Home » Archimedes archive » Archimedes World » AW Readers Services Special FebMar 92.adf » !ArcWorld/Goodies/Graphs/!ReadMe

!ArcWorld/Goodies/Graphs/!ReadMe

This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.

Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.

Tape/disk: Home » Archimedes archive » Archimedes World » AW Readers Services Special FebMar 92.adf
Filename: !ArcWorld/Goodies/Graphs/!ReadMe
Read OK:
File size: 2E6A bytes
Load address: FFFFFF42
Exec address: 45194479
File contents





                                    !Graph 
     
    Overview 
     
    This Risc OS application produces graphs of mathematical functions. It 
    is fully multitasking and obeys Acorns rules for Risc Os applications. 
     
    It can graph cartesian, parametric and polar functions. 
     
    Axes can be manually set or automatically calculated. 
     
    Multiple graphs of any one type can be produced on the same set of 
    axes. 
     
    Zooming of cartesian functions is possible by using the mouse to 
    define the zoom area. This is useful for solving equations. 
     
    The coordinates of the pointer can be displayed for cartesian and 
    parametric graphs. This is useful for identifying the position of 
    features of interest. 
     
    Functions and axes values can be saved to disc.  
     
    The graphs produced can be saved as a draw file for loading into !draw 
    for enhancement and for exporting to D.T.P. applications. 
     
    Functions are checked for errors before plotting. 
     
    Functions can be entered in true algebraic form. 
     
    A large number of inbuilt functions are provided such as hyperbolic 
    trig functions and a factorial function. 
     
    Operation in degrees or radians. 
     
    The displayed graph will be scaled instantly as the display window is 
    resized. This means that the full graph will be displayed irrespective 
    of the window size. 
     
    Help messages are produced if !help is installed. 
     
     














                                    Page 1









    Loading 
     
    The application can be loaded in one of two ways. 
     
    1    Insert and mount the disc. Double click on the !graphs icon. This 
         will install the application on the right of the icon bar. 
         Clicking once with select will cause the graph window to be 
         opened. 
     
    2    Insert and mount the disc. Double click on a graph data file. 
         These can be identified by having f(x)= on their icon. 
         This will cause the application to load and the graph file to be 
         loaded. The graph icon will appear on the icon bar. There will be 
         a pause whilst the functions are evaluated. A window will open 
         and the graphs will be displayed. 
     
    A minimum of 200k must be available to load !graph 
     
    Main menu 
     
    The main menu can be popped up at any time by clicking menu whilst 
    over the graphs window. 
     
    The menu has the following options:- 
     
    1    Save data.  
         This allows the functions and axes ranges to be saved to disc. 
     
         Follow the arrow to the right of the menu. A standard Risc Os 
         save window will appear. Enter the file name in the text box or 
         change the existing name. Then either drag the file icon to a 
         directory viewer or, if a full path name exists in the text box 
         click on OK 
     
    2    Save graph 
         This saves the current graph, as displayed in the graph window, 
         as a draw file for loading into other applications such as !Draw 
         and D.T.P.  The size of the graph saved does not depend upon the 
         window size. It may be rescaled within !draw. 
     
         Follow the arrow to the right of the menu. A standard Risc Os 
         save window will appear. Enter the file name in the text box or 
         change the existing name. Then either drag the file icon to a 
         directory viewer or, if a full path name exists in the text box 
         click on OK 
     
         Files saved in this form cannot be loaded back into !graph. 
     
    3    Coordinates 
         When selected this opens a small window which shows the current 
         coordinates of the tip of the pointer in the coordinate system of 
         the the current axes. This is not available with polar graphs and 
         only operates when the pointer is over the graph window. This may 
         be cancelled either by clicking on the close window icon for the 


                                    Page 2









         coordinates window or by selecting it again from the menu. 
     
    4    Axes 
         This causes the axes window to be opened, or brought to the top. 
         The axes window contains information about the current values 
         being used for drawing the graph. It is also used to determine if 
         some of the values are to be calculated automatically. A value 
         may be entered by moving to the box containing a value and 
         entering the new value. 
         Shaded values may not be entered since these will be calculated 
         automatically. 
         Clicking on the Auto Yes/No icon switches between the automatic 
         calculation of axes or the manual entering of all ranges. 
         Minimum values should be less than maximum values otherwise. If 
         they are entered the wrong way around they will be swapped. If 
         they are equal they will be adjusted. Values are given to a 
         maximum of six places of decimals.  
         The automatic calculation of axes values means that 
         re-calculation time is somewhat longer. Automatic calculation may 
         give unpredictable results if the function goes to infinity in 
         the graphed region. 
     
    5    Functions 
         This allows the function which is to be graphed to be entered and 
         edited. 
         The long box is used to enter the function (see the section on 
         functions) 
         The plot option can be set to yes or no. It must be set to yes if 
         the graph is to be displayed.  
         Up to six cartesian and three polar and parametric functions can 
         be entered. Each function is numbered. The function displayed can 
         be changed by clicking on the left or right arrow. The box at the 
         top right indicates in which colour the function will be drawn. 
     
    6    Cartesian 
         This selects cartesian functions and axes. Other types are stored 
         internally. Any present cartesian functions are calculated and 
         displayed. 
     
    7    Polar 
         This selects polar functions and axes. Other types are stored 
         internally. Any present polar functions are calculated and 
         displayed. 
     
    8    Parametric 
         This selects parametric functions and axes. Other types are 
         stored internally. Any present parametric functions are 
         calculated and displayed. 
     
    9    Degrees 
         This selects between degrees and radian angular measure. 
         This may be ticked (to indicate degrees are to be used) or 
         unticked (to indicate the use of radians). Select changes the 
         state of the tick. (Default not ticked) 


                                    Page 3









     
    10   Show axes 
         This selects between displaying and not displaying the axes. When 
         ticked the axes will be displayed. (Default is ticked) 
     
    Redrawing the graphs 
     
    Since the redrawing of a graph takes a little while (depending on the 
    complexity of the graph) the display is only recalculated when 
    required. To force re-calculation press select whist over the graph 
    window. The standard hour glass will be displayed whist re-calculation 
    takes place. Any regions of the graph where the function evaluations 
    are not possible (E.G. square roots of negative values) will result in 
    slower computation.  
     
    Loading a file 
     
    With the application loaded a graph data file may be loaded either 
    by:- 
     
    1    Double clicking on the file in a directory viewer. 
    2    Dragging the file and dropping it on the !graph icon on the icon 
         bar. 
     
    In both cases the graph data file will be loaded and the functions 
    recalculated. Any previous functions will be lost. 
     
     
    Functions 
     
    Cartesian functions are entered in terms of the variable x. 
     
    Polar and parametric functions are entered in terms of the variable t. 
     
    Functions can be entered in true algebraic form.  
    For example  
     
         cos 3x sin 2x  
     
    will be evaluated as (cos(3*x)) * (sin(2*x)) 
     
    If in doubt about the order of evaluation add brackets to force 
    correct evaluation order. Functions may be entered in upper or lower 
    case and spaces are not important. 
     
    Help 
     
    By installing the application !help the program will give relevant 
    help depending upon the position of the mouse. 







