74 72 6f 64 75 63 74 69  6f 6e 20 69 6e 74 6f 20  |troduction into |
00001100  0a 62 61 73 69 63 20 66  72 61 63 74 61 6c 73 2e  |.basic fractals.|
00001110  0a 0a 0a 33 2e 43 6f 6d  70 6c 65 78 20 6e 75 6d  |...3.Complex num|
00001120  62 65 72 73 2e 0a 0a 20  54 68 65 73 65 20 61 72  |bers... These ar|
00001130  65 20 6e 6f 74 20 61 73  20 74 68 65 79 20 73 6f  |e not as they so|
00001140  75 6e 64 2c 20 62 75 74  20 74 68 65 20 69 64 65  |und, but the ide|
00001150  61 20 69 73 20 73 74 72  61 6e 67 65 2e 20 43 6f  |a is strange. Co|
00001160  6d 70 6c 65 78 20 0a 6e  75 6d 62 65 72 73 20 77  |mplex .numbers w|
00001170  65 72 65 20 69 6e 76 65  6e 74 65 64 20 74 6f 20  |ere invented to |
00001180  73 6f 6c 76 65 20 61 20  70 72 6f 62 6c 65 6d 3a  |solve a problem:|
00001190  20 59 6f 75 20 63 61 6e  20 6e 6f 74 20 77 6f 72  | You can not wor|
000011a0  6b 20 6f 75 74 20 0a 74  68 65 20 73 71 75 61 72  |k out .the squar|
000011b0  65 20 72 6f 6f 74 20 6f  66 20 61 20 6e 65 67 61  |e root of a nega|
000011c0  74 69 76 65 20 6e 75 6d  62 65 72 2e 20 41 73 20  |tive number. As |
000011d0  74 68 65 20 73 71 75 61  72 65 20 72 6f 6f 74 20  |the square root |
000011e0  69 73 20 74 68 65 20 0a  6e 75 6d 62 65 72 20 6d  |is the .number m|
000011f0  75 6c 74 69 70 6c 69 65  64 20 62 79 20 69 74 73  |ultiplied by its|
00001200  65 6c 66 20 74 6f 20 67  65 74 20 74 68 65 20 66  |elf to get the f|
00001210  69 72 73 74 20 6e 75 6d  62 65 72 2c 20 61 6e 64  |irst number, and|
00001220  20 61 6e 79 0a 6e 75 6d  62 65 72 20 28 65 76 65  | any.number (eve|
00001230  6e 20 6e 65 67 61 74 69  76 65 29 20 6d 75 6c 74  |n negative) mult|
00001240  69 70 6c 69 65 64 20 62  79 20 69 74 73 65 6c 66  |iplied by itself|
00001250  20 61 6c 77 61 79 73 20  67 69 76 65 73 20 61 20  | always gives a |
00001260  0a 70 6f 73 69 74 69 76  65 20 72 65 73 75 6c 74  |.positive result|
00001270  2c 20 74 68 65 6e 20 74  68 65 20 73 71 75 61 72  |, then the squar|
00001280  65 20 72 6f 6f 74 20 6f  66 20 2d 31 20 69 73 20  |e root of -1 is |
00001290  69 6d 70 6f 73 73 69 62  6c 65 20 0a 28 69 6d 61  |impossible .(ima|
000012a0  67 69 6e 61 72 79 29 2e  20 54 6f 20 6f 76 65 72  |ginary). To over|
000012b0  20 63 6f 6d 65 20 74 68  69 73 20 64 69 66 66 69  | come this diffi|
000012c0  63 75 6c 74 79 20 69 74  20 77 61 73 20 64 65 63  |culty it was dec|
000012d0  69 64 65 64 20 74 68 61  74 0a 74 68 65 20 69 6d  |ided that.the im|
000012e0  61 67 69 6e 61 72 79 20  6e 75 6d 62 65 72 20 28  |aginary number (|
000012f0  72 65 70 72 65 73 65 6e  74 65 64 20 62 79 20 74  |represented by t|
00001300  68 65 20 6c 65 74 74 65  72 20 27 69 27 29 20 73  |he letter 'i') s|
00001310  71 75 61 72 65 64 20 77  61 73 20 0a 65 71 75 61  |quared was .equa|
00001320  6c 20 74 6f 20 6e 65 67  61 74 69 76 65 20 31 2e  |l to negative 1.|
00001330  20 49 2e 45 2e 20 69 2a  69 3d 2d 31 20 61 6e 64  | I.E. i*i=-1 and|
00001340  20 69 5e 32 3d 2d 31 2e  20 54 68 61 74 20 69 73  | i^2=-1. That is|
00001350  20 74 68 65 20 6f 6e 6c  79 20 64 69 66 66 69 63  | the only diffic|
00001360  75 6c 74 20 0a 62 69 74  21 0a 20 48 65 72 65 20  |ult .bit!. Here |
00001370  61 72 65 20 73 6f 6d 65  20 65 78 61 6d 70 6c 65  |are some example|
00001380  73 20 6f 66 20 77 68 61  74 20 63 6f 6d 70 6c 65  |s of what comple|
00001390  78 20 6e 75 6d 62 65 72  73 20 6c 6f 6f 6b 20 6c  |x numbers look l|
000013a0  69 6b 65 20 77 68 65 6e  20 0a 77 72 69 74 74 65  |ike when .writte|
000013b0  6e 20 64 6f 77 6e 3a 20  34 2b 37 69 20 28 77 68  |n down: 4+7i (wh|
000013c0  65 72 65 20 34 20 69 73  20 72 65 61 6c 20 70 61  |ere 4 is real pa|
000013d0  72 74 20 61 6e 64 20 37  69 20 74 68 65 20 69 6d  |rt and 7i the im|
000013e0  61 67 69 6e 61 72 79 29  2c 20 0a 39 39 2d 34 32  |aginary), .99-42|
000013f0  69 2c 20 30 2b 32 69 2c  20 30 2b 30 69 2c 20 37  |i, 0+2i, 0+0i, 7|
00001400  2d 30 69 2c 20 61 2b 62  69 20 28 77 68 65 72 65  |-0i, a+bi (where|
00001410  20 61 20 61 6e 64 20 62  20 61 72 65 20 62 6f 74  | a and b are bot|
00001420  68 20 72 65 61 6c 20 0a  69 6e 74 65 67 65 72 73  |h real .integers|
00001430  29 2e 0a 20 54 68 65 20  6f 74 68 65 72 20 74 68  |).. The other th|
00001440  69 6e 67 20 74 6f 20 6b  6e 6f 77 20 69 73 20 74  |ing to know is t|
00001450  68 61 74 20 65 76 65 72  79 20 63 6f 6d 70 6c 65  |hat every comple|
00001460  78 20 6e 75 6d 62 65 72  20 69 73 20 6d 61 64 65  |x number is made|
00001470  20 75 70 20 0a 6f 66 20  74 77 6f 20 6f 74 68 65  | up .of two othe|
00001480  72 20 6e 75 6d 62 65 72  73 2c 20 6f 6e 65 20 74  |r numbers, one t|
00001490  68 65 20 72 65 61 6c 2c  20 6f 6e 65 20 74 68 65  |he real, one the|
000014a0  20 69 6d 61 67 69 6e 61  72 79 2e 20 54 68 65 73  | imaginary. Thes|
000014b0  65 20 74 77 6f 20 0a 6e  61 6d 65 73 20 68 61 76  |e two .names hav|
000014c0  65 20 6e 6f 20 72 65 61  6c 20 6d 65 61 6e 69 6e  |e no real meanin|
000014d0  67 2c 20 69 74 20 69 73  20 6a 75 73 74 20 74 6f  |g, it is just to|
000014e0  20 64 69 73 74 69 6e 67  75 69 73 68 20 62 65 74  | distinguish bet|
000014f0  77 65 65 6e 20 0a 74 68  65 6d 20 2d 20 74 68 65  |ween .them - the|
00001500  79 20 63 6f 75 6c 64 20  62 65 20 63 61 6c 6c 65  |y could be calle|
00001510  64 20 61 6e 79 20 74 68  69 6e 67 20 65 2e 67 2e  |d any thing e.g.|
00001520  20 53 74 61 72 73 6b 79  20 61 6e 64 20 48 75 74  | Starsky and Hut|
00001530  63 68 2e 20 0a 41 6c 73  6f 20 61 20 63 6f 6d 70  |ch. .Also a comp|
00001540  6c 65 78 20 6e 75 6d 62  65 72 20 69 73 20 75 73  |lex number is us|
