Home » Archimedes archive » Zipped Apps » ArtWorks » !ArtWorks/Auto/!PathTool/PrintProcs
!ArtWorks/Auto/!PathTool/PrintProcs
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » Archimedes archive » Zipped Apps » ArtWorks |
Filename: | !ArtWorks/Auto/!PathTool/PrintProcs |
Read OK: | ✔ |
File size: | 0B54 bytes |
Load address: | 0000 |
Exec address: | 0000 |
File contents
/Min{2 copy gt{exch}if pop}bind def/NumSteps{sub 3 1 roll sub dtransform matrix defaultmatrix idtransform dup mul exch dup mul add sqrt currentscreen pop pop 72 exch div div}bind def/S_eoclip{currentflat{{eoclip}stopped{dup currentflat exch sub 20 gt{([Error: PathTooComplex; OffendingCommand: eoclip ]\n) print flush exit}{currentflat 2 add setflat}ifelse}{exit}ifelse}loop setflat}bind def/S_clip{currentflat{{clip}stopped{dup currentflat exch sub 20 gt{([Error: PathTooComplex; OffendingCommand: clip]\n) print flush exit} {currentflat 2 add setflat}ifelse}{exit}ifelse}loop setflat}bind def /S_eofill{currentflat{{eofill}stopped{dup currentflat exch sub 20 gt{( [Error: PathTooComplex; OffendingCommand: eofill]\n) print flush exit} {currentflat 2 add setflat}ifelse}{exit}ifelse}loop setflat}bind def /linearfill{pathbbox/ury exch def/urx exch def/lly exch def/llx exch def {S_eoclip}{S_clip}ifelse/eB exch def/eG exch def/eR exch def/sB exch def/sG exch def/sR exch def/endY exch def/endX exch def/startY exch def/startX exch def startX endX eq startY endY eq and sB eB eq sR eR eq and sG eG eq and or {sR sG sB C newpath llx lly urx ury Bx S_eofill}{endX startX sub dup mul endY startY sub dup mul add sqrt/distance exch def endY startY sub endX startX sub atan newpath llx lly urx ury Bx startX startY translate rotate pathbbox/ury exch def/urx exch def/lly exch def/llx exch def eR eG eB C newpath llx lly urx ury Bx S_eofill sR sG sB C newpath llx lly 0 ury Bx S_eofill eR sR sub abs eG sG sub abs Max eB sB sub abs Max endY startY endX startX NumSteps Min 256 Min ceiling 1 Max/Steps exch def/incR eR sR sub Steps div def/incG eG sG sub Steps div def/incB eB sB sub Steps div def/incD distance Steps div def/startX 0 def 0 1 Steps 1 sub{sR sG sB C/sR sR incR add def/sG sG incG add def/sB sB incB add def newpath startX lly startX incD add dup/startX exch def ury Bx S_eofill pop}for}ifelse}bind def/radialfill {pathbbox/ury exch def/urx exch def/lly exch def/llx exch def{S_eoclip} {S_clip}ifelse/eB exch def/eG exch def/eR exch def/sB exch def/sG