                                    Page 4









    Operators and functions used 
     
    +         Addition 
    -         Subtraction 
    *         Multiplication 
    /         Division 
     
    ^         is used to raise to a power. EG  x^3 for x cubed. 
    DIV       The integer part of the division eg x DIV 5 
    MOD       The remainder part of the division eg x MOD 5 
    INT       The integer part of the following expression. eg INT x 
    SGN       The sign of the expression. -1 for negative, 0 for zero 1 
              for positive. 
    ABS       The absolute value of the following expression eg ABS x 
    PI        The constant 3.14159265 
    RND       A pseudo random number in the range 0 to 1 
    SQR       The square root of the following expression eg SQR x 
    LN        The natural logarithm of the following expression eg LN x 
    LOG       The logarithm to base ten of the following expression. eg 
              LOG x 
    EXP       e raised to the power of the expression. eg EXP x 
     
    FACT      The factorial of the expression in brackets eg FACT6 
     
    COSH      The hyperbolic cosine of the expression. eg COSHx 
    SINH      The hyperbolic sine of the expression. eg SINHx 
    TANH      The hyperbolic tangent of the expression. eg TANHx 
    ARCCOSH   The inverse hyperbolic cosine of the expression. eg ARCCOSHx 
    ARCSINH   The inverse hyperbolic sine of the expression. eg ARCSINHx 
    ARCTANH   The inverse hyperbolic tangent of the expression. eg 
              ARCTANHx 
     
     
    The following take notice of the degree\radian mode selection.  
     
    SIN       The sine of the expression eg SIN x 
    COS       The cosine of the expression eg COS x 
    TAN       The tangent of the expression eg TAN x 
    ASC       The inverse sine (arc sine) of the expression eg ASC x 
    ACS       The inverse cosine (arc cosine) of the expression eg ACS x 
    ATN       The inverse tangent (arc tangent) of the expression eg ATN x 
     
     
    Zooming 
     
    When cartesian axes are being used it is possible to zoom in on an 
    area. Move to the bottom left of the boundary of the region to be 
    zoomed. Press adjust. 
     
    A bounding box will be drawn from where the pointer is to where the 
    pointer was when adjust was clicked. 
     
    Move to the top right of the area so that the bounding box contains 
    the area to be zoomed. Press adjust again. 


                                    Page 5









     
    The graph will now be re-drawn with the new axes range. 
     
     
    Saving as a sprite 
     
    It is usually preferable to export the graph as a draw file, it may be 
    saved as a sprite by using the grab sprite option on !paint and 
    grabbing the graph from the window. 















































                                    Page 6









    Note 
     
    The file type 777 has been used for a graph data file.  
     
     
     