00001550  75 61 6c 6c 79 20 72 65  70 72 65 73 65 6e 74 65  |ually represente|
00001560  64 20 62 79 20 74 68 65  20 6c 65 74 74 65 72 20  |d by the letter |
00001570  27 5a 27 20 0a 61 6c 74  68 6f 75 67 68 20 69 74  |'Z' .although it|
00001580  20 63 6f 75 6c 64 20 62  65 20 61 6e 79 20 6c 65  | could be any le|
00001590  74 74 65 72 2e 20 54 6f  20 6b 65 65 70 20 69 74  |tter. To keep it|
000015a0  20 73 69 6d 70 6c 65 20  49 20 75 73 75 61 6c 6c  | simple I usuall|
000015b0  79 20 74 61 6b 65 20 0a  5a 20 74 6f 20 62 65 20  |y take .Z to be |
000015c0  6d 61 64 65 20 6f 75 74  20 6f 66 20 74 68 65 20  |made out of the |
000015d0  74 77 6f 20 6e 75 6d 62  65 72 73 20 27 61 27 20  |two numbers 'a' |
000015e0  61 6e 64 20 27 62 69 27  20 77 68 65 72 65 20 74  |and 'bi' where t|
000015f0  68 65 20 27 69 27 20 0a  72 65 70 72 65 73 65 6e  |he 'i' .represen|
00001600  74 73 20 61 6e 20 69 6d  61 67 69 6e 61 72 79 20  |ts an imaginary |
00001610  6e 75 6d 62 65 72 2e 0a  20 41 64 64 69 6e 67 20  |number.. Adding |
00001620  61 6e 64 20 6d 75 6c 74  69 70 6c 79 69 6e 67 20  |and multiplying |
00001630  74 77 6f 20 63 6f 6d 70  6c 65 78 20 6e 75 6d 62  |two complex numb|
00001640  65 72 73 20 69 73 20 65  61 73 79 3a 0a 54 6f 20  |ers is easy:.To |
00001650  61 64 64 2c 20 79 6f 75  20 6a 75 73 74 20 61 64  |add, you just ad|
00001660  64 20 28 6f 72 20 6d 75  6c 74 69 70 6c 79 29 20  |d (or multiply) |
00001670  74 68 65 20 70 61 72 74  73 20 73 65 70 61 72 61  |the parts separa|
00001680  74 65 6c 79 2c 20 74 68  69 73 20 69 73 0a 73 68  |tely, this is.sh|
00001690  6f 77 6e 20 68 65 72 65  3a 0a 0a 20 33 2b 34 69  |own here:.. 3+4i|
000016a0  20 2b 20 36 2b 32 69 20  20 3d 20 39 2b 36 69 0a  | + 6+2i  = 9+6i.|
000016b0  20 39 2d 36 69 20 2b 20  32 2b 32 69 20 20 3d 20  | 9-6i + 2+2i  = |
000016c0  31 31 2d 34 69 0a 2d 32  2d 33 69 20 2b 20 34 2d  |11-4i.-2-3i + 4-|
000016d0  69 20 20 20 3d 20 32 2d  34 69 0a 0a 4d 75 6c 74  |i   = 2-4i..Mult|
000016e0  69 70 6c 79 69 6e 67 20  69 73 20 6f 6e 6c 79 20  |iplying is only |
000016f0  73 6c 69 67 68 74 6c 79  20 6d 6f 72 65 20 64 69  |slightly more di|
00001700  66 66 69 63 75 6c 74 2c  20 79 6f 75 20 6d 75 73  |fficult, you mus|
00001710  74 20 72 65 6d 65 6d 62  65 72 20 0a 74 68 61 74  |t remember .that|
00001720  20 69 5e 32 3d 2d 31 2e  20 48 65 72 65 20 69 73  | i^2=-1. Here is|
00001730  20 61 20 77 6f 72 6b 65  64 20 65 78 61 6d 70 6c  | a worked exampl|
00001740  65 3a 20 0a 0a 28 33 2d  32 69 29 2a 28 37 2b 34  |e: ..(3-2i)*(7+4|
00001750  69 29 20 3d 20 32 31 2b  31 32 69 2d 31 34 69 2d  |i) = 21+12i-14i-|
00001760  38 69 5e 32 0a 3d 20 32  31 2d 32 69 2d 38 69 5e  |8i^2.= 21-2i-8i^|
00001770  32 20 61 6e 64 20 61 73  20 69 5e 32 3d 2d 31 20  |2 and as i^2=-1 |
00001780  74 68 65 6e 20 28 33 2d  32 69 29 2a 28 37 2b 34  |then (3-2i)*(7+4|
00001790  69 29 3d 32 31 2d 32 69  2d 28 38 2a 2d 31 29 3d  |i)=21-2i-(8*-1)=|
000017a0  20 20 32 39 2d 32 69 0a  0a 49 66 20 79 6f 75 20  |  29-2i..If you |
000017b0  77 61 6e 74 20 74 6f 20  73 71 75 61 72 65 20 61  |want to square a|
000017c0  20 63 6f 6d 70 6c 65 78  20 6e 75 6d 62 65 72 2c  | complex number,|
000017d0  20 74 68 65 6e 20 79 6f  75 20 6a 75 73 74 20 6d  | then you just m|
000017e0  75 6c 74 69 70 6c 79 20  69 74 20 0a 62 79 20 69  |ultiply it .by i|
000017f0  74 73 65 6c 66 2e 20 54  68 69 73 20 69 73 20 73  |tself. This is s|
00001800  68 6f 77 6e 20 68 65 72  65 3a 0a 0a 20 28 33 2b  |hown here:.. (3+|
00001810  34 69 29 5e 32 20 3d 20  39 2b 31 32 69 2b 31 32  |4i)^2 = 9+12i+12|
00001820  69 2b 31 36 69 5e 32 20  3d 20 39 2b 32 34 69 2b  |i+16i^2 = 9+24i+|
00001830  31 36 69 5e 32 20 61 6e  64 20 61 73 20 69 5e 32  |16i^2 and as i^2|
00001840  3d 2d 31 20 74 68 65 6e  0a 20 28 33 2b 34 69 29  |=-1 then. (3+4i)|
00001850  5e 32 20 3d 20 39 2b 32  34 69 2b 28 31 36 2a 2d  |^2 = 9+24i+(16*-|
00001860  31 29 20 3d 20 2d 37 2b  32 34 69 0a 0a 41 20 67  |1) = -7+24i..A g|
00001870  65 6e 65 72 61 6c 20 66  6f 72 6d 75 6c 61 20 77  |eneral formula w|
00001880  6f 75 6c 64 20 74 68 65  6e 20 62 65 3a 0a 0a 20  |ould then be:.. |
00001890  28 61 2b 62 69 29 5e 32  20 3d 20 61 5e 32 2b 61  |(a+bi)^2 = a^2+a|
000018a0  62 69 2b 61 62 69 2b 28  62 5e 32 2a 69 5e 32 29  |bi+abi+(b^2*i^2)|
000018b0  20 61 73 20 69 5e 32 3d  2d 31 20 74 68 65 6e 20  | as i^2=-1 then |
000018c0  3d 61 5e 32 2b 32 61 62  69 2d 62 5e 32 0a 0a 67  |=a^2+2abi-b^2..g|
000018d0  72 6f 75 70 20 74 68 65  20 72 65 61 6c 20 61 6e  |roup the real an|
000018e0  64 20 69 6d 61 67 69 6e  61 72 79 20 74 65 72 6d  |d imaginary term|
000018f0  73 20 74 6f 20 66 6f 72  6d 20 74 68 65 20 67 65  |s to form the ge|
00001900  6e 65 72 61 6c 20 74 65  72 6d 73 3a 0a 0a 20 61  |neral terms:.. a|
00001910  28 6e 2b 31 29 3d 61 28  6e 29 5e 32 2d 62 28 6e  |(n+1)=a(n)^2-b(n|
00001920  29 5e 32 0a 20 62 28 6e  2b 31 29 3d 32 2a 61 28  |)^2. b(n+1)=2*a(|
00001930  6e 29 2a 62 28 6e 29 69  0a 0a 20 4f 6e 65 20 6d  |n)*b(n)i.. One m|
00001940  6f 72 65 20 74 68 69 6e  67 20 74 6f 20 64 6f 20  |ore thing to do |
00001950  77 69 74 68 20 63 6f 6d  70 6c 65 78 20 6e 75 6d  |with complex num|
00001960  62 65 72 73 20 61 6e 64  20 66 72 61 63 74 61 6c  |bers and fractal|
00001970  73 20 69 73 2c 20 73 69  7a 65 2e 20 0a 57 68 65  |s is, size. .Whe|
00001980  6e 20 77 65 20 74 61 6c  6b 20 61 62 6f 75 74 20  |n we talk about |
00001990  73 69 7a 65 2c 20 77 65  20 6d 65 61 6e 2c 20 6f  |size, we mean, o|
000019a0  6e 20 74 68 65 20 74 77  6f 20 70 6c 61 6e 65 73  |n the two planes|