exch def /sR exch def/endY exch def/endX exch def/startY exch def/startX exch def startX endX eq startY endY eq and sB eB eq sR eR eq and sG eG eq and or{eR eG eB C newpath llx lly urx ury Bx S_eofill}{endX startX sub dup mul endY startY sub dup mul add sqrt/distance exch def eR eG eB C newpath llx lly urx ury Bx S_eofill eR sR sub abs eG sG sub abs Max eB sB sub abs Max endY startY endX startX NumSteps Min 256 Min ceiling 1 Max/Steps exch def/incR eR sR sub Steps div def/incG eG sG sub Steps div def/incB eB sB sub Steps div def/incD distance Steps div def/distance 0 def 0 1 Steps 1 sub{sR sG sB C/sR sR incR add def/sG sG incG add def/sB sB incB add def newpath startX startY distance 0 360 arc closepath distance incD add dup/distance exch def 0 rmoveto startX startY distance 0 360 arc closepath S_eofill pop}for}ifelse }bind def
00000000 2f 4d 69 6e 7b 32 20 63 6f 70 79 20 67 74 7b 65 |/Min{2 copy gt{e| 00000010 78 63 68 7d 69 66 20 70 6f 70 7d 62 69 6e 64 20 |xch}if pop}bind | 00000020 64 65 66 2f 4e 75 6d 53 74 65 70 73 7b 73 75 62 |def/NumSteps{sub| 00000030 20 33 20 31 20 72 6f 6c 6c 20 73 75 62 20 64 74 | 3 1 roll sub dt| 00000040 72 61 6e 73 66 6f 72 6d 0a 6d 61 74 72 69 78 20 |ransform.matrix | 00000050 64 65 66 61 75 6c 74 6d 61 74 72 69 78 20 69 64 |defaultmatrix id| 00000060 74 72 61 6e 73 66 6f 72 6d 20 64 75 70 20 6d 75 |transform dup mu| 00000070 6c 20 65 78 63 68 20 64 75 70 20 6d 75 6c 20 61 |l exch dup mul a| 00000080 64 64 20 73 71 72 74 20 63 75 72 72 65 6e 74 73 |dd sqrt currents| 00000090 63 72 65 65 6e 0a 70 6f 70 20 70 6f 70 20 37 32 |creen.pop pop 72| 000000a0 20 65 78 63 68 20 64 69 76 20 64 69 76 7d 62 69 | exch div div}bi| 000000b0 6e 64 20 64 65 66 2f 53 5f 65 6f 63 6c 69 70 7b |nd def/S_eoclip{| 000000c0 63 75 72 72 65 6e 74 66 6c 61 74 7b 7b 65 6f 63 |currentflat{{eoc| 000000d0 6c 69 70 7d 73 74 6f 70 70 65 64 7b 64 75 70 0a |lip}stopped{dup.| 000000e0 63 75 72 72 65 6e 74 66 6c 61 74 20 65 78 63 68 |currentflat exch| 000000f0 20 73 75 62 20 32 30 20 67 74 7b 28 5b 45 72 72 | sub 20 gt{([Err| 00000100 6f 72 3a 20 50 61 74 68 54 6f 6f 43 6f 6d 70 6c |or: PathTooCompl| 00000110 65 78 3b 20 4f 66 66 65 6e 64 69 6e 67 43 6f 6d |ex; OffendingCom| 00000120 6d 61 6e 64 3a 20 65 6f 63 6c 69 70 0a 5d 5c 6e |mand: eoclip.]