     
    A F Lane 
    3 Lansdowne Gardens 
    Hailsham 
    East Sussex 
    BN27 1LQ 
     
    February 1990 
     









































                                    Page 7



00000000  0a 0a 0a 0a 0a 0a 20 20  20 20 20 20 20 20 20 20  |......          |
00000010  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00000020  20 20 20 20 20 20 20 20  20 20 21 47 72 61 70 68  |          !Graph|
00000030  20 0a 20 20 20 20 20 0a  20 20 20 20 4f 76 65 72  | .     .    Over|
00000040  76 69 65 77 20 0a 20 20  20 20 20 0a 20 20 20 20  |view .     .    |
00000050  54 68 69 73 20 52 69 73  63 20 4f 53 20 61 70 70  |This Risc OS app|
00000060  6c 69 63 61 74 69 6f 6e  20 70 72 6f 64 75 63 65  |lication produce|
00000070  73 20 67 72 61 70 68 73  20 6f 66 20 6d 61 74 68  |s graphs of math|
00000080  65 6d 61 74 69 63 61 6c  20 66 75 6e 63 74 69 6f  |ematical functio|
00000090  6e 73 2e 20 49 74 20 0a  20 20 20 20 69 73 20 66  |ns. It .    is f|
000000a0  75 6c 6c 79 20 6d 75 6c  74 69 74 61 73 6b 69 6e  |ully multitaskin|
000000b0  67 20 61 6e 64 20 6f 62  65 79 73 20 41 63 6f 72  |g and obeys Acor|
000000c0  6e 73 20 72 75 6c 65 73  20 66 6f 72 20 52 69 73  |ns rules for Ris|
000000d0  63 20 4f 73 20 61 70 70  6c 69 63 61 74 69 6f 6e  |c Os application|
000000e0  73 2e 20 0a 20 20 20 20  20 0a 20 20 20 20 49 74  |s. .     .    It|
000000f0  20 63 61 6e 20 67 72 61  70 68 20 63 61 72 74 65  | can graph carte|
00000100  73 69 61 6e 2c 20 70 61  72 61 6d 65 74 72 69 63  |sian, parametric|
00000110  20 61 6e 64 20 70 6f 6c  61 72 20 66 75 6e 63 74  | and polar funct|
00000120  69 6f 6e 73 2e 20 0a 20  20 20 20 20 0a 20 20 20  |ions. .     .   |
00000130  20 41 78 65 73 20 63 61  6e 20 62 65 20 6d 61 6e  | Axes can be man|
00000140  75 61 6c 6c 79 20 73 65  74 20 6f 72 20 61 75 74  |ually set or aut|
00000150  6f 6d 61 74 69 63 61 6c  6c 79 20 63 61 6c 63 75  |omatically calcu|
00000160  6c 61 74 65 64 2e 20 0a  20 20 20 20 20 0a 20 20  |lated. .     .  |
00000170  20 20 4d 75 6c 74 69 70  6c 65 20 67 72 61 70 68  |  Multiple graph|
00000180  73 20 6f 66 20 61 6e 79  20 6f 6e 65 20 74 79 70  |s of any one typ|
00000190  65 20 63 61 6e 20 62 65  20 70 72 6f 64 75 63 65  |e can be produce|
000001a0  64 20 6f 6e 20 74 68 65  20 73 61 6d 65 20 73 65  |d on the same se|
000001b0  74 20 6f 66 20 0a 20 20  20 20 61 78 65 73 2e 20  |t of .    axes. |
000001c0  0a 20 20 20 20 20 0a 20  20 20 20 5a 6f 6f 6d 69  |.     .    Zoomi|
000001d0  6e 67 20 6f 66 20 63 61  72 74 65 73 69 61 6e 20  |ng of cartesian |
000001e0  66 75 6e 63 74 69 6f 6e  73 20 69 73 20 70 6f 73  |functions is pos|
000001f0  73 69 62 6c 65 20 62 79  20 75 73 69 6e 67 20 74  |sible by using t|
00000200  68 65 20 6d 6f 75 73 65  20 74 6f 20 0a 20 20 20  |he mouse to .   |
00000210  20 64 65 66 69 6e 65 20  74 68 65 20 7a 6f 6f 6d  | define the zoom|
00000220  20 61 72 65 61 2e 20 54  68 69 73 20 69 73 20 75  | area. This is u|
00000230  73 65 66 75 6c 20 66 6f  72 20 73 6f 6c 76 69 6e  |seful for solvin|
00000240  67 20 65 71 75 61 74 69  6f 6e 73 2e 20 0a 20 20  |g equations. .  |
00000250  20 20 20 0a 20 20 20 20  54 68 65 20 63 6f 6f 72  |   .    The coor|
00000260  64 69 6e 61 74 65 73 20  6f 66 20 74 68 65 20 70  |dinates of the p|
00000270  6f 69 6e 74 65 72 20 63  61 6e 20 62 65 20 64 69  |ointer can be di|
00000280  73 70 6c 61 79 65 64 20  66 6f 72 20 63 61 72 74  |splayed for cart|
00000290  65 73 69 61 6e 20 61 6e  64 20 0a 20 20 20 20 70  |esian and .    p|
000002a0  61 72 61 6d 65 74 72 69  63 20 67 72 61 70 68 73  |arametric graphs|
000002b0  2e 20 54 68 69 73 20 69  73 20 75 73 65 66 75 6c  |. This is useful|
000002c0  20 66 6f 72 20 69 64 65  6e 74 69 66 79 69 6e 67  | for identifying|
000002d0  20 74 68 65 20 70 6f 73  69 74 69 6f 6e 20 6f 66  | the position of|
000002e0  20 0a 20 20 20 20 66 65  61 74 75 72 65 73 20 6f  | .    features o|
000002f0  66 20 69 6e 74 65 72 65  73 74 2e 20 0a 20 20 20  |f interest. .   |
00000300  20 20 0a 20 20 20 20 46  75 6e 63 74 69 6f 6e 73  |  .    Functions|
00000310  20 61 6e 64 20 61 78 65  73 20 76 61 6c 75 65 73  | and axes values|
00000320  20 63 61 6e 20 62 65 20  73 61 76 65 64 20 74 6f  | can be saved to|
00000330  20 64 69 73 63 2e 20 20  0a 20 20 20 20 20 0a 20  | disc.  .     . |
00000340  20 20 20 54 68 65 20 67  72 61 70 68 73 20 70 72  |   The graphs pr|
00000350  6f 64 75 63 65 64 20 63  61 6e 20 62 65 20 73 61  |oduced can be sa|
00000360  76 65 64 20 61 73 20 61  20 64 72 61 77 20 66 69  |ved as a draw fi|
00000370  6c 65 20 66 6f 72 20 6c  6f 61 64 69 6e 67 20 69  |le for loading i|
00000380  6e 74 6f 20 21 64 72 61  77 20 0a 20 20 20 20 66  |nto !draw .    f|
00000390  6f 72 20 65 6e 68 61 6e  63 65 6d 65 6e 74 20 61  |or enhancement a|
000003a0  6e 64 20 66 6f 72 20 65  78 70 6f 72 74 69 6e 67  |nd for exporting|
000003b0  20 74 6f 20 44 2e 54 2e  50 2e 20 61 70 70 6c 69  | to D.T.P. appli|
000003c0  63 61 74 69 6f 6e 73 2e  20 0a 20 20 20 20 20 0a  |cations. .     .|
000003d0  20 20 20 20 46 75 6e 63  74 69 6f 6e 73 20 61 72  |    Functions ar|
000003e0  65 20 63 68 65 63 6b 65  64 20 66 6f 72 20 65 72  |e checked for er|
000003f0  72 6f 72 73 20 62 65 66  6f 72 65 20 70 6c 6f 74  |rors before plot|
00000400  74 69 6e 67 2e 20 0a 20  20 20 20 20 0a 20 20 20  |ting. .     .   |
