Home » Recent acquisitions » Acorn ADFS disks » adfs_ArchimedesWorld_199201.adf » January92 » !AWJan92/Goodies/ArcAut/Automatons/Chaos
!AWJan92/Goodies/ArcAut/Automatons/Chaos
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » Recent acquisitions » Acorn ADFS disks » adfs_ArchimedesWorld_199201.adf » January92 |
Filename: | !AWJan92/Goodies/ArcAut/Automatons/Chaos |
Read OK: | ✔ |
File size: | 037F bytes |
Load address: | 0000 |
Exec address: | 0000 |
File contents
AUTOMATON* Chaos This uses the Moore neighbourhood & the maximum of 256 cell states. The states are partitioned into two sections. On one, evolution occurs by averaging & incrementing the cells (as in Rug) & on the other in a 'approximately' chaotic manner; there is a slight overlap between the two resulting bands of states. This leads to competing regions of 'Rug' type stability & of 'Chaos'. Try 150x100 & 50x40 windows. INITIALISATION* 10DEF PROCdo 20*SetEval wrap on 30*SetEval l 96 40*SetEval k 115 50*SetEval inc 13 60ENDPROC SCREEN* 10DEF PROCdo 20PROCsoup(0,256,1) 30ENDPROC CODE* ( CELL [<l>/2] < IF ([FNround(2*<k>/<l>*256)] CELL * 8 >> ==) CELL <l> <= IF ([FNround(2*<k>/<l>*256)] CELL * 8 >> [FNround(2*<k>)] SWAP - ==) READ_NEIG SUM_NEIG 3 >> <inc> + == ) END*
00000000 41 55 54 4f 4d 41 54 4f 4e 2a 0a 0a 20 20 43 68 |AUTOMATON*.. Ch| 00000010 61 6f 73 0a 0a 20 20 54 68 69 73 20 75 73 65 73 |aos.. This uses| 00000020 20 74 68 65 20 4d 6f 6f 72 65 20 6e 65 69 67 68 | the Moore neigh| 00000030 62 6f 75 72 68 6f 6f 64 20 26 20 74 68 65 20 6d |bourhood & the m| 00000040 61 78 69 6d 75 6d 20 6f 66 20 32 35 36 20 63 65 |aximum of 256 ce| 00000050 6c 6c 20 73 74 61 74 65 73 2e 20 54 68 65 0a 20 |ll states. The. | 00000060 20 73 74 61 74 65 73 20 61 72 65 20 70 61 72 74 | states are part| 00000070 69 74 69 6f 6e 65 64 20 69 6e 74 6f 20 74 77 6f |itioned into two| 00000080 20 73 65 63 74 69 6f 6e 73 2e 20 4f 6e 20 6f 6e | sections. On on| 00000090 65 2c 20 65 76 6f 6c 75 74 69 6f 6e 20 6f 63 63 |e, evolution occ| 000000a0 75 72 73 20 62 79 0a 20 20 61 76 65 72 61 67 69 |urs by. averagi| 000000b0 6e 67 20 26 20 69 6e 63 72 65 6d 65 6e 74 69 6e |ng & incrementin| 000000c0 67 20 74 68 65 20 63 65 6c 6c 73 20 28 61 73 20 |g the cells (as | 000000d0 69 6e 20 52 75 67 29 20 26 20 6f 6e 20 74 68 65 |in Rug) & on the| 000000e0 20 6f 74 68 65 72 20 69 6e 20 61 0a 20 20 27 61 | other in a. 