\n| 00000130 29 20 70 72 69 6e 74 20 66 6c 75 73 68 20 65 78 |) print flush ex| 00000140 69 74 7d 7b 63 75 72 72 65 6e 74 66 6c 61 74 20 |it}{currentflat | 00000150 32 20 61 64 64 20 73 65 74 66 6c 61 74 7d 69 66 |2 add setflat}if| 00000160 65 6c 73 65 7d 7b 65 78 69 74 7d 69 66 65 6c 73 |else}{exit}ifels| 00000170 65 7d 6c 6f 6f 70 0a 73 65 74 66 6c 61 74 7d 62 |e}loop.setflat}b| 00000180 69 6e 64 20 64 65 66 2f 53 5f 63 6c 69 70 7b 63 |ind def/S_clip{c| 00000190 75 72 72 65 6e 74 66 6c 61 74 7b 7b 63 6c 69 70 |urrentflat{{clip| 000001a0 7d 73 74 6f 70 70 65 64 7b 64 75 70 20 63 75 72 |}stopped{dup cur| 000001b0 72 65 6e 74 66 6c 61 74 20 65 78 63 68 20 73 75 |rentflat exch su| 000001c0 62 0a 32 30 20 67 74 7b 28 5b 45 72 72 6f 72 3a |b.20 gt{([Error:| 000001d0 20 50 61 74 68 54 6f 6f 43 6f 6d 70 6c 65 78 3b | PathTooComplex;| 000001e0 20 4f 66 66 65 6e 64 69 6e 67 43 6f 6d 6d 61 6e | OffendingComman| 000001f0 64 3a 20 63 6c 69 70 5d 5c 6e 29 20 70 72 69 6e |d: clip]\n) prin| 00000200 74 20 66 6c 75 73 68 20 65 78 69 74 7d 0a 7b 63 |t flush exit}.{c| 00000210 75 72 72 65 6e 74 66 6c 61 74 20 32 20 61 64 64 |urrentflat 2 add| 00000220 20 73 65 74 66 6c 61 74 7d 69 66 65 6c 73 65 7d | setflat}ifelse}| 00000230 7b 65 78 69 74 7d 69 66 65 6c 73 65 7d 6c 6f 6f |{exit}ifelse}loo| 00000240 70 20 73 65 74 66 6c 61 74 7d 62 69 6e 64 20 64 |p setflat}bind d| 00000250 65 66 0a 2f 53 5f 65 6f 66 69 6c 6c 7b 63 75 72 |ef./S_eofill{cur| 00000260 72 65 6e 74 66 6c 61 74 7b 7b 65 6f 66 69 6c 6c |rentflat{{eofill| 00000270 7d 73 74 6f 70 70 65 64 7b 64 75 70 20 63 75 72 |}stopped{dup cur| 00000280 72 65 6e 74 66 6c 61 74 20 65 78 63 68 20 73 75 |rentflat exch su| 00000290 62 20 32 30 20 67 74 7b 28 0a 5b 45 72 72 6f 72 |b 20 gt{(.[Error| 000002a0 3a 20 50 61 74 68 54 6f 6f 43 6f 6d 70 6c 65 78 |: PathTooComplex| 000002b0 3b 20 4f 66 66 65 6e 64 69 6e 67 43 6f 6d 6d 61 |; OffendingComma| 000002c0 6e 64 3a 20 65 6f 66 69 6c 6c 5d 5c 6e 29 20 70 |nd: eofill]\n) p| 000002d0 72 69 6e 74 20 66 6c 75 73 68 20 65 78 69 74 7d |rint flush exit}| 000002e0 0a 7b 63 75 72 72 65 6e 74 66 6c 61 74 20 32 20 |.{currentflat 2 | 000002f0 61 64 64 20 73 65 74 66 6c 61 74 7d 69 66 65 6c |add setflat}ifel| 00000300 73 65 7d 7b 65 78 69 74 7d 69 66 65 6c 73 65 7d |se}{exit}ifelse}| 00000310 6c 6f 6f 70 20 73 65 74 66 6c 61 74 7d 62 69 6e |loop setflat}bin| 00000320 64 20 64 65 66 0a 2f 6c 69 6e 65 61 72 66 69 6c |d def./linearfil| 00000330 6c 7b 70 61 74 68 62 62 6f 78 2f 75 72 79 20 65 |l{pathbbox/ury e| 00000340 78 63 68 20 64 65 66 2f 75 72 78 20 65 78 63 68 |xch def/urx exch| 00000350 20 64 65 66 2f 6c 6c 79 20 65 78 63 68 20 64 65 | def/lly exch de| 00000360 66 2f 6c 6c 78 20 65 78 63 68 20 64 65 66 0a 7b |f/llx exch def.