00000410  20 46 75 6e 63 74 69 6f  6e 73 20 63 61 6e 20 62  | Functions can b|
00000420  65 20 65 6e 74 65 72 65  64 20 69 6e 20 74 72 75  |e entered in tru|
00000430  65 20 61 6c 67 65 62 72  61 69 63 20 66 6f 72 6d  |e algebraic form|
00000440  2e 20 0a 20 20 20 20 20  0a 20 20 20 20 41 20 6c  |. .     .    A l|
00000450  61 72 67 65 20 6e 75 6d  62 65 72 20 6f 66 20 69  |arge number of i|
00000460  6e 62 75 69 6c 74 20 66  75 6e 63 74 69 6f 6e 73  |nbuilt functions|
00000470  20 61 72 65 20 70 72 6f  76 69 64 65 64 20 73 75  | are provided su|
00000480  63 68 20 61 73 20 68 79  70 65 72 62 6f 6c 69 63  |ch as hyperbolic|
00000490  20 0a 20 20 20 20 74 72  69 67 20 66 75 6e 63 74  | .    trig funct|
000004a0  69 6f 6e 73 20 61 6e 64  20 61 20 66 61 63 74 6f  |ions and a facto|
000004b0  72 69 61 6c 20 66 75 6e  63 74 69 6f 6e 2e 20 0a  |rial function. .|
000004c0  20 20 20 20 20 0a 20 20  20 20 4f 70 65 72 61 74  |     .    Operat|
000004d0  69 6f 6e 20 69 6e 20 64  65 67 72 65 65 73 20 6f  |ion in degrees o|
000004e0  72 20 72 61 64 69 61 6e  73 2e 20 0a 20 20 20 20  |r radians. .    |
000004f0  20 0a 20 20 20 20 54 68  65 20 64 69 73 70 6c 61  | .    The displa|
00000500  79 65 64 20 67 72 61 70  68 20 77 69 6c 6c 20 62  |yed graph will b|
00000510  65 20 73 63 61 6c 65 64  20 69 6e 73 74 61 6e 74  |e scaled instant|
00000520  6c 79 20 61 73 20 74 68  65 20 64 69 73 70 6c 61  |ly as the displa|
00000530  79 20 77 69 6e 64 6f 77  20 69 73 20 0a 20 20 20  |y window is .   |
00000540  20 72 65 73 69 7a 65 64  2e 20 54 68 69 73 20 6d  | resized. This m|
00000550  65 61 6e 73 20 74 68 61  74 20 74 68 65 20 66 75  |eans that the fu|
00000560  6c 6c 20 67 72 61 70 68  20 77 69 6c 6c 20 62 65  |ll graph will be|
00000570  20 64 69 73 70 6c 61 79  65 64 20 69 72 72 65 73  | displayed irres|
00000580  70 65 63 74 69 76 65 20  0a 20 20 20 20 6f 66 20  |pective .    of |
00000590  74 68 65 20 77 69 6e 64  6f 77 20 73 69 7a 65 2e  |the window size.|
000005a0  20 0a 20 20 20 20 20 0a  20 20 20 20 48 65 6c 70  | .     .    Help|
000005b0  20 6d 65 73 73 61 67 65  73 20 61 72 65 20 70 72  | messages are pr|
000005c0  6f 64 75 63 65 64 20 69  66 20 21 68 65 6c 70 20  |oduced if !help |
000005d0  69 73 20 69 6e 73 74 61  6c 6c 65 64 2e 20 0a 20  |is installed. . |
000005e0  20 20 20 20 0a 20 20 20  20 20 0a 0a 0a 0a 0a 0a  |    .     ......|
000005f0  0a 0a 0a 0a 0a 0a 0a 0a  0a 20 20 20 20 20 20 20  |.........       |
00000600  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00000610  20 20 20 20 20 20 20 20  20 20 20 20 20 50 61 67  |             Pag|
00000620  65 20 31 0a 0a 0a 0a 0a  0a 0a 0a 0a 0a 20 20 20  |e 1..........   |
00000630  20 4c 6f 61 64 69 6e 67  20 0a 20 20 20 20 20 0a  | Loading .     .|
00000640  20 20 20 20 54 68 65 20  61 70 70 6c 69 63 61 74  |    The applicat|
00000650  69 6f 6e 20 63 61 6e 20  62 65 20 6c 6f 61 64 65  |ion can be loade|
00000660  64 20 69 6e 20 6f 6e 65  20 6f 66 20 74 77 6f 20  |d in one of two |
00000670  77 61 79 73 2e 20 0a 20  20 20 20 20 0a 20 20 20  |ways. .     .   |
00000680  20 31 20 20 20 20 49 6e  73 65 72 74 20 61 6e 64  | 1    Insert and|
00000690  20 6d 6f 75 6e 74 20 74  68 65 20 64 69 73 63 2e  | mount the disc.|
000006a0  20 44 6f 75 62 6c 65 20  63 6c 69 63 6b 20 6f 6e  | Double click on|
000006b0  20 74 68 65 20 21 67 72  61 70 68 73 20 69 63 6f  | the !graphs ico|
000006c0  6e 2e 20 54 68 69 73 20  0a 20 20 20 20 20 20 20  |n. This .       |
000006d0  20 20 77 69 6c 6c 20 69  6e 73 74 61 6c 6c 20 74  |  will install t|
000006e0  68 65 20 61 70 70 6c 69  63 61 74 69 6f 6e 20 6f  |he application o|
000006f0  6e 20 74 68 65 20 72 69  67 68 74 20 6f 66 20 74  |n the right of t|
00000700  68 65 20 69 63 6f 6e 20  62 61 72 2e 20 0a 20 20  |he icon bar. .  |
00000710  20 20 20 20 20 20 20 43  6c 69 63 6b 69 6e 67 20  |       Clicking |
00000720  6f 6e 63 65 20 77 69 74  68 20 73 65 6c 65 63 74  |once with select|
00000730  20 77 69 6c 6c 20 63 61  75 73 65 20 74 68 65 20  | will cause the |
00000740  67 72 61 70 68 20 77 69  6e 64 6f 77 20 74 6f 20  |graph window to |
00000750  62 65 20 0a 20 20 20 20  20 20 20 20 20 6f 70 65  |be .         ope|
00000760  6e 65 64 2e 20 0a 20 20  20 20 20 0a 20 20 20 20  |ned. .     .    |
00000770  32 20 20 20 20 49 6e 73  65 72 74 20 61 6e 64 20  |2    Insert and |
00000780  6d 6f 75 6e 74 20 74 68  65 20 64 69 73 63 2e 20  |mount the disc. |
00000790  44 6f 75 62 6c 65 20 63  6c 69 63 6b 20 6f 6e 20  |Double click on |
000007a0  61 20 67 72 61 70 68 20  64 61 74 61 20 66 69 6c  |a graph data fil|
000007b0  65 2e 20 0a 20 20 20 20  20 20 20 20 20 54 68 65  |e. .         The|
000007c0  73 65 20 63 61 6e 20 62  65 20 69 64 65 6e 74 69  |se can be identi|
000007d0  66 69 65 64 20 62 79 20  68 61 76 69 6e 67 20 66  |fied by having f|
000007e0  28 78 29 3d 20 6f 6e 20  74 68 65 69 72 20 69 63  |(x)= on their ic|
000007f0  6f 6e 2e 20 0a 20 20 20  20 20 20 20 20 20 54 68  |on. .         Th|
00000800  69 73 20 77 69 6c 6c 20  63 61 75 73 65 20 74 68  |is will cause th|
00000810  65 20 61 70 70 6c 69 63  61 74 69 6f 6e 20 74 6f  |e application to|
00000820  20 6c 6f 61 64 20 61 6e  64 20 74 68 65 20 67 72  | load and the gr|
00000830  61 70 68 20 66 69 6c 65  20 74 6f 20 62 65 20 0a  |aph file to be .|