000019b0  20 72 65 61 6c 20 61 6e  64 20 0a 69 6d 61 67 69  | real and .imagi|
000019c0  6e 61 72 79 2c 20 74 68  65 20 64 69 73 74 61 6e  |nary, the distan|
000019d0  63 65 20 62 65 74 77 65  65 6e 20 74 68 65 20 70  |ce between the p|
000019e0  6f 73 69 74 69 6f 6e 20  61 6e 64 20 30 2c 30 2e  |osition and 0,0.|
000019f0  20 59 6f 75 20 63 6f 75  6c 64 20 0a 6c 6f 6f 6b  | You could .look|
00001a00  20 61 73 20 74 68 65 20  72 65 61 6c 20 61 6e 64  | as the real and|
00001a10  20 69 6d 61 67 69 6e 61  72 79 20 70 61 72 74 73  | imaginary parts|
00001a20  20 61 73 20 73 69 64 65  73 20 6f 66 20 61 20 72  | as sides of a r|
00001a30  69 67 68 74 2d 61 6e 67  6c 65 0a 74 72 69 61 6e  |ight-angle.trian|
00001a40  67 6c 65 20 77 68 65 72  65 20 74 68 65 20 64 69  |gle where the di|
00001a50  73 74 61 6e 63 65 20 69  73 20 74 68 65 20 68 79  |stance is the hy|
00001a60  70 6f 74 65 6e 75 73 65  2e 20 54 6f 20 66 69 6e  |potenuse. To fin|
00001a70  64 20 74 68 65 20 0a 68  79 70 6f 74 65 6e 75 73  |d the .hypotenus|
00001a80  65 20 79 6f 75 20 63 61  6e 20 75 73 65 20 50 79  |e you can use Py|
00001a90  74 68 61 67 6f 72 61 73  27 20 74 68 65 6f 72 65  |thagoras' theore|
00001aa0  6d 20 28 61 5e 32 3d 62  5e 32 2b 63 5e 32 29 2e  |m (a^2=b^2+c^2).|
00001ab0  20 53 6f 20 74 6f 20 0a  66 69 6e 64 20 74 68 65  | So to .find the|
00001ac0  20 73 69 7a 65 20 6f 66  20 61 20 63 6f 6d 70 6c  | size of a compl|
00001ad0  65 78 20 6e 75 6d 62 65  72 2c 20 79 6f 75 20 73  |ex number, you s|
00001ae0  71 75 61 72 65 20 62 6f  74 68 20 74 68 65 20 72  |quare both the r|
00001af0  65 61 6c 20 61 6e 64 20  0a 69 6d 61 67 69 6e 61  |eal and .imagina|
00001b00  72 79 20 70 61 72 74 73  2c 20 61 64 64 20 74 68  |ry parts, add th|
00001b10  65 6d 20 74 6f 67 65 74  68 65 72 2c 20 61 6e 64  |em together, and|
00001b20  20 74 68 65 6e 20 73 71  75 61 72 65 20 72 6f 6f  | then square roo|
00001b30  74 20 74 68 69 73 2e 0a  20 41 20 73 74 72 61 69  |t this.. A strai|
00001b40  67 68 74 20 66 6f 72 77  61 72 64 20 72 65 73 75  |ght forward resu|
00001b50  6c 74 20 69 6e 20 63 6f  6d 70 6c 65 78 2d 6e 75  |lt in complex-nu|
00001b60  6d 62 65 72 20 74 68 65  6f 72 79 20 69 74 65 72  |mber theory iter|
00001b70  61 74 69 6f 6e 73 20 0a  67 75 61 72 61 6e 74 65  |ations .guarante|
00001b80  65 73 20 74 68 61 74 20  74 68 65 20 69 74 65 72  |es that the iter|
00001b90  61 74 69 6f 6e 73 20 77  69 6c 6c 20 64 72 69 76  |ations will driv|
00001ba0  65 20 5a 20 74 6f 20 69  6e 66 69 6e 69 74 79 2c  |e Z to infinity,|
00001bb0  20 69 66 20 61 6e 64 20  0a 6f 6e 6c 79 20 61 74  | if and .only at|
00001bc0  20 73 6f 6d 65 20 73 74  61 67 65 20 5a 20 72 65  | some stage Z re|
00001bd0  61 63 68 65 73 20 61 20  73 69 7a 65 20 6f 66 20  |aches a size of |
00001be0  32 20 6f 72 20 67 72 65  61 74 65 72 2e 20 56 65  |2 or greater. Ve|
00001bf0  72 79 20 6d 61 6e 79 20  0a 70 6f 69 6e 74 73 20  |ry many .points |
00001c00  77 69 6c 6c 20 72 65 61  63 68 20 32 20 61 66 74  |will reach 2 aft|
00001c10  65 72 20 6f 6e 6c 79 20  61 20 66 65 77 20 69 74  |er only a few it|
00001c20  65 72 61 74 69 6f 6e 73  2c 20 74 68 65 20 6f 6e  |erations, the on|
00001c30  65 73 20 74 68 61 74 20  64 6f 20 0a 6e 6f 74 20  |es that do .not |
00001c40  62 65 6c 6f 6e 67 20 74  6f 20 74 68 65 20 4d 61  |belong to the Ma|
00001c50  6e 64 6c 65 62 72 6f 74  20 53 65 74 2e 20 20 0a  |ndlebrot Set.  .|
00001c60  0a 20 44 6f 20 6e 6f 74  20 77 6f 72 72 79 20 69  |. Do not worry i|
00001c70  66 20 79 6f 75 20 64 69  64 20 6e 6f 74 20 66 6f  |f you did not fo|
00001c80  6c 6c 6f 77 20 61 6c 6c  20 74 68 61 74 2c 20 69  |llow all that, i|
00001c90  74 20 77 69 6c 6c 20 62  65 63 6f 6d 65 20 0a 63  |t will become .c|
00001ca0  6c 65 61 72 20 74 6f 20  79 6f 75 20 69 6e 20 74  |lear to you in t|
00001cb0  69 6d 65 2e 20 45 76 65  6e 20 69 66 20 79 6f 75  |ime. Even if you|
00001cc0  20 63 6f 75 6c 64 20 6e  6f 74 20 70 6f 73 73 69  | could not possi|
00001cd0  62 6c 79 20 75 6e 64 65  72 73 74 61 6e 64 20 0a  |bly understand .|
00001ce0  69 74 20 61 6c 6c 20 79  6f 75 20 6f 6e 6c 79 20  |it all you only |
00001cf0  6e 65 65 64 20 74 6f 20  6b 6e 6f 77 20 6f 66 20  |need to know of |
00001d00  74 68 65 20 67 65 6e 65  72 61 6c 20 74 65 72 6d  |the general term|
00001d10  20 66 6f 72 20 73 71 75  61 72 69 6e 67 20 61 20  | for squaring a |
00001d20  0a 63 6f 6d 70 6c 65 78  20 6e 75 6d 62 65 72 20  |.complex number |
00001d30  28 61 6e 64 20 74 68 65  20 62 69 74 20 61 62 6f  |(and the bit abo|
00001d40  75 74 20 73 69 7a 65 29  20 66 6f 72 20 6d 6f 73  |ut size) for mos|
00001d50  74 20 66 72 61 63 74 61  6c 73 2e 20 53 6f 6d 65  |t fractals. Some|
00001d60  0a 66 72 61 63 74 61 6c  73 20 73 75 63 68 20 61  |.fractals such a|
00001d70  73 20 74 68 65 20 63 75  62 69 63 20 4a 75 6c 69  |s the cubic Juli|
00001d80  61 20 53 65 74 20 75 73  65 20 63 75 62 69 6e 67  |a Set use cubing|
00001d90  20 63 6f 6d 70 6c 65 78  20 6e 75 6d 62 65 72 73  | complex numbers|
00001da0  2c 0a 62 75 74 20 77 65  20 77 69 6c 6c 20 6e 6f  |,.but we will no|
00001db0  74 20 67 6f 20 69 6e 74  6f 20 74 68 6f 73 65 20  |t go into those |
00001dc0  69 6e 20 67 72 65 61 74  20 64 65 74 61 69 6c 2e  |in great detail.|
00001dd0  20 41 62 6f 76 65 20 6f  6e 6c 79 20 63 6f 76 65  | Above only cove|
00001de0  72 73 20 0a 53 4f 4d 45  20 6f 66 20 74 68 65 20  |rs .SOME of the |
00001df0  63 6f 6d 70 6c 65 78 2d  6e 75 6d 62 65 72 20 74  |complex-number t|
00001e00  68 65 6f 72 79 2c 20 61  6e 64 20 69 66 20 79 6f  |heory, and if yo|