{| 00000370 53 5f 65 6f 63 6c 69 70 7d 7b 53 5f 63 6c 69 70 |S_eoclip}{S_clip| 00000380 7d 69 66 65 6c 73 65 2f 65 42 20 65 78 63 68 20 |}ifelse/eB exch | 00000390 64 65 66 2f 65 47 20 65 78 63 68 20 64 65 66 2f |def/eG exch def/| 000003a0 65 52 20 65 78 63 68 20 64 65 66 2f 73 42 20 65 |eR exch def/sB e| 000003b0 78 63 68 20 64 65 66 2f 73 47 0a 65 78 63 68 20 |xch def/sG.exch | 000003c0 64 65 66 2f 73 52 20 65 78 63 68 20 64 65 66 2f |def/sR exch def/| 000003d0 65 6e 64 59 20 65 78 63 68 20 64 65 66 2f 65 6e |endY exch def/en| 000003e0 64 58 20 65 78 63 68 20 64 65 66 2f 73 74 61 72 |dX exch def/star| 000003f0 74 59 20 65 78 63 68 20 64 65 66 2f 73 74 61 72 |tY exch def/star| 00000400 74 58 20 65 78 63 68 0a 64 65 66 20 73 74 61 72 |tX exch.def star| 00000410 74 58 20 65 6e 64 58 20 65 71 20 73 74 61 72 74 |tX endX eq start| 00000420 59 20 65 6e 64 59 20 65 71 20 61 6e 64 20 73 42 |Y endY eq and sB| 00000430 20 65 42 20 65 71 20 73 52 20 65 52 20 65 71 20 | eB eq sR eR eq | 00000440 61 6e 64 20 73 47 20 65 47 20 65 71 20 61 6e 64 |and sG eG eq and| 00000450 20 6f 72 0a 7b 73 52 20 73 47 20 73 42 20 43 20 | or.{sR sG sB C | 00000460 6e 65 77 70 61 74 68 20 6c 6c 78 20 6c 6c 79 20 |newpath llx lly | 00000470 75 72 78 20 75 72 79 20 42 78 20 53 5f 65 6f 66 |urx ury Bx S_eof| 00000480 69 6c 6c 7d 7b 65 6e 64 58 20 73 74 61 72 74 58 |ill}{endX startX| 00000490 20 73 75 62 20 64 75 70 20 6d 75 6c 0a 65 6e 64 | sub dup mul.end| 000004a0 59 20 73 74 61 72 74 59 20 73 75 62 20 64 75 70 |Y startY sub dup| 000004b0 20 6d 75 6c 20 61 64 64 20 73 71 72 74 2f 64 69 | mul add sqrt/di| 000004c0 73 74 61 6e 63 65 20 65 78 63 68 20 64 65 66 20 |stance exch def | 000004d0 65 6e 64 59 20 73 74 61 72 74 59 20 73 75 62 20 |endY startY sub | 000004e0 65 6e 64 58 0a 73 74 61 72 74 58 20 73 75 62 20 |endX.startX sub | 000004f0 61 74 61 6e 20 6e 65 77 70 61 74 68 20 6c 6c 78 |atan newpath llx| 00000500 20 6c 6c 79 20 75 72 78 20 75 72 79 20 42 78 20 | lly urx ury Bx | 00000510 73 74 61 72 74 58 20 73 74 61 72 74 59 20 74 72 |startX startY tr| 00000520 61 6e 73 6c 61 74 65 20 72 6f 74 61 74 65 0a 70 |anslate rotate.p| 00000530 61 74 68 62 62 6f 78 2f 75 72 79 20 65 78 63 68 |athbbox/ury exch| 00000540 20 64 65 66 2f 75 72 78 20 65 78 63 68 20 64 65 | def/urx exch de| 00000550 66 2f 6c 