00000840  20 20 20 20 20 20 20 20  20 6c 6f 61 64 65 64 2e  |         loaded.|
00000850  20 54 68 65 20 67 72 61  70 68 20 69 63 6f 6e 20  | The graph icon |
00000860  77 69 6c 6c 20 61 70 70  65 61 72 20 6f 6e 20 74  |will appear on t|
00000870  68 65 20 69 63 6f 6e 20  62 61 72 2e 20 54 68 65  |he icon bar. The|
00000880  72 65 20 77 69 6c 6c 20  62 65 20 0a 20 20 20 20  |re will be .    |
00000890  20 20 20 20 20 61 20 70  61 75 73 65 20 77 68 69  |     a pause whi|
000008a0  6c 73 74 20 74 68 65 20  66 75 6e 63 74 69 6f 6e  |lst the function|
000008b0  73 20 61 72 65 20 65 76  61 6c 75 61 74 65 64 2e  |s are evaluated.|
000008c0  20 41 20 77 69 6e 64 6f  77 20 77 69 6c 6c 20 6f  | A window will o|
000008d0  70 65 6e 20 0a 20 20 20  20 20 20 20 20 20 61 6e  |pen .         an|
000008e0  64 20 74 68 65 20 67 72  61 70 68 73 20 77 69 6c  |d the graphs wil|
000008f0  6c 20 62 65 20 64 69 73  70 6c 61 79 65 64 2e 20  |l be displayed. |
00000900  0a 20 20 20 20 20 0a 20  20 20 20 41 20 6d 69 6e  |.     .    A min|
00000910  69 6d 75 6d 20 6f 66 20  32 30 30 6b 20 6d 75 73  |imum of 200k mus|
00000920  74 20 62 65 20 61 76 61  69 6c 61 62 6c 65 20 74  |t be available t|
00000930  6f 20 6c 6f 61 64 20 21  67 72 61 70 68 20 0a 20  |o load !graph . |
00000940  20 20 20 20 0a 20 20 20  20 4d 61 69 6e 20 6d 65  |    .    Main me|
00000950  6e 75 20 0a 20 20 20 20  20 0a 20 20 20 20 54 68  |nu .     .    Th|
00000960  65 20 6d 61 69 6e 20 6d  65 6e 75 20 63 61 6e 20  |e main menu can |
00000970  62 65 20 70 6f 70 70 65  64 20 75 70 20 61 74 20  |be popped up at |
00000980  61 6e 79 20 74 69 6d 65  20 62 79 20 63 6c 69 63  |any time by clic|
00000990  6b 69 6e 67 20 6d 65 6e  75 20 77 68 69 6c 73 74  |king menu whilst|
000009a0  20 0a 20 20 20 20 6f 76  65 72 20 74 68 65 20 67  | .    over the g|
000009b0  72 61 70 68 73 20 77 69  6e 64 6f 77 2e 20 0a 20  |raphs window. . |
000009c0  20 20 20 20 0a 20 20 20  20 54 68 65 20 6d 65 6e  |    .    The men|
000009d0  75 20 68 61 73 20 74 68  65 20 66 6f 6c 6c 6f 77  |u has the follow|
000009e0  69 6e 67 20 6f 70 74 69  6f 6e 73 3a 2d 20 0a 20  |ing options:- . |
000009f0  20 20 20 20 0a 20 20 20  20 31 20 20 20 20 53 61  |    .    1    Sa|
00000a00  76 65 20 64 61 74 61 2e  20 20 0a 20 20 20 20 20  |ve data.  .     |
00000a10  20 20 20 20 54 68 69 73  20 61 6c 6c 6f 77 73 20  |    This allows |
00000a20  74 68 65 20 66 75 6e 63  74 69 6f 6e 73 20 61 6e  |the functions an|
00000a30  64 20 61 78 65 73 20 72  61 6e 67 65 73 20 74 6f  |d axes ranges to|
00000a40  20 62 65 20 73 61 76 65  64 20 74 6f 20 64 69 73  | be saved to dis|
00000a50  63 2e 20 0a 20 20 20 20  20 0a 20 20 20 20 20 20  |c. .     .      |
00000a60  20 20 20 46 6f 6c 6c 6f  77 20 74 68 65 20 61 72  |   Follow the ar|
00000a70  72 6f 77 20 74 6f 20 74  68 65 20 72 69 67 68 74  |row to the right|
00000a80  20 6f 66 20 74 68 65 20  6d 65 6e 75 2e 20 41 20  | of the menu. A |
00000a90  73 74 61 6e 64 61 72 64  20 52 69 73 63 20 4f 73  |standard Risc Os|
00000aa0  20 0a 20 20 20 20 20 20  20 20 20 73 61 76 65 20  | .         save |
00000ab0  77 69 6e 64 6f 77 20 77  69 6c 6c 20 61 70 70 65  |window will appe|
00000ac0  61 72 2e 20 45 6e 74 65  72 20 74 68 65 20 66 69  |ar. Enter the fi|
00000ad0  6c 65 20 6e 61 6d 65 20  69 6e 20 74 68 65 20 74  |le name in the t|
00000ae0  65 78 74 20 62 6f 78 20  6f 72 20 0a 20 20 20 20  |ext box or .    |
00000af0  20 20 20 20 20 63 68 61  6e 67 65 20 74 68 65 20  |     change the |
00000b00  65 78 69 73 74 69 6e 67  20 6e 61 6d 65 2e 20 54  |existing name. T|
00000b10  68 65 6e 20 65 69 74 68  65 72 20 64 72 61 67 20  |hen either drag |
00000b20  74 68 65 20 66 69 6c 65  20 69 63 6f 6e 20 74 6f  |the file icon to|
00000b30  20 61 20 0a 20 20 20 20  20 20 20 20 20 64 69 72  | a .         dir|
00000b40  65 63 74 6f 72 79 20 76  69 65 77 65 72 20 6f 72  |ectory viewer or|
00000b50  2c 20 69 66 20 61 20 66  75 6c 6c 20 70 61 74 68  |, if a full path|
00000b60  20 6e 61 6d 65 20 65 78  69 73 74 73 20 69 6e 20  | name exists in |
00000b70  74 68 65 20 74 65 78 74  20 62 6f 78 20 0a 20 20  |the text box .  |
00000b80  20 20 20 20 20 20 20 63  6c 69 63 6b 20 6f 6e 20  |       click on |
00000b90  4f 4b 20 0a 20 20 20 20  20 0a 20 20 20 20 32 20  |OK .     .    2 |
00000ba0  20 20 20 53 61 76 65 20  67 72 61 70 68 20 0a 20  |   Save graph . |
00000bb0  20 20 20 20 20 20 20 20  54 68 69 73 20 73 61 76  |        This sav|
00000bc0  65 73 20 74 68 65 20 63  75 72 72 65 6e 74 20 67  |es the current g|
00000bd0  72 61 70 68 2c 20 61 73  20 64 69 73 70 6c 61 79  |raph, as display|
00000be0  65 64 20 69 6e 20 74 68  65 20 67 72 61 70 68 20  |ed in the graph |
00000bf0  77 69 6e 64 6f 77 2c 20  0a 20 20 20 20 20 20 20  |window, .       |
00000c00  20 20 61 73 20 61 20 64  72 61 77 20 66 69 6c 65  |  as a draw file|
00000c10  20 66 6f 72 20 6c 6f 61  64 69 6e 67 20 69 6e 74  | for loading int|
00000c20  6f 20 6f 74 68 65 72 20  61 70 70 6c 69 63 61 74  |o other applicat|
00000c30  69 6f 6e 73 20 73 75 63  68 20 61 73 20 21 44 72  |ions such as !Dr|
00000c40  61 77 20 0a 20 20 20 20  20 20 20 20 20 61 6e 64  |aw .         and|
00000c50  20 44 2e 54 2e 50 2e 20  20 54 68 65 20 73 69 7a  | D.T.P.  The siz|
00000c60  65 20 6f 66 20 74 68 65  20 67 72 61 70 68 20 73  |e of the graph s|
