Home » Archimedes archive » Acorn User » AU 1997-01 B.adf » Regulars » StarInfo/Allen/!Ignotum/Formulae/Formulae/Inte

StarInfo/Allen/!Ignotum/Formulae/Formulae/Inte

This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.

Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.

Tape/disk: Home » Archimedes archive » Acorn User » AU 1997-01 B.adf » Regulars
Filename: StarInfo/Allen/!Ignotum/Formulae/Formulae/Inte
Read OK:
File size: 071B bytes
Load address: 0000
Exec address: 0000
File contents
# Maths > Integration

# New entries should take the form of:
#     Formula
#     Note 1
#     Note 2
#     Note 3
#     Note 4
#     Note 5
#     Formula
#     Note 1
#     And so on...
# To fit snugly into the window, each line should be no longer
# than 42 characters.
# There is a limit of 25 formulas per topic.

# Any notes should be made here, at the beginning and should
# be preceeded by a hash (#).

{x^n=x^(n+1)/(n+1)+k
Where:
n does not equal -1
k is a constant of integration


{cosx=sinx+k
Where:
k is a constant of integration



{sinx=-cosx+k
Where:
k is a constant of integration



{tanx=ln|secx|+k
Where:
k is a constant of integration



{cosecx=ln|tan�x|+k
Where:
k is a constant of integration



{secx=ln|tan(45�+�x)|+k
Where:
k is a constant of integration



{cotx=ln|sinx|+k
Where:
k is a constant of integration



{sec�x=tanx+k
Where:
k is a constant of integration



{secxtanx=secx+k
Where:
k is a constant of integration



{cosec�x=-cotx+k
Where:
k is a constant of integration



{1/x=ln|x|+k
Where:
k is a constant of integration



{e^x=e^x+k
Where:
k is a constant of integration



{1/(a�-x�)^�=arcsin(x/a)+k
Where:
k is a constant of integration
Note: arcsinx is also written as
sin^(-1)x

{a/(a�+x�)=arctan(x/a)+k
Where:
k is a constant of integration
Note: arctanx is also written as
tan^(-1)x

{f'(x)/f(x)=ln|f(x)|+k
Where:
f(x) is a function of x
f'(x) is the differentiation of this
function
k is a constant of integration
f(x)=f(g(u))(dx/du)
This is called integration by
substitution, where you replace a
function of x with u, and multiply it by
dx/du.

{u(dv/dx)=uv-{(du/dx)v
This is called integration by parts.
For example, to integrate xe^x:
Let u=x and dv/dx=e^x
So du/dx=1 and v=e^x
So {xe^x dx = xe^x-{e^x = e^x(x-1)+k
















