6c 79 20 65 78 63 68 20 64 65 66 2f 6c |f/lly exch def/l| 00000560 6c 78 20 65 78 63 68 20 64 65 66 20 65 52 20 65 |lx exch def eR e| 00000570 47 20 65 42 20 43 0a 6e 65 77 70 61 74 68 20 6c |G eB C.newpath l| 00000580 6c 78 20 6c 6c 79 20 75 72 78 20 75 72 79 20 42 |lx lly urx ury B| 00000590 78 20 53 5f 65 6f 66 69 6c 6c 20 73 52 20 73 47 |x S_eofill sR sG| 000005a0 20 73 42 20 43 20 6e 65 77 70 61 74 68 20 6c 6c | sB C newpath ll| 000005b0 78 20 6c 6c 79 20 30 20 75 72 79 20 42 78 0a 53 |x lly 0 ury Bx.S| 000005c0 5f 65 6f 66 69 6c 6c 20 65 52 20 73 52 20 73 75 |_eofill eR sR su| 000005d0 62 20 61 62 73 20 65 47 20 73 47 20 73 75 62 20 |b abs eG sG sub | 000005e0 61 62 73 20 4d 61 78 20 65 42 20 73 42 20 73 75 |abs Max eB sB su| 000005f0 62 20 61 62 73 20 4d 61 78 20 65 6e 64 59 20 73 |b abs Max endY s| 00000600 74 61 72 74 59 20 65 6e 64 58 0a 73 74 61 72 74 |tartY endX.start| 00000610 58 20 4e 75 6d 53 74 65 70 73 20 4d 69 6e 20 32 |X NumSteps Min 2| 00000620 35 36 20 4d 69 6e 20 63 65 69 6c 69 6e 67 20 31 |56 Min ceiling 1| 00000630 20 4d 61 78 2f 53 74 65 70 73 20 65 78 63 68 20 | Max/Steps exch | 00000640 64 65 66 2f 69 6e 63 52 20 65 52 20 73 52 20 73 |def/incR eR sR s| 00000650 75 62 0a 53 74 65 70 73 20 64 69 76 20 64 65 66 |ub.Steps div def| 00000660 2f 69 6e 63 47 20 65 47 20 73 47 20 73 75 62 20 |/incG eG sG sub | 00000670 53 74 65 70 73 20 64 69 76 20 64 65 66 2f 69 6e |Steps div def/in| 00000680 63 42 20 65 42 20 73 42 20 73 75 62 20 53 74 65 |cB eB sB sub Ste| 00000690 70 73 20 64 69 76 20 64 65 66 2f 69 6e 63 44 0a |ps div def/incD.| 000006a0 64 69 73 74 61 6e 63 65 20 53 74 65 70 73 20 64 |distance Steps d| 000006b0 69 76 20 64 65 66 2f 73 74 61 72 74 58 20 30 20 |iv def/startX 0 | 000006c0 64 65 66 20 30 20 31 20 53 74 65 70 73 20 31 20 |def 0 1 Steps 1 | 000006d0 73 75 62 7b 73 52 20 73 47 20 73 42 20 43 2f 73 |sub{sR sG sB C/s| 000006e0 52 20 73 52 20 69 6e 63 52 0a 61 64 64 20 64 65 |R sR incR.add de| 000006f0 66 2f 73 47 20 73 47 20 69 6e 63 47 20 61 64 64 |f/sG sG incG add| 00000700 20 64 65 66 2f 73 42 20 73 42 20 69 6e 63 42 20 | def/sB sB incB | 00000710 61 64 64 20 64 65 66 20 6e 65 77 70 61 74 68 20 |add def newpath | 00000720 73 74 61 72 74 58 20 6c 6c 79 20 73 74 61 72 74 |startX lly start| 00000730 58 20 69 6e 63 44 0a 61 64 64 20 64 75 70 2f 73 |X incD.add dup/s| 00000740 74 61 72 74 58 20 65 78 63 68 20 64 65 66 20 75 |tartX exch def u| 00000750 72 79 20 42 78 20 53 5f 65 6f 66 69 6c 6c 20 70 |ry Bx S_eofill p| 00000760 6f 70 7d 66 6f 72 7d 69 66 65 6c 73 65 7d 62 69 |op}for}ifelse}bi| 00000770 6e 64 20 64 65 66 2f 72 61 64 69 61 6c 66 69 6c |nd def/radialfil| 00000780 6c 0a 7b 70 61 74 68 62 62 6f 78 2f 75 72 79 20 |l.