00000c70  61 76 65 64 20 64 6f 65  73 20 6e 6f 74 20 64 65  |aved does not de|
00000c80  70 65 6e 64 20 75 70 6f  6e 20 74 68 65 20 0a 20  |pend upon the . |
00000c90  20 20 20 20 20 20 20 20  77 69 6e 64 6f 77 20 73  |        window s|
00000ca0  69 7a 65 2e 20 49 74 20  6d 61 79 20 62 65 20 72  |ize. It may be r|
00000cb0  65 73 63 61 6c 65 64 20  77 69 74 68 69 6e 20 21  |escaled within !|
00000cc0  64 72 61 77 2e 20 0a 20  20 20 20 20 0a 20 20 20  |draw. .     .   |
00000cd0  20 20 20 20 20 20 46 6f  6c 6c 6f 77 20 74 68 65  |      Follow the|
00000ce0  20 61 72 72 6f 77 20 74  6f 20 74 68 65 20 72 69  | arrow to the ri|
00000cf0  67 68 74 20 6f 66 20 74  68 65 20 6d 65 6e 75 2e  |ght of the menu.|
00000d00  20 41 20 73 74 61 6e 64  61 72 64 20 52 69 73 63  | A standard Risc|
00000d10  20 4f 73 20 0a 20 20 20  20 20 20 20 20 20 73 61  | Os .         sa|
00000d20  76 65 20 77 69 6e 64 6f  77 20 77 69 6c 6c 20 61  |ve window will a|
00000d30  70 70 65 61 72 2e 20 45  6e 74 65 72 20 74 68 65  |ppear. Enter the|
00000d40  20 66 69 6c 65 20 6e 61  6d 65 20 69 6e 20 74 68  | file name in th|
00000d50  65 20 74 65 78 74 20 62  6f 78 20 6f 72 20 0a 20  |e text box or . |
00000d60  20 20 20 20 20 20 20 20  63 68 61 6e 67 65 20 74  |        change t|
00000d70  68 65 20 65 78 69 73 74  69 6e 67 20 6e 61 6d 65  |he existing name|
00000d80  2e 20 54 68 65 6e 20 65  69 74 68 65 72 20 64 72  |. Then either dr|
00000d90  61 67 20 74 68 65 20 66  69 6c 65 20 69 63 6f 6e  |ag the file icon|
00000da0  20 74 6f 20 61 20 0a 20  20 20 20 20 20 20 20 20  | to a .         |
00000db0  64 69 72 65 63 74 6f 72  79 20 76 69 65 77 65 72  |directory viewer|
00000dc0  20 6f 72 2c 20 69 66 20  61 20 66 75 6c 6c 20 70  | or, if a full p|
00000dd0  61 74 68 20 6e 61 6d 65  20 65 78 69 73 74 73 20  |ath name exists |
00000de0  69 6e 20 74 68 65 20 74  65 78 74 20 62 6f 78 20  |in the text box |
00000df0  0a 20 20 20 20 20 20 20  20 20 63 6c 69 63 6b 20  |.         click |
00000e00  6f 6e 20 4f 4b 20 0a 20  20 20 20 20 0a 20 20 20  |on OK .     .   |
00000e10  20 20 20 20 20 20 46 69  6c 65 73 20 73 61 76 65  |      Files save|
00000e20  64 20 69 6e 20 74 68 69  73 20 66 6f 72 6d 20 63  |d in this form c|
00000e30  61 6e 6e 6f 74 20 62 65  20 6c 6f 61 64 65 64 20  |annot be loaded |
00000e40  62 61 63 6b 20 69 6e 74  6f 20 21 67 72 61 70 68  |back into !graph|
00000e50  2e 20 0a 20 20 20 20 20  0a 20 20 20 20 33 20 20  |. .     .    3  |
00000e60  20 20 43 6f 6f 72 64 69  6e 61 74 65 73 20 0a 20  |  Coordinates . |
00000e70  20 20 20 20 20 20 20 20  57 68 65 6e 20 73 65 6c  |        When sel|
00000e80  65 63 74 65 64 20 74 68  69 73 20 6f 70 65 6e 73  |ected this opens|
00000e90  20 61 20 73 6d 61 6c 6c  20 77 69 6e 64 6f 77 20  | a small window |
00000ea0  77 68 69 63 68 20 73 68  6f 77 73 20 74 68 65 20  |which shows the |
00000eb0  63 75 72 72 65 6e 74 20  0a 20 20 20 20 20 20 20  |current .       |
00000ec0  20 20 63 6f 6f 72 64 69  6e 61 74 65 73 20 6f 66  |  coordinates of|
00000ed0  20 74 68 65 20 74 69 70  20 6f 66 20 74 68 65 20  | the tip of the |
00000ee0  70 6f 69 6e 74 65 72 20  69 6e 20 74 68 65 20 63  |pointer in the c|
00000ef0  6f 6f 72 64 69 6e 61 74  65 20 73 79 73 74 65 6d  |oordinate system|
00000f00  20 6f 66 20 0a 20 20 20  20 20 20 20 20 20 74 68  | of .         th|
00000f10  65 20 74 68 65 20 63 75  72 72 65 6e 74 20 61 78  |e the current ax|
00000f20  65 73 2e 20 54 68 69 73  20 69 73 20 6e 6f 74 20  |es. This is not |
00000f30  61 76 61 69 6c 61 62 6c  65 20 77 69 74 68 20 70  |available with p|
00000f40  6f 6c 61 72 20 67 72 61  70 68 73 20 61 6e 64 20  |olar graphs and |
00000f50  0a 20 20 20 20 20 20 20  20 20 6f 6e 6c 79 20 6f  |.         only o|
00000f60  70 65 72 61 74 65 73 20  77 68 65 6e 20 74 68 65  |perates when the|
00000f70  20 70 6f 69 6e 74 65 72  20 69 73 20 6f 76 65 72  | pointer is over|
00000f80  20 74 68 65 20 67 72 61  70 68 20 77 69 6e 64 6f  | the graph windo|
00000f90  77 2e 20 54 68 69 73 20  6d 61 79 20 0a 20 20 20  |w. This may .   |
00000fa0  20 20 20 20 20 20 62 65  20 63 61 6e 63 65 6c 6c  |      be cancell|
00000fb0  65 64 20 65 69 74 68 65  72 20 62 79 20 63 6c 69  |ed either by cli|
00000fc0  63 6b 69 6e 67 20 6f 6e  20 74 68 65 20 63 6c 6f  |cking on the clo|
00000fd0  73 65 20 77 69 6e 64 6f  77 20 69 63 6f 6e 20 66  |se window icon f|
00000fe0  6f 72 20 74 68 65 20 0a  0a 0a 20 20 20 20 20 20  |or the ...      |
00000ff0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00001000  20 20 20 20 20 20 20 20  20 20 20 20 20 20 50 61  |              Pa|
00001010  67 65 20 32 0a 0a 0a 0a  0a 0a 0a 0a 0a 0a 20 20  |ge 2..........  |
00001020  20 20 20 20 20 20 20 63  6f 6f 72 64 69 6e 61 74  |       coordinat|
00001030  65 73 20 77 69 6e 64 6f  77 20 6f 72 20 62 79 20  |es window or by |
00001040  73 65 6c 65 63 74 69 6e  67 20 69 74 20 61 67 61  |selecting it aga|
00001050  69 6e 20 66 72 6f 6d 20  74 68 65 20 6d 65 6e 75  |in from the menu|
00001060  2e 20 0a 20 20 20 20 20  0a 20 20 20 20 34 20 20  |. .     .    4  |
00001070  20 20 41 78 65 73 20 0a  20 20 20 20 20 20 20 20  |  Axes .        |
00001080  20 54 68 69 73 20 63 61  75 73 65 73 20 74 68 65  | This causes the|
00001090  20 61 78 65 73 20 77 69  6e 64 6f 77 20 74 6f 20  | axes window to |