00000000  23 20 4d 61 74 68 73 20  3e 20 49 6e 74 65 67 72  |# Maths > Integr|
00000010  61 74 69 6f 6e 0a 0a 23  20 4e 65 77 20 65 6e 74  |ation..# New ent|
00000020  72 69 65 73 20 73 68 6f  75 6c 64 20 74 61 6b 65  |ries should take|
00000030  20 74 68 65 20 66 6f 72  6d 20 6f 66 3a 0a 23 20  | the form of:.# |
00000040  20 20 20 20 46 6f 72 6d  75 6c 61 0a 23 20 20 20  |    Formula.#   |
00000050  20 20 4e 6f 74 65 20 31  0a 23 20 20 20 20 20 4e  |  Note 1.#     N|
00000060  6f 74 65 20 32 0a 23 20  20 20 20 20 4e 6f 74 65  |ote 2.#     Note|
00000070  20 33 0a 23 20 20 20 20  20 4e 6f 74 65 20 34 0a  | 3.#     Note 4.|
00000080  23 20 20 20 20 20 4e 6f  74 65 20 35 0a 23 20 20  |#     Note 5.#  |
00000090  20 20 20 46 6f 72 6d 75  6c 61 0a 23 20 20 20 20  |   Formula.#    |
000000a0  20 4e 6f 74 65 20 31 0a  23 20 20 20 20 20 41 6e  | Note 1.#     An|
000000b0  64 20 73 6f 20 6f 6e 2e  2e 2e 0a 23 20 54 6f 20  |d so on....# To |
000000c0  66 69 74 20 73 6e 75 67  6c 79 20 69 6e 74 6f 20  |fit snugly into |
000000d0  74 68 65 20 77 69 6e 64  6f 77 2c 20 65 61 63 68  |the window, each|
000000e0  20 6c 69 6e 65 20 73 68  6f 75 6c 64 20 62 65 20  | line should be |
000000f0  6e 6f 20 6c 6f 6e 67 65  72 0a 23 20 74 68 61 6e  |no longer.# than|
00000100  20 34 32 20 63 68 61 72  61 63 74 65 72 73 2e 0a  | 42 characters..|
00000110  23 20 54 68 65 72 65 20  69 73 20 61 20 6c 69 6d  |# There is a lim|
00000120  69 74 20 6f 66 20 32 35  20 66 6f 72 6d 75 6c 61  |it of 25 formula|
00000130  73 20 70 65 72 20 74 6f  70 69 63 2e 0a 0a 23 20  |s per topic...# |
00000140  41 6e 79 20 6e 6f 74 65  73 20 73 68 6f 75 6c 64  |Any notes should|
00000150  20 62 65 20 6d 61 64 65  20 68 65 72 65 2c 20 61  | be made here, a|
00000160  74 20 74 68 65 20 62 65  67 69 6e 6e 69 6e 67 20  |t the beginning |
00000170  61 6e 64 20 73 68 6f 75  6c 64 0a 23 20 62 65 20  |and should.# be |
00000180  70 72 65 63 65 65 64 65  64 20 62 79 20 61 20 68  |preceeded by a h|
00000190  61 73 68 20 28 23 29 2e  0a 0a 7b 78 5e 6e 3d 78  |ash (#)...{x^n=x|
000001a0  5e 28 6e 2b 31 29 2f 28  6e 2b 31 29 2b 6b 0a 57  |^(n+1)/(n+1)+k.W|
000001b0  68 65 72 65 3a 0a 6e 20  64 6f 65 73 20 6e 6f 74  |here:.n does not|
000001c0  20 65 71 75 61 6c 20 2d  31 0a 6b 20 69 73 20 61  | equal -1.k is a|
000001d0  20 63 6f 6e 73 74 61 6e  74 20 6f 66 20 69 6e 74  | constant of int|
000001e0  65 67 72 61 74 69 6f 6e  0a 0a 0a 7b 63 6f 73 78  |egration...{cosx|
000001f0  3d 73 69 6e 78 2b 6b 0a  57 68 65 72 65 3a 0a 6b  |=sinx+k.Where:.k|
00000200  20 69 73 20 61 20 63 6f  6e 73 74 61 6e 74 20 6f  | is a constant o|
00000210  66 20 69 6e 74 65 67 72  61 74 69 6f 6e 0a 0a 0a  |f integration...|
00000220  0a 7b 73 69 6e 78 3d 2d  63 6f 73 78 2b 6b 0a 57  |.{sinx=-cosx+k.W|
00000230  68 65 72 65 3a 0a 6b 20  69 73 20 61 20 63 6f 6e  |here:.k is a con|
00000240  73 74 61 6e 74 20 6f 66  20 69 6e 74 65 67 72 61  |stant of integra|
00000250  74 69 6f 6e 0a 0a 0a 0a  7b 74 61 6e 78 3d 6c 6e  |tion....{tanx=ln|