00001e10  75 20 77 61 6e 74 20 74  6f 20 66 75 72 74 68 65  |u want to furthe|
00001e20  72 20 0a 79 6f 75 72 20  6b 6e 6f 77 6c 65 64 67  |r .your knowledg|
00001e30  65 20 74 68 65 6e 20 72  65 61 64 20 73 6f 6d 65  |e then read some|
00001e40  20 6f 6c 64 20 41 2d 6c  65 76 65 6c 20 6f 72 20  | old A-level or |
00001e50  64 65 67 72 65 65 20 6d  61 74 68 65 6d 61 74 69  |degree mathemati|
00001e60  63 73 0a 62 6f 6f 6b 73  20 6f 6e 20 74 68 65 20  |cs.books on the |
00001e70  73 75 62 6a 65 63 74 2e  0a 0a 34 2e 54 68 65 20  |subject...4.The |
00001e80  4a 75 6c 69 61 20 53 65  74 0a 0a 20 54 68 69 73  |Julia Set.. This|
00001e90  20 69 73 20 74 68 65 20  66 72 61 63 74 61 6c 20  | is the fractal |
00001ea0  74 68 61 74 20 49 20 63  68 6f 6f 73 65 20 62 65  |that I choose be|
00001eb0  63 61 75 73 65 20 49 20  68 61 76 65 20 73 65 65  |cause I have see|
00001ec0  6e 20 76 65 72 79 20 66  65 77 20 0a 43 4f 4c 4f  |n very few .COLO|
00001ed0  55 52 20 6a 75 6c 69 61  20 73 65 74 73 2c 20 49  |UR julia sets, I|
00001ee0  20 68 61 76 65 20 6f 6e  6c 79 20 73 65 65 6e 20  | have only seen |
00001ef0  6f 6e 65 73 20 77 68 69  63 68 20 75 73 65 20 69  |ones which use i|
00001f00  6e 76 65 72 73 65 20 0a  69 74 65 72 61 74 69 6f  |nverse .iteratio|
00001f10  6e 20 6d 65 74 68 6f 64  73 20 28 49 20 77 69 6c  |n methods (I wil|
00001f20  6c 20 65 78 70 6c 61 69  6e 20 6c 61 74 65 72 29  |l explain later)|
00001f30  20 77 68 69 63 68 20 6f  6e 6c 79 20 67 69 76 65  | which only give|
00001f40  20 0a 6d 6f 6e 6f 63 68  72 6f 6d 65 20 69 6d 61  | .monochrome ima|
00001f50  67 65 73 2e 20 54 68 65  20 6f 74 68 65 72 20 72  |ges. The other r|
00001f60  65 61 73 6f 6e 20 69 73  20 74 68 61 74 20 74 68  |eason is that th|
00001f70  69 73 20 6f 6e 65 20 73  68 6f 77 73 20 68 6f 77  |is one shows how|
00001f80  20 74 6f 20 0a 70 6c 6f  74 20 61 20 62 61 73 69  | to .plot a basi|
00001f90  63 20 66 72 61 63 74 61  6c 20 75 73 69 6e 67 20  |c fractal using |
00001fa0  61 6e 20 69 6e 64 69 76  69 64 75 61 6c 20 70 69  |an individual pi|
00001fb0  78 65 6c 20 69 74 65 72  61 74 69 6f 6e 20 6d 65  |xel iteration me|
00001fc0  74 68 6f 64 2c 20 0a 61  6e 64 20 74 68 65 20 4a  |thod, .and the J|
00001fd0  75 6c 69 61 20 53 65 74  20 69 73 20 61 6e 20 65  |ulia Set is an e|
00001fe0  61 73 79 20 6f 6e 65 20  74 6f 20 75 6e 64 65 72  |asy one to under|
00001ff0  73 74 61 6e 64 2e 0a 20  42 61 73 69 63 61 6c 6c  |stand.. Basicall|
00002000  79 20 74 68 65 20 4a 75  6c 69 61 20 53 65 74 20  |y the Julia Set |
00002010  75 73 65 73 20 61 20 5a  5e 32 2b 43 20 66 6f 72  |uses a Z^2+C for|
00002020  6d 75 6c 61 20 77 68 69  63 68 20 69 73 20 69 74  |mula which is it|
00002030  65 72 61 74 65 64 20 0a  75 6e 74 69 6c 20 61 20  |erated .until a |
00002040  6c 69 6d 69 74 20 69 73  20 72 65 61 63 68 65 64  |limit is reached|
00002050  2c 20 74 68 69 73 20 69  73 20 64 6f 6e 65 20 66  |, this is done f|
00002060  6f 72 20 65 61 63 68 20  70 69 78 65 6c 2e 20 54  |or each pixel. T|
00002070  68 65 72 65 20 61 72 65  20 0a 61 6e 20 69 6e 66  |here are .an inf|
00002080  69 6e 69 74 65 20 6e 75  6d 62 65 72 20 6f 66 20  |inite number of |
00002090  64 69 66 66 65 72 65 6e  74 20 73 65 74 73 2c 20  |different sets, |
000020a0  65 61 63 68 20 6f 6e 65  20 69 73 20 64 65 66 69  |each one is defi|
000020b0  6e 65 64 20 62 79 20 74  68 65 20 0a 63 6f 6d 70  |ned by the .comp|
000020c0  6c 65 78 20 6e 75 6d 62  65 72 20 27 43 27 2e 20  |lex number 'C'. |
000020d0  42 6f 74 68 20 69 74 27  73 20 72 65 61 6c 20 61  |Both it's real a|
000020e0  6e 64 20 69 6d 61 67 69  6e 61 72 79 20 70 61 72  |nd imaginary par|
000020f0  74 73 20 64 65 66 69 6e  65 20 74 68 65 20 0a 73  |ts define the .s|
00002100  68 61 70 65 20 6f 66 20  74 68 65 20 4a 75 6c 69  |hape of the Juli|
00002110  61 20 53 65 74 20 61 6e  64 20 61 72 65 20 75 73  |a Set and are us|
00002120  75 61 6c 6c 79 20 28 72  6f 75 67 68 6c 79 29 20  |ually (roughly) |
00002130  62 65 74 77 65 65 6e 20  2d 32 20 61 6e 64 20 0a  |between -2 and .|
00002140  32 2e 20 54 68 65 72 65  20 61 72 65 20 74 77 6f  |2. There are two|
00002150  20 74 79 70 65 73 20 6f  66 20 4a 75 6c 69 61 20  | types of Julia |
00002160  53 65 74 20 2d 20 57 68  6f 6c 6c 79 20 43 6f 6e  |Set - Wholly Con|
00002170  6e 65 63 74 65 64 20 61  6e 64 20 57 68 6f 6c 6c  |nected and Wholl|
00002180  79 20 0a 44 69 73 2d 63  6f 6e 6e 65 63 74 65 64  |y .Dis-connected|
00002190  2e 20 57 68 6f 6c 6c 79  20 43 6f 6e 6e 65 63 74  |. Wholly Connect|
000021a0  65 64 20 69 73 20 75 73  75 61 6c 6c 79 20 77 69  |ed is usually wi|
000021b0  74 68 20 73 6d 61 6c 6c  20 70 61 72 74 73 20 74  |th small parts t|
000021c0  6f 20 0a 74 68 65 20 63  6f 6d 70 6c 65 78 2d 6e  |o .the complex-n|
000021d0  75 6d 62 65 72 20 27 43  27 2e 0a 20 54 6f 20 70  |umber 'C'.. To p|
000021e0  6c 6f 74 20 61 20 70 61  72 74 69 63 75 6c 61 72  |lot a particular|
000021f0  20 4a 75 6c 69 61 20 53  65 74 20 79 6f 75 20 68  | Julia Set you h|
00002200  61 76 65 20 74 68 65 20  73 63 72 65 65 6e 20 72  |ave the screen r|
00002210  65 70 72 65 73 65 6e 74  69 6e 67 20 0a 74 68 65  |epresenting .the|
00002220  20 72 65 61 6c 28 58 29  20 61 6e 64 20 69 6d 61  | real(X) and ima|
00002230  67 69 6e 61 72 79 28 59  29 20 70 6c 61 6e 65 73  |ginary(Y) planes|
00002240  20 66 72 6f 6d 20 2d 32  20 74 6f 20 32 2e 20 54  | from -2 to 2. T|
00002250  68 65 6e 20 73 65 74 20  61 20 0a 63 6f 6d 70 6c  |hen set a .compl|
00002260  65 78 2d 6e 75 6d 62 65  72 20 76 61 72 69 61 62  |ex-number variab|
00002270  6c 65 20 27 5a 27 20 74  6f 20 74 68 65 20 63 6f  |le 'Z' to the co|