000010a0  62 65 20 6f 70 65 6e 65  64 2c 20 6f 72 20 62 72  |be opened, or br|
000010b0  6f 75 67 68 74 20 74 6f  20 74 68 65 20 74 6f 70  |ought to the top|
000010c0  2e 20 0a 20 20 20 20 20  20 20 20 20 54 68 65 20  |. .         The |
000010d0  61 78 65 73 20 77 69 6e  64 6f 77 20 63 6f 6e 74  |axes window cont|
000010e0  61 69 6e 73 20 69 6e 66  6f 72 6d 61 74 69 6f 6e  |ains information|
000010f0  20 61 62 6f 75 74 20 74  68 65 20 63 75 72 72 65  | about the curre|
00001100  6e 74 20 76 61 6c 75 65  73 20 0a 20 20 20 20 20  |nt values .     |
00001110  20 20 20 20 62 65 69 6e  67 20 75 73 65 64 20 66  |    being used f|
00001120  6f 72 20 64 72 61 77 69  6e 67 20 74 68 65 20 67  |or drawing the g|
00001130  72 61 70 68 2e 20 49 74  20 69 73 20 61 6c 73 6f  |raph. It is also|
00001140  20 75 73 65 64 20 74 6f  20 64 65 74 65 72 6d 69  | used to determi|
00001150  6e 65 20 69 66 20 0a 20  20 20 20 20 20 20 20 20  |ne if .         |
00001160  73 6f 6d 65 20 6f 66 20  74 68 65 20 76 61 6c 75  |some of the valu|
00001170  65 73 20 61 72 65 20 74  6f 20 62 65 20 63 61 6c  |es are to be cal|
00001180  63 75 6c 61 74 65 64 20  61 75 74 6f 6d 61 74 69  |culated automati|
00001190  63 61 6c 6c 79 2e 20 41  20 76 61 6c 75 65 20 0a  |cally. A value .|
000011a0  20 20 20 20 20 20 20 20  20 6d 61 79 20 62 65 20  |         may be |
000011b0  65 6e 74 65 72 65 64 20  62 79 20 6d 6f 76 69 6e  |entered by movin|
000011c0  67 20 74 6f 20 74 68 65  20 62 6f 78 20 63 6f 6e  |g to the box con|
000011d0  74 61 69 6e 69 6e 67 20  61 20 76 61 6c 75 65 20  |taining a value |
000011e0  61 6e 64 20 0a 20 20 20  20 20 20 20 20 20 65 6e  |and .         en|
000011f0  74 65 72 69 6e 67 20 74  68 65 20 6e 65 77 20 76  |tering the new v|
00001200  61 6c 75 65 2e 20 0a 20  20 20 20 20 20 20 20 20  |alue. .         |
00001210  53 68 61 64 65 64 20 76  61 6c 75 65 73 20 6d 61  |Shaded values ma|
00001220  79 20 6e 6f 74 20 62 65  20 65 6e 74 65 72 65 64  |y not be entered|
00001230  20 73 69 6e 63 65 20 74  68 65 73 65 20 77 69 6c  | since these wil|
00001240  6c 20 62 65 20 63 61 6c  63 75 6c 61 74 65 64 20  |l be calculated |
00001250  0a 20 20 20 20 20 20 20  20 20 61 75 74 6f 6d 61  |.         automa|
00001260  74 69 63 61 6c 6c 79 2e  20 0a 20 20 20 20 20 20  |tically. .      |
00001270  20 20 20 43 6c 69 63 6b  69 6e 67 20 6f 6e 20 74  |   Clicking on t|
00001280  68 65 20 41 75 74 6f 20  59 65 73 2f 4e 6f 20 69  |he Auto Yes/No i|
00001290  63 6f 6e 20 73 77 69 74  63 68 65 73 20 62 65 74  |con switches bet|
000012a0  77 65 65 6e 20 74 68 65  20 61 75 74 6f 6d 61 74  |ween the automat|
000012b0  69 63 20 0a 20 20 20 20  20 20 20 20 20 63 61 6c  |ic .         cal|
000012c0  63 75 6c 61 74 69 6f 6e  20 6f 66 20 61 78 65 73  |culation of axes|
000012d0  20 6f 72 20 74 68 65 20  6d 61 6e 75 61 6c 20 65  | or the manual e|
000012e0  6e 74 65 72 69 6e 67 20  6f 66 20 61 6c 6c 20 72  |ntering of all r|
000012f0  61 6e 67 65 73 2e 20 0a  20 20 20 20 20 20 20 20  |anges. .        |
00001300  20 4d 69 6e 69 6d 75 6d  20 76 61 6c 75 65 73 20  | Minimum values |
00001310  73 68 6f 75 6c 64 20 62  65 20 6c 65 73 73 20 74  |should be less t|
00001320  68 61 6e 20 6d 61 78 69  6d 75 6d 20 76 61 6c 75  |han maximum valu|
00001330  65 73 20 6f 74 68 65 72  77 69 73 65 2e 20 49 66  |es otherwise. If|
00001340  20 0a 20 20 20 20 20 20  20 20 20 74 68 65 79 20  | .         they |
00001350  61 72 65 20 65 6e 74 65  72 65 64 20 74 68 65 20  |are entered the |
00001360  77 72 6f 6e 67 20 77 61  79 20 61 72 6f 75 6e 64  |wrong way around|
00001370  20 74 68 65 79 20 77 69  6c 6c 20 62 65 20 73 77  | they will be sw|
00001380  61 70 70 65 64 2e 20 49  66 20 0a 20 20 20 20 20  |apped. If .     |
00001390  20 20 20 20 74 68 65 79  20 61 72 65 20 65 71 75  |    they are equ|
000013a0  61 6c 20 74 68 65 79 20  77 69 6c 6c 20 62 65 20  |al they will be |
000013b0  61 64 6a 75 73 74 65 64  2e 20 56 61 6c 75 65 73  |adjusted. Values|
000013c0  20 61 72 65 20 67 69 76  65 6e 20 74 6f 20 61 20  | are given to a |
000013d0  0a 20 20 20 20 20 20 20  20 20 6d 61 78 69 6d 75  |.         maximu|
000013e0  6d 20 6f 66 20 73 69 78  20 70 6c 61 63 65 73 20  |m of six places |
000013f0  6f 66 20 64 65 63 69 6d  61 6c 73 2e 20 20 0a 20  |of decimals.  . |
00001400  20 20 20 20 20 20 20 20  54 68 65 20 61 75 74 6f  |        The auto|
00001410  6d 61 74 69 63 20 63 61  6c 63 75 6c 61 74 69 6f  |matic calculatio|
00001420  6e 20 6f 66 20 61 78 65  73 20 76 61 6c 75 65 73  |n of axes values|
00001430  20 6d 65 61 6e 73 20 74  68 61 74 20 0a 20 20 20  | means that .   |
00001440  20 20 20 20 20 20 72 65  2d 63 61 6c 63 75 6c 61  |      re-calcula|
00001450  74 69 6f 6e 20 74 69 6d  65 20 69 73 20 73 6f 6d  |tion time is som|
00001460  65 77 68 61 74 20 6c 6f  6e 67 65 72 2e 20 41 75  |ewhat longer. Au|
00001470  74 6f 6d 61 74 69 63 20  63 61 6c 63 75 6c 61 74  |tomatic calculat|
00001480  69 6f 6e 20 6d 61 79 20  0a 20 20 20 20 20 20 20  |ion may .       |
00001490  20 20 67 69 76 65 20 75  6e 70 72 65 64 69 63 74  |  give unpredict|
000014a0  61 62 6c 65 20 72 65 73  75 6c 74 73 20 69 66 20  |able results if |
000014b0  74 68 65 20 66 75 6e 63  74 69 6f 6e 20 67 6f 65  |the function goe|
000014c0  73 20 74 6f 20 69 6e 66  69 6e 69 74 79 20 69 6e  |s to infinity in|