00000260  7c 73 65 63 78 7c 2b 6b  0a 57 68 65 72 65 3a 0a  ||secx|+k.Where:.|
00000270  6b 20 69 73 20 61 20 63  6f 6e 73 74 61 6e 74 20  |k is a constant |
00000280  6f 66 20 69 6e 74 65 67  72 61 74 69 6f 6e 0a 0a  |of integration..|
00000290  0a 0a 7b 63 6f 73 65 63  78 3d 6c 6e 7c 74 61 6e  |..{cosecx=ln|tan|
000002a0  bd 78 7c 2b 6b 0a 57 68  65 72 65 3a 0a 6b 20 69  |.x|+k.Where:.k i|
000002b0  73 20 61 20 63 6f 6e 73  74 61 6e 74 20 6f 66 20  |s a constant of |
000002c0  69 6e 74 65 67 72 61 74  69 6f 6e 0a 0a 0a 0a 7b  |integration....{|
000002d0  73 65 63 78 3d 6c 6e 7c  74 61 6e 28 34 35 b0 2b  |secx=ln|tan(45.+|
000002e0  bd 78 29 7c 2b 6b 0a 57  68 65 72 65 3a 0a 6b 20  |.x)|+k.Where:.k |
000002f0  69 73 20 61 20 63 6f 6e  73 74 61 6e 74 20 6f 66  |is a constant of|
00000300  20 69 6e 74 65 67 72 61  74 69 6f 6e 0a 0a 0a 0a  | integration....|
00000310  7b 63 6f 74 78 3d 6c 6e  7c 73 69 6e 78 7c 2b 6b  |{cotx=ln|sinx|+k|
00000320  0a 57 68 65 72 65 3a 0a  6b 20 69 73 20 61 20 63  |.Where:.k is a c|
00000330  6f 6e 73 74 61 6e 74 20  6f 66 20 69 6e 74 65 67  |onstant of integ|
00000340  72 61 74 69 6f 6e 0a 0a  0a 0a 7b 73 65 63 b2 78  |ration....{sec.x|
00000350  3d 74 61 6e 78 2b 6b 0a  57 68 65 72 65 3a 0a 6b  |=tanx+k.Where:.k|
00000360  20 69 73 20 61 20 63 6f  6e 73 74 61 6e 74 20 6f  | is a constant o|
00000370  66 20 69 6e 74 65 67 72  61 74 69 6f 6e 0a 0a 0a  |f integration...|
00000380  0a 7b 73 65 63 78 74 61  6e 78 3d 73 65 63 78 2b  |.{secxtanx=secx+|
00000390  6b 0a 57 68 65 72 65 3a  0a 6b 20 69 73 20 61 20  |k.Where:.k is a |
000003a0  63 6f 6e 73 74 61 6e 74  20 6f 66 20 69 6e 74 65  |constant of inte|
000003b0  67 72 61 74 69 6f 6e 0a  0a 0a 0a 7b 63 6f 73 65  |gration....{cose|
000003c0  63 b2 78 3d 2d 63 6f 74  78 2b 6b 0a 57 68 65 72  |c.x=-cotx+k.Wher|
000003d0  65 3a 0a 6b 20 69 73 20  61 20 63 6f 6e 73 74 61  |e:.k is a consta|
000003e0  6e 74 20 6f 66 20 69 6e  74 65 67 72 61 74 69 6f  |nt of integratio|
000003f0  6e 0a 0a 0a 0a 7b 31 2f  78 3d 6c 6e 7c 78 7c 2b  |n....{1/x=ln|x|+|
00000400  6b 0a 57 68 65 72 65 3a  0a 6b 20 69 73 20 61 20  |k.Where:.k is a |
00000410  63 6f 6e 73 74 61 6e 74  20 6f 66 20 69 6e 74 65  |constant of inte|
00000420  67 72 61 74 69 6f 6e 0a  0a 0a 0a 7b 65 5e 78 3d  |gration....{e^x=|
00000430  65 5e 78 2b 6b 0a 57 68  65 72 65 3a 0a 6b 20 69  |e^x+k.Where:.k i|
00000440  73 20 61 20 63 6f 6e 73  74 61 6e 74 20 6f 66 20  |s a constant of |
00000450  69 6e 74 65 67 72 61 74  69 6f 6e 0a 0a 0a 0a 7b  |integration....{|
00000460  31 2f 28 61 b2 2d 78 b2  29 5e bd 3d 61 72 63 73  |1/(a.-x.)^.=arcs|
00000470  69 6e 28 78 2f 61 29 2b  6b 0a 57 68 65 72 65 3a  |in(x/a)+k.Where:|
00000480  0a 6b 20 69 73 20 61 20  63 6f 6e 73 74 61 6e 74  |.k is a constant|
00000490  20 6f 66 20 69 6e 74 65  67 72 61 74 69 6f 6e 0a  | of integration.|
000004a0  4e 6f 74 65 3a 20 61 72  63 73 69 6e 78 20 69 73  |Note: arcsinx is|