00002280  2d 6f 72 64 69 6e 61 74  65 73 20 6f 6e 20 74 68  |-ordinates on th|
00002290  65 20 73 63 72 65 65 6e  2e 20 0a 53 65 74 20 61  |e screen. .Set a|
000022a0  20 76 61 72 69 61 62 6c  65 20 63 6f 75 6e 74 20  | variable count |
000022b0  74 6f 20 7a 65 72 6f 2e  20 53 65 74 20 74 68 65  |to zero. Set the|
000022c0  20 63 6f 6d 70 6c 65 78  2d 6e 75 6d 62 65 72 20  | complex-number |
000022d0  76 61 72 69 61 62 6c 65  20 27 43 27 20 0a 74 6f  |variable 'C' .to|
000022e0  20 74 68 65 20 76 61 6c  75 65 20 79 6f 75 20 77  | the value you w|
000022f0  61 6e 74 20 66 6f 72 20  74 68 65 20 70 61 72 74  |ant for the part|
00002300  69 63 75 6c 61 72 20 73  65 74 2e 20 4e 6f 77 20  |icular set. Now |
00002310  63 61 72 72 79 20 6f 75  74 20 74 68 65 0a 66 6f  |carry out the.fo|
00002320  6c 6c 6f 77 69 6e 67 20  6c 6f 6f 70 3a 0a 0a 20  |llowing loop:.. |
00002330  20 20 20 20 20 20 20 2e  6c 6f 6f 70 20 20 20 5a  |       .loop   Z|
00002340  3d 5a 5e 32 0a 20 20 20  20 20 20 20 20 20 20 20  |=Z^2.           |
00002350  20 20 20 20 20 5a 3d 5a  2b 43 0a 20 20 20 20 20  |     Z=Z+C.     |
00002360  20 20 20 20 20 20 20 20  20 20 20 63 6f 75 6e 74  |           count|
00002370  3d 63 6f 75 6e 74 2b 31  0a 20 20 20 20 20 20 20  |=count+1.       |
00002380  20 20 20 20 20 20 20 20  20 49 46 20 63 6f 75 6e  |         IF coun|
00002390  74 3e 32 35 36 20 4f 52  20 53 49 5a 45 28 5a 29  |t>256 OR SIZE(Z)|
000023a0  3e 32 20 47 4f 54 4f 20  65 6e 64 0a 20 20 20 20  |>2 GOTO end.    |
000023b0  20 20 20 20 20 20 20 20  20 20 20 20 47 4f 54 4f  |            GOTO|
000023c0  20 6c 6f 6f 70 0a 0a 20  41 73 73 69 67 6e 20 74  | loop.. Assign t|
000023d0  68 65 20 76 61 6c 75 65  20 6f 66 20 63 6f 75 6e  |he value of coun|
000023e0  74 20 74 6f 20 74 68 65  20 63 6f 6c 6f 75 72 20  |t to the colour |
000023f0  6f 66 20 74 68 65 20 70  69 78 65 6c 2e 20 49 66  |of the pixel. If|
00002400  20 74 68 65 20 0a 73 69  7a 65 20 6f 66 20 5a 20  | the .size of Z |
00002410  68 61 73 20 6e 6f 74 20  72 69 73 65 6e 20 65 71  |has not risen eq|
00002420  75 61 6c 20 74 6f 2c 20  6f 72 20 61 62 6f 76 65  |ual to, or above|
00002430  20 32 2c 20 74 68 65 6e  20 74 68 65 20 70 69 78  | 2, then the pix|
00002440  65 6c 20 69 73 20 0a 62  6c 61 63 6b 2c 20 61 6e  |el is .black, an|
00002450  64 20 62 65 6c 6f 6e 67  73 20 74 6f 20 74 68 65  |d belongs to the|
00002460  20 61 63 74 75 61 6c 20  4a 75 6c 69 61 20 53 65  | actual Julia Se|
00002470  74 2e 20 44 6f 20 74 68  69 73 20 66 6f 72 20 65  |t. Do this for e|
00002480  76 65 72 79 20 0a 70 69  78 65 6c 20 61 6e 64 20  |very .pixel and |
00002490  74 68 65 20 69 6d 61 67  65 20 77 69 6c 6c 20 62  |the image will b|
000024a0  75 69 6c 64 20 75 70 2e  0a 20 41 6e 20 65 78 61  |uild up.. An exa|
000024b0  6d 70 6c 65 20 70 72 6f  67 72 61 6d 20 77 72 69  |mple program wri|
000024c0  74 74 65 6e 20 69 6e 20  41 52 4d 20 42 42 43 20  |tten in ARM BBC |
000024d0  42 41 53 49 43 20 56 20  69 73 20 73 68 6f 77 6e  |BASIC V is shown|
000024e0  20 68 65 72 65 3a 20 0a  28 65 78 61 6d 70 6c 65  | here: .(example|
000024f0  20 32 29 0a 20 20 20 20  20 20 20 20 20 31 20 50  | 2).         1 P|
00002500  52 4f 43 69 6e 69 74 0a  20 20 20 20 20 20 20 20  |ROCinit.        |
00002510  31 30 20 72 65 61 6c 4d  49 4e 3d 2d 32 0a 20 20  |10 realMIN=-2.  |
00002520  20 20 20 20 20 20 32 30  20 69 6d 61 67 4d 49 4e  |      20 imagMIN|
00002530  3d 2d 32 0a 20 20 20 20  20 20 20 20 33 30 20 72  |=-2.        30 r|
00002540  65 61 6c 4d 41 58 3d 32  0a 20 20 20 20 20 20 20  |ealMAX=2.       |
00002550  20 34 30 20 69 6d 61 67  4d 41 58 3d 32 0a 20 20  | 40 imagMAX=2.  |
00002560  20 20 20 20 20 20 35 30  20 72 65 61 6c 43 3d 2d  |      50 realC=-|
00002570  2e 37 35 0a 20 20 20 20  20 20 20 20 36 30 20 69  |.75.        60 i|
00002580  6d 61 67 43 3d 30 0a 20  20 20 20 20 20 20 20 37  |magC=0.        7|
00002590  30 20 78 79 53 49 5a 45  3d 32 35 36 0a 20 20 20  |0 xySIZE=256.   |
000025a0  20 20 20 20 20 38 30 20  72 65 61 6c 49 4e 43 3d  |     80 realINC=|
000025b0  28 72 65 61 6c 4d 41 58  2d 72 65 61 6c 4d 49 4e  |(realMAX-realMIN|
000025c0  29 2f 78 79 53 49 5a 45  0a 20 20 20 20 20 20 20  |)/xySIZE.       |
000025d0  20 39 30 20 69 6d 61 67  49 4e 43 3d 28 69 6d 61  | 90 imagINC=(ima|
000025e0  67 4d 41 58 2d 69 6d 61  67 4d 49 4e 29 2f 78 79  |gMAX-imagMIN)/xy|
000025f0  53 49 5a 45 0a 20 20 20  20 20 20 20 31 30 30 20  |SIZE.       100 |
00002600  69 6d 61 67 5a 3d 69 6d  61 67 4d 49 4e 0a 20 20  |imagZ=imagMIN.  |
00002610  20 20 20 20 20 31 31 30  20 59 3d 30 0a 20 20 20  |     110 Y=0.   |
00002620  20 20 20 20 31 32 30 20  52 45 50 45 41 54 0a 20  |    120 REPEAT. |
00002630  20 20 20 20 20 20 31 33  30 20 72 65 61 6c 5a 3d  |      130 realZ=|
00002640  72 65 61 6c 4d 49 4e 0a  20 20 20 20 20 20 20 31  |realMIN.       1|
00002650  34 30 20 58 3d 30 0a 20  20 20 20 20 20 20 31 35  |40 X=0.       15|
00002660  30 20 52 45 50 45 41 54  0a 20 20 20 20 20 20 20  |0 REPEAT.       |
00002670  31 36 30 20 72 65 61 6c  5a 5a 3d 72 65 61 6c 5a  |160 realZZ=realZ|
00002680  0a 20 20 20 20 20 20 20  31 37 30 20 69 6d 61 67  |.       170 imag|
00002690  5a 5a 3d 69 6d 61 67 5a  0a 20 20 20 20 20 20 20  |ZZ=imagZ.       |
000026a0  31 38 30 20 63 6f 75 6e  74 3d 30 0a 20 20 20 20  |180 count=0.    |
000026b0  20 20 20 31 39 30 20 52  45 50 45 41 54 0a 20 20  |   190 REPEAT.  |
000026c0  20 20 20 20 20 32 30 30  20 73 3d 72 65 61 6c 5a  |     200 s=realZ|
000026d0  5a 5e 32 2d 69 6d 61 67  5a 5a 5e 32 0a 20 20 20  |Z^2-imagZZ^2.   |