'a| 000000f0 70 70 72 6f 78 69 6d 61 74 65 6c 79 27 20 63 68 |pproximately' ch| 00000100 61 6f 74 69 63 20 6d 61 6e 6e 65 72 3b 20 74 68 |aotic manner; th| 00000110 65 72 65 20 69 73 20 61 20 73 6c 69 67 68 74 20 |ere is a slight | 00000120 6f 76 65 72 6c 61 70 20 62 65 74 77 65 65 6e 20 |overlap between | 00000130 74 68 65 20 74 77 6f 0a 20 20 72 65 73 75 6c 74 |the two. result| 00000140 69 6e 67 20 62 61 6e 64 73 20 6f 66 20 73 74 61 |ing bands of sta| 00000150 74 65 73 2e 20 54 68 69 73 20 6c 65 61 64 73 20 |tes. This leads | 00000160 74 6f 20 63 6f 6d 70 65 74 69 6e 67 20 72 65 67 |to competing reg| 00000170 69 6f 6e 73 20 6f 66 20 27 52 75 67 27 20 74 79 |ions of 'Rug' ty| 00000180 70 65 0a 20 20 73 74 61 62 69 6c 69 74 79 20 26 |pe. stability &| 00000190 20 6f 66 20 27 43 68 61 6f 73 27 2e 20 54 72 79 | of 'Chaos'. Try| 000001a0 20 31 35 30 78 31 30 30 20 26 20 35 30 78 34 30 | 150x100 & 50x40| 000001b0 20 77 69 6e 64 6f 77 73 2e 0a 0a 49 4e 49 54 49 | windows...INITI| 000001c0 41 4c 49 53 41 54 49 4f 4e 2a 0a 0a 20 20 31 30 |ALISATION*.. 10| 000001d0 44 45 46 20 50 52 4f 43 64 6f 0a 20 20 32 30 2a |DEF PROCdo. 20*| 000001e0 53 65 74 45 76 61 6c 20 77 72 61 70 20 6f 6e 0a |SetEval wrap on.| 000001f0 20 20 33 30 2a 53 65 74 45 76 61 6c 20 6c 20 39 | 30*SetEval l 9| 00000200 36 0a 20 20 34 30 2a 53 65 74 45 76 61 6c 20 6b |6. 40*SetEval k| 00000210 20 31 31 35 0a 20 20 35 30 2a 53 65 74 45 76 61 | 115. 50*SetEva| 00000220 6c 20 69 6e 63 20 31 33 0a 20 20 36 30 45 4e 44 |l inc 13. 60END| 00000230 50 52 4f 43 0a 0a 53 43 52 45 45 4e 2a 0a 0a 20 |PROC..SCREEN*.. | 00000240 20 31 30 44 45 46 20 50 52 4f 43 64 6f 0a 20 20 | 10DEF PROCdo. | 00000250 32 30 50 52 4f 43 73 6f 75 70 28 30 2c 32 35 36 |20PROCsoup(0,256| 00000260 2c 31 29 0a 20 20 33 30 45 4e 44 50 52 4f 43 0a |,1). 30ENDPROC.| 00000270 0a 43 4f 44 45 2a 0a 0a 28 20 43 45 4c 4c 20 5b |.CODE*..( CELL [| 00000280 3c 6c 3e 2f 32 5d 20 3c 20 49 46 20 28 5b 46 4e |<l>/2] < IF ([FN| 00000290 72 6f 75 6e 64 28 32 2a 3c 6b 3e 2f 3c 6c 3e 2a |round(2*<k>/<l>*| 000002a0 32 35 36 29 5d 20 43 45 4c 4c 20 2a 20 38 20 3e |256)] CELL * 8 >| 000002b0 3e 20 3d 3d 29 0a 20 20 43 45 4c 4c 20 20 3c 6c |> ==). CELL <l| 000002c0 3e 20 20 20 3c 3d 20 49 46 20 28 5b 46 4e 72 6f |> <= IF ([FNro| 000002d0 75 6e 64 28 32 2a 3c 6b 3e 2f 3c 6c 3e 2a 32 35 |und(2*<k>/<l>*25| 000002e0 36 29 5d 20 43 45 4c 4c 20 2a 20 38 20 3e 3e 0a |6)] CELL * 8 >>.| 000002f0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00000300 20 20 20 20 20 5b 46 4e 72 6f 75 6e 64 28 32 2a | [FNround(2*| 00000310 3c 6b 3e 29 5d 20 53 57 41 50 20 2d 20 20 20 20 |<k>)] SWAP - | 00000320 20 20 20 20 20 20 20 20 20 20 3d 3d 29 0a 20 20 | ==). | 00000330 52 45 41 44 5f 4e 45 49 47 0a 20 20 53 55 4d 5f |READ_NEIG. SUM_| 00000340 4e 45 49 47 20 33 20 3e 3e 20 3c 69 6e 63 3e 20 |NEIG 3 >> <inc> | 00000350 2b 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 |+ | 00000360 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00000370 20 20 20 20 3d 3d 20 20 29 0a 0a 45 4e 44 2a | == )..END*| 0000037f