000004b0  20 61 6c 73 6f 20 77 72  69 74 74 65 6e 20 61 73  | also written as|
000004c0  0a 73 69 6e 5e 28 2d 31  29 78 0a 0a 7b 61 2f 28  |.sin^(-1)x..{a/(|
000004d0  61 b2 2b 78 b2 29 3d 61  72 63 74 61 6e 28 78 2f  |a.+x.)=arctan(x/|
000004e0  61 29 2b 6b 0a 57 68 65  72 65 3a 0a 6b 20 69 73  |a)+k.Where:.k is|
000004f0  20 61 20 63 6f 6e 73 74  61 6e 74 20 6f 66 20 69  | a constant of i|
00000500  6e 74 65 67 72 61 74 69  6f 6e 0a 4e 6f 74 65 3a  |ntegration.Note:|
00000510  20 61 72 63 74 61 6e 78  20 69 73 20 61 6c 73 6f  | arctanx is also|
00000520  20 77 72 69 74 74 65 6e  20 61 73 0a 74 61 6e 5e  | written as.tan^|
00000530  28 2d 31 29 78 0a 0a 7b  66 27 28 78 29 2f 66 28  |(-1)x..{f'(x)/f(|
00000540  78 29 3d 6c 6e 7c 66 28  78 29 7c 2b 6b 0a 57 68  |x)=ln|f(x)|+k.Wh|
00000550  65 72 65 3a 0a 66 28 78  29 20 69 73 20 61 20 66  |ere:.f(x) is a f|
00000560  75 6e 63 74 69 6f 6e 20  6f 66 20 78 0a 66 27 28  |unction of x.f'(|
00000570  78 29 20 69 73 20 74 68  65 20 64 69 66 66 65 72  |x) is the differ|
00000580  65 6e 74 69 61 74 69 6f  6e 20 6f 66 20 74 68 69  |entiation of thi|
00000590  73 0a 66 75 6e 63 74 69  6f 6e 0a 6b 20 69 73 20  |s.function.k is |
000005a0  61 20 63 6f 6e 73 74 61  6e 74 20 6f 66 20 69 6e  |a constant of in|
000005b0  74 65 67 72 61 74 69 6f  6e 0a 66 28 78 29 3d 66  |tegration.f(x)=f|
000005c0  28 67 28 75 29 29 28 64  78 2f 64 75 29 0a 54 68  |(g(u))(dx/du).Th|
000005d0  69 73 20 69 73 20 63 61  6c 6c 65 64 20 69 6e 74  |is is called int|
000005e0  65 67 72 61 74 69 6f 6e  20 62 79 0a 73 75 62 73  |egration by.subs|
000005f0  74 69 74 75 74 69 6f 6e  2c 20 77 68 65 72 65 20  |titution, where |
00000600  79 6f 75 20 72 65 70 6c  61 63 65 20 61 0a 66 75  |you replace a.fu|
00000610  6e 63 74 69 6f 6e 20 6f  66 20 78 20 77 69 74 68  |nction of x with|
00000620  20 75 2c 20 61 6e 64 20  6d 75 6c 74 69 70 6c 79  | u, and multiply|
00000630  20 69 74 20 62 79 0a 64  78 2f 64 75 2e 0a 0a 7b  | it by.dx/du...{|
00000640  75 28 64 76 2f 64 78 29  3d 75 76 2d 7b 28 64 75  |u(dv/dx)=uv-{(du|
00000650  2f 64 78 29 76 0a 54 68  69 73 20 69 73 20 63 61  |/dx)v.This is ca|
00000660  6c 6c 65 64 20 69 6e 74  65 67 72 61 74 69 6f 6e  |lled integration|
00000670  20 62 79 20 70 61 72 74  73 2e 0a 46 6f 72 20 65  | by parts..For e|
00000680  78 61 6d 70 6c 65 2c 20  74 6f 20 69 6e 74 65 67  |xample, to integ|
00000690  72 61 74 65 20 78 65 5e  78 3a 0a 4c 65 74 20 75  |rate xe^x:.Let u|
000006a0  3d 78 20 61 6e 64 20 64  76 2f 64 78 3d 65 5e 78  |=x and dv/dx=e^x|
000006b0  0a 53 6f 20 64 75 2f 64  78 3d 31 20 61 6e 64 20  |.So du/dx=1 and |
000006c0  76 3d 65 5e 78 0a 53 6f  20 7b 78 65 5e 78 20 64  |v=e^x.So {xe^x d|
000006d0  78 20 3d 20 78 65 5e 78  2d 7b 65 5e 78 20 3d 20  |x = xe^x-{e^x = |
000006e0  65 5e 78 28 78 2d 31 29  2b 6b 0a 0a 0a 0a 0a 0a  |e^x(x-1)+k......|
000006f0  0a 0a 0a 0a 0a 0a 0a 0a  0a 0a 0a 0a 0a 0a 0a 0a  |................|
*
00000710  0a 0a 0a 0a 0a 0a 0a 0a  0a 0a 0a                 |...........|
0000071b