000026e0  20 20 20 20 32 31 30 20  69 6d 61 67 5a 5a 3d 32  |    210 imagZZ=2|
000026f0  2a 72 65 61 6c 5a 5a 2a  69 6d 61 67 5a 5a 0a 20  |*realZZ*imagZZ. |
00002700  20 20 20 20 20 20 32 32  30 20 72 65 61 6c 5a 5a  |      220 realZZ|
00002710  3d 73 2b 72 65 61 6c 43  0a 20 20 20 20 20 20 20  |=s+realC.       |
00002720  32 33 30 20 69 6d 61 67  5a 5a 3d 69 6d 61 67 5a  |230 imagZZ=imagZ|
00002730  5a 2b 69 6d 61 67 43 0a  20 20 20 20 20 20 20 32  |Z+imagC.       2|
00002740  34 30 20 63 6f 75 6e 74  2b 3d 31 0a 20 20 20 20  |40 count+=1.    |
00002750  20 20 20 32 35 30 20 55  4e 54 49 4c 20 28 72 65  |   250 UNTIL (re|
00002760  61 6c 5a 5a 5e 32 2b 69  6d 61 67 5a 5a 5e 32 29  |alZZ^2+imagZZ^2)|
00002770  3e 3d 32 20 4f 52 20 63  6f 75 6e 74 3e 3d 32 35  |>=2 OR count>=25|
00002780  36 0a 20 20 20 20 20 20  20 32 36 30 20 50 52 4f  |6.       260 PRO|
00002790  43 70 6c 6f 74 28 58 2c  59 2c 63 6f 75 6e 74 29  |Cplot(X,Y,count)|
000027a0  0a 20 20 20 20 20 20 20  32 37 30 20 58 2b 3d 31  |.       270 X+=1|
000027b0  0a 20 20 20 20 20 20 20  32 38 30 20 72 65 61 6c  |.       280 real|
000027c0  5a 2b 3d 72 65 61 6c 49  4e 43 0a 20 20 20 20 20  |Z+=realINC.     |
000027d0  20 20 32 39 30 20 55 4e  54 49 4c 20 58 3e 3d 78  |  290 UNTIL X>=x|
000027e0  79 53 49 5a 45 0a 20 20  20 20 20 20 20 33 30 30  |ySIZE.       300|
000027f0  20 59 2b 3d 31 0a 20 20  20 20 20 20 20 33 31 30  | Y+=1.       310|
00002800  20 69 6d 61 67 5a 2b 3d  69 6d 61 67 49 4e 43 0a  | imagZ+=imagINC.|
00002810  20 20 20 20 20 20 20 33  32 30 20 55 4e 54 49 4c  |       320 UNTIL|
00002820  20 59 3e 3d 78 79 53 49  5a 45 0a 20 20 20 20 20  | Y>=xySIZE.     |
00002830  20 20 33 33 30 20 45 4e  44 0a 20 20 20 20 20 20  |  330 END.      |
00002840  20 33 34 30 20 3a 0a 20  20 20 20 20 20 20 33 35  | 340 :.       35|
00002850  30 20 44 45 46 50 52 4f  43 69 6e 69 74 0a 20 20  |0 DEFPROCinit.  |
00002860  20 20 20 20 20 33 36 30  20 4d 4f 44 45 31 33 0a  |     360 MODE13.|
00002870  20 20 20 20 20 20 20 33  37 30 20 6c 69 6e 6b 3d  |       370 link=|
00002880  31 34 3a 70 63 3d 31 35  0a 20 20 20 20 20 20 20  |14:pc=15.       |
00002890  33 38 30 20 44 49 4d 20  4d 43 20 26 31 30 30 0a  |380 DIM MC &100.|
000028a0  20 20 20 20 20 20 20 33  39 30 20 46 4f 52 20 70  |       390 FOR p|
000028b0  61 73 73 25 3d 30 20 54  4f 20 32 20 53 54 45 50  |ass%=0 TO 2 STEP|
000028c0  20 32 0a 20 20 20 20 20  20 20 34 30 30 20 50 25  | 2.       400 P%|
000028d0  3d 4d 43 0a 20 20 20 20  20 20 20 34 31 30 20 5b  |=MC.       410 [|
000028e0  4f 50 54 20 70 61 73 73  25 0a 20 20 20 20 20 20  |OPT pass%.      |
000028f0  20 34 32 30 20 2e 76 64  75 20 45 51 55 44 20 31  | 420 .vdu EQUD 1|
00002900  34 38 3a 45 51 55 44 20  2d 31 0a 20 20 20 20 20  |48:EQUD -1.     |
00002910  20 20 34 33 30 20 2e 70  6c 6f 74 20 4c 44 52 20  |  430 .plot LDR |
00002920  72 33 2c 76 64 75 0a 20  20 20 20 20 20 20 34 34  |r3,vdu.       44|
00002930  30 20 41 44 44 20 72 33  2c 72 33 2c 72 31 2c 4c  |0 ADD r3,r3,r1,L|
00002940  53 4c 20 23 38 0a 20 20  20 20 20 20 20 34 35 30  |SL #8.       450|
00002950  20 41 44 44 20 72 33 2c  72 33 2c 72 31 2c 4c 53  | ADD r3,r3,r1,LS|
00002960  4c 20 23 36 0a 20 20 20  20 20 20 20 34 36 30 20  |L #6.       460 |
00002970  53 54 52 42 20 72 32 2c  5b 72 33 2c 72 30 5d 0a  |STRB r2,[r3,r0].|
00002980  20 20 20 20 20 20 20 34  37 30 20 4d 4f 56 20 70  |       470 MOV p|
00002990  63 2c 6c 69 6e 6b 0a 20  20 20 20 20 20 20 34 38  |c,link.       48|
000029a0  30 20 5d 0a 20 20 20 20  20 20 20 34 39 30 20 4e  |0 ].       490 N|
000029b0  45 58 54 0a 20 20 20 20  20 20 20 35 30 30 20 53  |EXT.       500 S|
000029c0  59 53 20 22 4f 53 5f 52  65 61 64 56 64 75 56 61  |YS "OS_ReadVduVa|
000029d0  72 69 61 62 6c 65 73 22  2c 76 64 75 2c 76 64 75  |riables",vdu,vdu|
000029e0  0a 20 20 20 20 20 20 20  35 31 30 20 45 4e 44 50  |.       510 ENDP|
000029f0  52 4f 43 0a 20 20 20 20  20 20 20 35 32 30 20 3a  |ROC.       520 :|
00002a00  0a 20 20 20 20 20 20 20  35 33 30 20 44 45 46 50  |.       530 DEFP|
00002a10  52 4f 43 70 6c 6f 74 28  58 2c 59 2c 63 6f 75 6e  |ROCplot(X,Y,coun|
00002a20  74 29 0a 20 20 20 20 20  20 20 35 34 30 20 41 25  |t).       540 A%|
00002a30  3d 58 3a 42 25 3d 59 0a  20 20 20 20 20 20 20 35  |=X:B%=Y.       5|
00002a40  35 30 20 43 25 3d 63 6f  75 6e 74 20 4d 4f 44 20  |50 C%=count MOD |
00002a50  32 35 36 0a 20 20 20 20  20 20 20 35 36 30 20 43  |256.       560 C|
00002a60  41 4c 4c 70 6c 6f 74 0a  20 20 20 20 20 20 20 35  |ALLplot.       5|
00002a70  37 30 20 45 4e 44 50 52  4f 43 0a 0a 0a 20 59 6f  |70 ENDPROC... Yo|
00002a80  75 20 6d 75 73 74 20 72  65 61 6c 69 73 65 20 74  |u must realise t|
00002a90  68 61 74 20 75 6e 64 65  72 73 74 61 6e 64 69 6e  |hat understandin|
00002aa0  67 20 68 6f 77 20 74 6f  20 70 72 6f 67 72 61 6d  |g how to program|
00002ab0  20 66 72 61 63 74 61 6c  73 20 63 61 6e 20 0a 62  | fractals can .b|
00002ac0  65 20 73 6c 69 67 68 74  6c 79 20 6d 6f 72 65 20  |e slightly more |
00002ad0  64 69 66 66 69 63 75 6c  74 20 74 68 61 6e 20 75  |difficult than u|
00002ae0  6e 64 65 72 73 74 61 6e  64 69 6e 67 20 74 68 65  |nderstanding the|
00002af0  6d 2c 20 73 6f 20 69 66  20 79 6f 75 20 64 6f 20  |m, so if you do |
00002b00  0a 6e 6f 74 20 66 65 65  6c 20 74 68 61 74 20 79  |.not feel that y|
00002b10  6f 75 20 61 72 65 20 75  70 20 74 6f 20 64 6f 69  |ou are up to doi|
00002b20  6e 67 20 73 6f 6d 65 20  6d 6f 72 65 20 6f 6e 20  |ng some more on |
00002b30  70 72 6f 67 72 61 6d 73  20 74 6f 20 64 6f 20 0a  |programs to do .|