{pathbbox/ury | 00000790 65 78 63 68 20 64 65 66 2f 75 72 78 20 65 78 63 |exch def/urx exc| 000007a0 68 20 64 65 66 2f 6c 6c 79 20 65 78 63 68 20 64 |h def/lly exch d| 000007b0 65 66 2f 6c 6c 78 20 65 78 63 68 20 64 65 66 7b |ef/llx exch def{| 000007c0 53 5f 65 6f 63 6c 69 70 7d 0a 7b 53 5f 63 6c 69 |S_eoclip}.{S_cli| 000007d0 70 7d 69 66 65 6c 73 65 2f 65 42 20 65 78 63 68 |p}ifelse/eB exch| 000007e0 20 64 65 66 2f 65 47 20 65 78 63 68 20 64 65 66 | def/eG exch def| 000007f0 2f 65 52 20 65 78 63 68 20 64 65 66 2f 73 42 20 |/eR exch def/sB | 00000800 65 78 63 68 20 64 65 66 2f 73 47 20 65 78 63 68 |exch def/sG exch| 00000810 20 64 65 66 0a 2f 73 52 20 65 78 63 68 20 64 65 | def./sR exch de| 00000820 66 2f 65 6e 64 59 20 65 78 63 68 20 64 65 66 2f |f/endY exch def/| 00000830 65 6e 64 58 20 65 78 63 68 20 64 65 66 2f 73 74 |endX exch def/st| 00000840 61 72 74 59 20 65 78 63 68 20 64 65 66 2f 73 74 |artY exch def/st| 00000850 61 72 74 58 20 65 78 63 68 20 64 65 66 0a 73 74 |artX exch def.st| 00000860 61 72 74 58 20 65 6e 64 58 20 65 71 20 73 74 61 |artX endX eq sta| 00000870 72 74 59 20 65 6e 64 59 20 65 71 20 61 6e 64 20 |rtY endY eq and | 00000880 73 42 20 65 42 20 65 71 20 73 52 20 65 52 20 65 |sB eB eq sR eR e| 00000890 71 20 61 6e 64 20 73 47 20 65 47 20 65 71 20 61 |q and sG eG eq a| 000008a0 6e 64 20 6f 72 7b 65 52 0a 65 47 20 65 42 20 43 |nd or{eR.eG eB C| 000008b0 20 6e 65 77 70 61 74 68 20 6c 6c 78 20 6c 6c 79 | newpath llx lly| 000008c0 20 75 72 78 20 75 72 79 20 42 78 20 53 5f 65 6f | urx ury Bx S_eo| 000008d0 66 69 6c 6c 7d 7b 65 6e 64 58 20 73 74 61 72 74 |fill}{endX start| 000008e0 58 20 73 75 62 20 64 75 70 20 6d 75 6c 20 65 6e |X sub dup mul en| 000008f0 64 59 0a 73 74 61 72 74 59 20 73 75 62 20 64 75 |dY.startY sub du| 00000900 70 20 6d 75 6c 20 61 64 64 20 73 71 72 74 2f 64 |p mul add sqrt/d| 00000910 69 73 74 61 6e 63 65 20 65 78 63 68 20 64 65 66 |istance exch def| 00000920 20 65 52 20 65 47 20 65 42 20 43 20 6e 65 77 70 | eR eG eB C newp| 00000930 61 74 68 20 6c 6c 78 20 6c 6c 79 20 75 72 78 0a |ath llx lly urx.