00002b40  77 69 74 68 20 66 72 61  63 74 61 6c 73 0a 20 54  |with fractals. T|
00002b50  68 65 20 6d 65 74 68 6f  64 20 66 6f 72 20 70 6c  |he method for pl|
00002b60  6f 74 74 69 6e 67 20 63  61 6e 20 62 65 20 77 68  |otting can be wh|
00002b70  61 74 20 65 76 65 72 20  79 6f 75 20 6c 69 6b 65  |at ever you like|
00002b80  2c 20 68 65 72 65 20 49  20 63 68 6f 6f 73 65 20  |, here I choose |
00002b90  0a 74 6f 20 64 69 72 65  63 74 6c 79 20 77 72 69  |.to directly wri|
00002ba0  74 65 20 74 6f 20 73 63  72 65 65 6e 20 6d 65 6d  |te to screen mem|
00002bb0  6f 72 79 20 61 73 20 79  6f 75 20 64 6f 20 6e 6f  |ory as you do no|
00002bc0  74 20 6e 65 65 64 20 74  6f 20 62 6f 74 68 65 72  |t need to bother|
00002bd0  0a 64 65 61 6c 69 6e 67  20 77 69 74 68 20 74 68  |.dealing with th|
00002be0  65 72 65 20 6e 6f 74 20  62 65 69 6e 67 20 74 68  |ere not being th|
00002bf0  65 20 73 61 6d 65 20 6e  75 6d 62 65 72 20 6f 66  |e same number of|
00002c00  20 70 69 78 65 6c 73 20  61 73 20 70 6c 6f 74 20  | pixels as plot |
00002c10  0a 6e 75 6d 62 65 72 73  2e 20 28 69 65 20 61 20  |.numbers. (ie a |
00002c20  70 6c 6f 74 20 63 6f 6d  6d 61 6e 64 20 63 61 6e  |plot command can|
00002c30  20 74 61 6b 65 20 72 6f  75 67 68 6c 79 20 30 2d  | take roughly 0-|
00002c40  31 30 32 34 20 61 73 20  61 20 63 6f 2d 0a 6f 72  |1024 as a co-.or|
00002c50  64 69 6e 61 74 65 2c 20  62 75 74 20 74 68 65 20  |dinate, but the |
00002c60  73 63 72 65 65 6e 20 69  6e 20 6d 6f 64 65 20 31  |screen in mode 1|
00002c70  33 20 68 61 73 20 6f 6e  6c 79 20 72 6f 75 67 68  |3 has only rough|
00002c80  6c 79 20 32 35 36 20 70  69 78 65 6c 73 20 0a 61  |ly 256 pixels .a|
00002c90  63 72 6f 73 73 20 61 6e  64 20 75 70 29 2e 0a 20  |cross and up).. |
00002ca0  49 6e 20 32 35 36 20 63  6f 6c 6f 75 72 20 73 63  |In 256 colour sc|
00002cb0  72 65 65 6e 20 6d 6f 64  65 73 20 73 75 63 68 20  |reen modes such |
00002cc0  61 73 20 4d 4f 44 45 20  31 33 20 69 74 20 69 73  |as MODE 13 it is|
00002cd0  20 65 61 73 79 20 74 6f  20 64 72 61 77 20 62 79  | easy to draw by|
00002ce0  20 0a 64 69 72 65 63 74  6c 79 20 77 72 69 74 69  | .directly writi|
00002cf0  6e 67 20 74 6f 20 74 68  65 20 73 63 72 65 65 6e  |ng to the screen|
00002d00  20 61 73 20 65 61 63 68  20 70 69 78 65 6c 20 74  | as each pixel t|
00002d10  61 6b 65 73 20 6f 6e 65  20 62 79 74 65 2e 20 59  |akes one byte. Y|
00002d20  6f 75 20 0a 6a 75 73 74  20 73 65 6c 65 63 74 20  |ou .just select |
00002d30  74 68 65 20 63 6f 6c 6f  75 72 20 62 79 20 77 72  |the colour by wr|
00002d40  69 74 69 6e 67 20 61 20  6e 75 6d 62 65 72 20 62  |iting a number b|
00002d50  65 74 77 65 65 6e 20 30  20 61 6e 64 20 32 35 36  |etween 0 and 256|
00002d60  2e 20 41 6c 6c 20 0a 76  65 72 79 20 73 69 6d 70  |. All .very simp|
00002d70  6c 65 20 63 6f 6d 70 61  72 65 64 20 77 69 74 68  |le compared with|
00002d80  20 6f 74 68 65 72 20 6e  75 6d 62 65 72 20 6f 66  | other number of|
00002d90  20 63 6f 6c 6f 75 72 73  20 6d 6f 64 65 73 2e 20  | colours modes. |
00002da0  0a 4e 6f 72 6d 61 6c 6c  79 20 69 74 20 69 73 20  |.Normally it is |
00002db0  61 20 62 61 64 20 69 64  65 61 20 74 6f 20 77 72  |a bad idea to wr|
00002dc0  69 74 65 20 64 69 72 65  63 74 6c 79 20 74 6f 20  |ite directly to |
00002dd0  68 61 72 64 77 61 72 65  20 77 69 74 68 6f 75 74  |hardware without|
00002de0  20 0a 67 6f 69 6e 67 20  74 68 72 6f 75 67 68 20  | .going through |
00002df0  74 68 65 20 6f 70 65 72  61 74 69 6e 67 20 73 79  |the operating sy|
00002e00  73 74 65 6d 2c 20 61 6e  64 20 6f 6e 20 61 6e 20  |stem, and on an |
00002e10  41 72 63 68 69 6d 65 64  65 73 20 74 68 65 20 0a  |Archimedes the .|
00002e20  73 63 72 65 65 6e 20 6d  65 6d 6f 72 79 20 64 6f  |screen memory do|
00002e30  65 73 20 6e 6f 74 20 73  74 61 79 20 69 6e 20 74  |es not stay in t|
00002e40  68 65 20 73 61 6d 65 20  70 6c 61 63 65 20 61 73  |he same place as|
00002e50  20 6f 6e 20 61 20 42 42  43 2c 20 62 75 74 20 0a  | on a BBC, but .|
00002e60  41 63 6f 72 6e 20 68 61  76 65 20 70 72 6f 76 69  |Acorn have provi|
00002e70  64 65 64 20 61 20 6e 69  63 65 20 6c 69 74 74 6c  |ded a nice littl|
00002e80  65 20 6f 70 65 72 61 74  69 6e 67 20 73 79 73 74  |e operating syst|
00002e90  65 6d 20 63 61 6c 6c 20  74 6f 20 66 69 6e 64 20  |em call to find |
00002ea0  0a 6f 75 74 20 65 78 61  63 74 6c 79 20 77 68 65  |.out exactly whe|
00002eb0  72 65 20 74 6f 20 77 72  69 74 65 20 74 6f 2e 0a  |re to write to..|
00002ec0  20 49 6e 20 66 61 63 74  20 74 68 65 20 61 62 6f  | In fact the abo|
00002ed0  76 65 20 6c 69 73 74 69  6e 67 20 28 65 78 61 6d  |ve listing (exam|
00002ee0  70 6c 65 32 29 20 69 73  20 61 20 6c 6f 6e 67 20  |ple2) is a long |
00002ef0  76 65 72 73 69 6f 6e 20  6a 75 73 74 20 74 6f 20  |version just to |
00002f00  0a 6d 61 6b 65 20 68 6f  77 20 69 74 20 77 6f 72  |.make how it wor|
00002f10  6b 73 20 6d 6f 72 65 20  63 6c 65 61 72 2e 20 44  |ks more clear. D|
00002f20  6f 6e 27 74 20 62 6f 74  68 65 72 20 74 72 79 69  |on't bother tryi|
00002f30  6e 67 20 74 6f 20 75 6e  64 65 72 73 74 61 6e 64  |ng to understand|
00002f40  20 0a 74 68 65 20 6d 61  63 68 69 6e 65 20 63 6f  | .the machine co|
00002f50  64 65 20 70 6c 6f 74 74  69 6e 67 20 72 6f 75 74  |de plotting rout|
00002f60  69 6e 65 20 69 66 20 79  6f 75 20 68 61 76 65 20  |ine if you have |
00002f70  6e 6f 74 20 63 6f 6d 65  20 61 63 72 6f 73 73 20  |not come across |
00002f80  0a 74 68 69 73 20 73 6f  72 74 20 6f 66 20 74 68  |.this sort of th|
00002f90  69 6e 67 20 62 65 66 6f  72 65 20 61 73 20 69 74  |ing before as it|
00002fa0  20 77 69 6c 6c 20 6a 75  73 74 20 6d 61 6b 65 20  | will just make |
00002fb0  69 74 20 6d 6f 72 65 20  64 69 66 66 69 63 75 6c  |it more difficul|
00002fc0  74 20 0a 66 6f 72 20 79  6f 75 20 74 6f 20 75 6e  |t .for you to un|
00002fd0  64 65 72 73 74 61 6e 64  2e 20 48 65 72 65 20 61  |derstand. Here a|
00002fe0  72 65 20 61 20 66 65 77  20 65 78 61 6d 70 6c 65  |re a few example|
00002ff0  20 42 41 53 49 43 20 6f  6e 65 20 6c 69 6e 65 72  | BASIC one liner|
00003000  27 73 2c 20 0a 74 68 65  20 66 69 72 73 74 20 6f  |'s, .the first o|
00003010  6e 65 20 69 73 20 74 68  65 20 73 61 6d 65 20 61  |ne is the same a|
00003020  73 20 74 68 65 20 61 62  6f 76 65 20 4a 75 6c 69  |s the above Juli|
00003030  61 20 53 65 74 20 70 6c  6f 74 74 65 72 2c 20 62  |a Set plotter, b|
00003040  75 74 20 0a 63 68 61 6e  67 65 64 20 61 6e 64 20  |ut .changed and |
00003050  63 6f 6d 70 61 63 74 65  64 20 6f 6e 74 6f 20 6f  |compacted onto o|
00003060  6e 65 20 6c 69 6e 65 3a  0a 0a 4f 6e 65 20 6c 69  |ne line:..One li|
00003070  6e 65 20 4a 75 6c 69 61  20 53 65 74 20 70 6c 6f  |ne Julia Set plo|
00003080  74 74 65 72 3a 0a 0a 46  6f 72 20 41 72 63 68 69  |tter:..For Archi|
00003090  2c 20 62 75 74 20 77 69  6c 6c 20 68 61 76 65 20  |, but will have |
000030a0  74 6f 20 74 79 70 65 20  69 6e 20 75 73 69 6e 67  |to type in using|
000030b0  20 42 41 53 49 43 20 45  64 69 74 6f 72 2e 0a 0a  | BASIC Editor...|
000030c0  31 30 4d 4f 2e 31 33 3a  43 31 3d 2d 2e 37 35 3a  |10MO.13:C1=-.75:|
000030d0  43 32 3d 30 3a 53 3d 32  34 35 3a 72 6e 3d 2d 32  |C2=0:S=245:rn=-2|
000030e0  3a 69 6e 3d 2d 32 3a 72  78 3d 32 3a 69 78 3d 32  |:in=-2:rx=2:ix=2|
000030f0  3a 72 69 6e 3d 28 72 78  2d 72 6e 29 2f 53 3a 0a  |:rin=(rx-rn)/S:.|
00003100  69 69 6e 3d 28 69 78 2d  69 6e 29 2f 53 3a 69 5a  |iin=(ix-in)/S:iZ|
00003110  3d 69 6e 3a 59 3d 30 3a  52 45 50 2e 3a 72 5a 3d  |=in:Y=0:REP.:rZ=|
00003120  72 6e 3a 58 3d 30 3a 52  45 50 2e 3a 41 3d 72 5a  |rn:X=0:REP.:A=rZ|
00003130  3a 42 3d 69 5a 3a 63 3d  30 3a 52 45 50 2e 3a 0a  |:B=iZ:c=0:REP.:.|
00003140  73 3d 41 5e 32 2d 42 5e  32 2b 43 31 3a 42 3d 32  |s=A^2-B^2+C1:B=2|
00003150  2a 41 2a 42 2b 43 32 3a  41 3d 73 3a 63 2b 3d 31  |*A*B+C2:A=s:c+=1|
00003160  3a 55 4e 2e 28 41 5e 32  2b 42 5e 32 29 3e 3d 32  |:UN.(A^2+B^2)>=2|
00003170  4f 52 63 3e 3d 32 35 36  3a 47 43 4f 4c 30 2c 63  |ORc>=256:GCOL0,c|
00003180  20 0a 20 4d 4f 44 20 36  34 20 54 49 4e 54 20 63  | . MOD 64 TINT c|
00003190  20 44 49 56 34 3a 50 4f  49 4e 54 34 2a 58 2c 34  | DIV4:POINT4*X,4|
000031a0  2a 59 3a 58 2b 3d 31 3a  72 5a 2b 3d 72 69 6e 3a  |*Y:X+=1:rZ+=rin:|
000031b0  55 4e 2e 58 3e 3d 53 3a  59 2b 3d 31 3a 0a 69 5a  |UN.X>=S:Y+=1:.iZ|
000031c0  2b 3d 69 69 6e 3a 55 4e  2e 59 3e 3d 53 0a 0a 4c  |+=iin:UN.Y>=S..L|
000031d0  65 73 73 20 65 61 73 69  6c 79 20 63 68 61 6e 67  |ess easily chang|
000031e0  65 64 20 41 72 63 68 69  20 76 65 72 73 69 6f 6e  |ed Archi version|
000031f0  2c 20 61 6e 64 20 75 73  69 6e 67 20 6f 6e 6c 79  |, and using only|
00003200  20 36 34 20 63 6f 6c 6f  75 72 73 2e 0a 0a 31 30  | 64 colours...10|
00003210  4d 4f 44 45 31 33 3a 43  31 3d 2d 2e 37 35 3a 43  |MODE13:C1=-.75:C|
00003220  32 3d 30 3a 53 3d 32 34  35 3a 69 6e 63 3d 34 2f  |2=0:S=245:inc=4/|
00003230  53 3a 59 3d 30 3a 69 5a  3d 2d 32 3a 52 45 50 2e  |S:Y=0:iZ=-2:REP.|
00003240  3a 72 5a 3d 2d 32 3a 58  3d 30 3a 0a 52 45 50 2e  |:rZ=-2:X=0:.REP.|
00003250  3a 41 3d 72 5a 3a 42 3d  69 5a 3a 63 3d 30 3a 52  |:A=rZ:B=iZ:c=0:R|
00003260  45 50 2e 3a 73 3d 41 5e  32 2d 42 5e 32 2b 43 31  |EP.:s=A^2-B^2+C1|
00003270  3a 42 3d 32 2a 41 2a 42  3a 41 3d 73 3a 63 2b 3d  |:B=2*A*B:A=s:c+=|
00003280  31 3a 55 4e 54 49 4c 0a  28 41 5e 32 2b 42 5e 32  |1:UNTIL.(A^2+B^2|
00003290  29 3e 3d 32 4f 52 63 3e  3d 32 35 36 3a 47 43 4f  |)>=2ORc>=256:GCO|
000032a0  4c 30 2c 63 20 4d 4f 44  20 36 34 3a 50 4f 49 4e  |L0,c MOD 64:POIN|
000032b0  54 34 2a 58 2c 34 2a 59  3a 58 2b 3d 31 3a 72 5a  |T4*X,4*Y:X+=1:rZ|
000032c0  2b 3d 69 6e 63 3a 0a 55  4e 54 49 4c 58 3e 3d 53  |+=inc:.UNTILX>=S|
000032d0  3a 59 2b 3d 31 3a 69 5a  2b 3d 69 6e 63 3a 55 4e  |:Y+=1:iZ+=inc:UN|
000032e0  54 49 4c 59 3e 3d 53 0a  0a 49 6e 20 62 6f 74 68  |TILY>=S..In both|
000032f0  20 6f 66 20 74 68 65 20  61 62 6f 76 65 2c 20 63  | of the above, c|
00003300  68 61 6e 67 65 20 53 20  74 6f 20 74 68 65 20 73  |hange S to the s|
00003310  69 7a 65 20 6f 66 20 69  6d 61 67 65 20 72 65 71  |ize of image req|
00003320  75 69 72 65 64 2e 0a 0a  0a 0a 54 68 61 74 20 63  |uired.....That c|
00003330  6f 6e 63 6c 75 64 65 73  20 77 68 61 74 20 49 20  |oncludes what I |
00003340  61 6d 20 67 6f 69 6e 67  20 74 6f 20 73 61 79 20  |am going to say |
00003350  66 6f 72 20 6e 6f 77 2c  20 62 75 74 20 69 66 20  |for now, but if |
00003360  61 6e 79 6f 6e 65 20 0a  77 61 6e 74 73 20 6d 65  |anyone .wants me|
00003370  20 74 6f 20 63 6f 6e 74  69 6e 75 65 2c 20 73 65  | to continue, se|
00003380  6e 64 20 6d 65 20 a3 35  20 77 69 74 68 20 53 2e  |nd me .5 with S.|
00003390  41 2e 45 2e 2c 20 6f 72  20 73 65 6e 64 20 6d 65  |A.E., or send me|
000033a0  20 61 20 0a 6c 65 74 74  65 72 2c 20 61 6e 64 20  | a .letter, and |
000033b0  49 20 77 69 6c 6c 20 70  75 74 20 69 74 20 69 6e  |I will put it in|
000033c0  20 74 68 65 20 70 75 62  6c 69 63 20 64 6f 6d 61  | the public doma|
000033d0  69 6e 20 66 6f 72 20 79  6f 75 2e 0a 0a 0a 42 79  |in for you....By|
000033e0  65 20 2e 2e 2e 2e 20 66  6f 72 20 6e 6f 77 20 2e  |e .... for now .|
000033f0  2e 2e 2e 2e 2e 2e 2e 0a  0a 0a                    |..........|
000033fa