| 00000940 75 72 79 20 42 78 20 53 5f 65 6f 66 69 6c 6c 20 |ury Bx S_eofill | 00000950 65 52 20 73 52 20 73 75 62 20 61 62 73 20 65 47 |eR sR sub abs eG| 00000960 20 73 47 20 73 75 62 20 61 62 73 20 4d 61 78 20 | sG sub abs Max | 00000970 65 42 20 73 42 20 73 75 62 20 61 62 73 20 4d 61 |eB sB sub abs Ma| 00000980 78 20 65 6e 64 59 0a 73 74 61 72 74 59 20 65 6e |x endY.startY en| 00000990 64 58 20 73 74 61 72 74 58 20 4e 75 6d 53 74 65 |dX startX NumSte| 000009a0 70 73 20 4d 69 6e 20 32 35 36 20 4d 69 6e 20 63 |ps Min 256 Min c| 000009b0 65 69 6c 69 6e 67 20 31 20 4d 61 78 2f 53 74 65 |eiling 1 Max/Ste| 000009c0 70 73 20 65 78 63 68 20 64 65 66 2f 69 6e 63 52 |ps exch def/incR| 000009d0 20 65 52 0a 73 52 20 73 75 62 20 53 74 65 70 73 | eR.sR sub Steps| 000009e0 20 64 69 76 20 64 65 66 2f 69 6e 63 47 20 65 47 | div def/incG eG| 000009f0 20 73 47 20 73 75 62 20 53 74 65 70 73 20 64 69 | sG sub Steps di| 00000a00 76 20 64 65 66 2f 69 6e 63 42 20 65 42 20 73 42 |v def/incB eB sB| 00000a10 20 73 75 62 20 53 74 65 70 73 20 64 69 76 0a 64 | sub Steps div.d| 00000a20 65 66 2f 69 6e 63 44 20 64 69 73 74 61 6e 63 65 |ef/incD distance| 00000a30 20 53 74 65 70 73 20 64 69 76 20 64 65 66 2f 64 | Steps div def/d| 00000a40 69 73 74 61 6e 63 65 20 30 20 64 65 66 20 30 20 |istance 0 def 0 | 00000a50 31 20 53 74 65 70 73 20 31 20 73 75 62 7b 73 52 |1 Steps 1 sub{sR| 00000a60 20 73 47 20 73 42 20 43 2f 73 52 0a 73 52 20 69 | sG sB C/sR.sR i| 00000a70 6e 63 52 20 61 64 64 20 64 65 66 2f 73 47 20 73 |ncR add def/sG s| 00000a80 47 20 69 6e 63 47 20 61 64 64 20 64 65 66 2f 73 |G incG add def/s| 00000a90 42 20 73 42 20 69 6e 63 42 20 61 64 64 20 64 65 |B sB incB add de| 00000aa0 66 20 6e 65 77 70 61 74 68 20 73 74 61 72 74 58 |f newpath startX| 00000ab0 20 73 74 61 72 74 59 0a 64 69 73 74 61 6e 63 65 | startY.distance| 00000ac0 20 30 20 33 36 30 20 61 72 63 20 63 6c 6f 73 65 | 0 360 arc close| 00000ad0 70 61 74 68 20 64 69 73 74 61 6e 63 65 20 69 6e |path distance in| 00000ae0 63 44 20 61 64 64 20 64 75 70 2f 64 69 73 74 61 |cD add dup/dista| 00000af0 6e 63 65 20 65 78 63 68 20 64 65 66 20 30 0a 72 |nce exch def 0.r| 00000b00 6d 6f 76 65 74 6f 20 73 74 61 72 74 58 20 73 74 |moveto startX st| 00000b10 61 72 74 59 20 64 69 73 74 61 6e 63 65 20 30 20 |artY distance 0 | 00000b20 33 36 30 20 61 72 63 20 63 6c 6f 73 65 70 61 74 |360 arc closepat| 00000b30 68 20 53 5f 65 6f 66 69 6c 6c 20 70 6f 70 7d 66 |h S_eofill pop}f| 00000b40 6f 72 7d 69 66 65 6c 73 65 0a 7d 62 69 6e 64 20 |or}ifelse.}bind | 00000b50 64 65 66 0a |def.| 00000b54