000014d0  20 0a 20 20 20 20 20 20  20 20 20 74 68 65 20 67  | .         the g|
000014e0  72 61 70 68 65 64 20 72  65 67 69 6f 6e 2e 20 0a  |raphed region. .|
000014f0  20 20 20 20 20 0a 20 20  20 20 35 20 20 20 20 46  |     .    5    F|
00001500  75 6e 63 74 69 6f 6e 73  20 0a 20 20 20 20 20 20  |unctions .      |
00001510  20 20 20 54 68 69 73 20  61 6c 6c 6f 77 73 20 74  |   This allows t|
00001520  68 65 20 66 75 6e 63 74  69 6f 6e 20 77 68 69 63  |he function whic|
00001530  68 20 69 73 20 74 6f 20  62 65 20 67 72 61 70 68  |h is to be graph|
00001540  65 64 20 74 6f 20 62 65  20 65 6e 74 65 72 65 64  |ed to be entered|
00001550  20 61 6e 64 20 0a 20 20  20 20 20 20 20 20 20 65  | and .         e|
00001560  64 69 74 65 64 2e 20 0a  20 20 20 20 20 20 20 20  |dited. .        |
00001570  20 54 68 65 20 6c 6f 6e  67 20 62 6f 78 20 69 73  | The long box is|
00001580  20 75 73 65 64 20 74 6f  20 65 6e 74 65 72 20 74  | used to enter t|
00001590  68 65 20 66 75 6e 63 74  69 6f 6e 20 28 73 65 65  |he function (see|
000015a0  20 74 68 65 20 73 65 63  74 69 6f 6e 20 6f 6e 20  | the section on |
000015b0  0a 20 20 20 20 20 20 20  20 20 66 75 6e 63 74 69  |.         functi|
000015c0  6f 6e 73 29 20 0a 20 20  20 20 20 20 20 20 20 54  |ons) .         T|
000015d0  68 65 20 70 6c 6f 74 20  6f 70 74 69 6f 6e 20 63  |he plot option c|
000015e0  61 6e 20 62 65 20 73 65  74 20 74 6f 20 79 65 73  |an be set to yes|
000015f0  20 6f 72 20 6e 6f 2e 20  49 74 20 6d 75 73 74 20  | or no. It must |
00001600  62 65 20 73 65 74 20 74  6f 20 79 65 73 20 69 66  |be set to yes if|
00001610  20 0a 20 20 20 20 20 20  20 20 20 74 68 65 20 67  | .         the g|
00001620  72 61 70 68 20 69 73 20  74 6f 20 62 65 20 64 69  |raph is to be di|
00001630  73 70 6c 61 79 65 64 2e  20 20 0a 20 20 20 20 20  |splayed.  .     |
00001640  20 20 20 20 55 70 20 74  6f 20 73 69 78 20 63 61  |    Up to six ca|
00001650  72 74 65 73 69 61 6e 20  61 6e 64 20 74 68 72 65  |rtesian and thre|
00001660  65 20 70 6f 6c 61 72 20  61 6e 64 20 70 61 72 61  |e polar and para|
00001670  6d 65 74 72 69 63 20 66  75 6e 63 74 69 6f 6e 73  |metric functions|
00001680  20 63 61 6e 20 0a 20 20  20 20 20 20 20 20 20 62  | can .         b|
00001690  65 20 65 6e 74 65 72 65  64 2e 20 45 61 63 68 20  |e entered. Each |
000016a0  66 75 6e 63 74 69 6f 6e  20 69 73 20 6e 75 6d 62  |function is numb|
000016b0  65 72 65 64 2e 20 54 68  65 20 66 75 6e 63 74 69  |ered. The functi|
000016c0  6f 6e 20 64 69 73 70 6c  61 79 65 64 20 63 61 6e  |on displayed can|
000016d0  20 0a 20 20 20 20 20 20  20 20 20 62 65 20 63 68  | .         be ch|
000016e0  61 6e 67 65 64 20 62 79  20 63 6c 69 63 6b 69 6e  |anged by clickin|
000016f0  67 20 6f 6e 20 74 68 65  20 6c 65 66 74 20 6f 72  |g on the left or|
00001700  20 72 69 67 68 74 20 61  72 72 6f 77 2e 20 54 68  | right arrow. Th|
00001710  65 20 62 6f 78 20 61 74  20 74 68 65 20 0a 20 20  |e box at the .  |
00001720  20 20 20 20 20 20 20 74  6f 70 20 72 69 67 68 74  |       top right|
00001730  20 69 6e 64 69 63 61 74  65 73 20 69 6e 20 77 68  | indicates in wh|
00001740  69 63 68 20 63 6f 6c 6f  75 72 20 74 68 65 20 66  |ich colour the f|
00001750  75 6e 63 74 69 6f 6e 20  77 69 6c 6c 20 62 65 20  |unction will be |
00001760  64 72 61 77 6e 2e 20 0a  20 20 20 20 20 0a 20 20  |drawn. .     .  |
00001770  20 20 36 20 20 20 20 43  61 72 74 65 73 69 61 6e  |  6    Cartesian|
00001780  20 0a 20 20 20 20 20 20  20 20 20 54 68 69 73 20  | .         This |
00001790  73 65 6c 65 63 74 73 20  63 61 72 74 65 73 69 61  |selects cartesia|
000017a0  6e 20 66 75 6e 63 74 69  6f 6e 73 20 61 6e 64 20  |n functions and |
000017b0  61 78 65 73 2e 20 4f 74  68 65 72 20 74 79 70 65  |axes. Other type|
000017c0  73 20 61 72 65 20 73 74  6f 72 65 64 20 0a 20 20  |s are stored .  |
000017d0  20 20 20 20 20 20 20 69  6e 74 65 72 6e 61 6c 6c  |       internall|
000017e0  79 2e 20 41 6e 79 20 70  72 65 73 65 6e 74 20 63  |y. Any present c|
000017f0  61 72 74 65 73 69 61 6e  20 66 75 6e 63 74 69 6f  |artesian functio|
00001800  6e 73 20 61 72 65 20 63  61 6c 63 75 6c 61 74 65  |ns are calculate|
00001810  64 20 61 6e 64 20 0a 20  20 20 20 20 20 20 20 20  |d and .         |
00001820  64 69 73 70 6c 61 79 65  64 2e 20 0a 20 20 20 20  |displayed. .    |
00001830  20 0a 20 20 20 20 37 20  20 20 20 50 6f 6c 61 72  | .    7    Polar|
00001840  20 0a 20 20 20 20 20 20  20 20 20 54 68 69 73 20  | .         This |
00001850  73 65 6c 65 63 74 73 20  70 6f 6c 61 72 20 66 75  |selects polar fu|
00001860  6e 63 74 69 6f 6e 73 20  61 6e 64 20 61 78 65 73  |nctions and axes|
00001870  2e 20 4f 74 68 65 72 20  74 79 70 65 73 20 61 72  |. Other types ar|
00001880  65 20 73 74 6f 72 65 64  20 0a 20 20 20 20 20 20  |e stored .      |
00001890  20 20 20 69 6e 74 65 72  6e 61 6c 6c 79 2e 20 41  |   internally. A|
000018a0  6e 79 20 70 72 65 73 65  6e 74 20 70 6f 6c 61 72  |ny present polar|
000018b0  20 66 75 6e 63 74 69 6f  6e 73 20 61 72 65 20 63  | functions are c|
000018c0  61 6c 63 75 6c 61 74 65  64 20 61 6e 64 20 0a 20  |alculated and . |
000018d0  20 20 20 20 20 20 20 20  64 69 73 70 6c 61 79 65  |        displaye|
000018e0  64 2e 20 0a 20 20 20 20  20 0a 20 20 20 20 38 20  |d. .     .    8 |
000018f0  20 20 20 50 61 72 61 6d  65 74 72 69 63 20 0a 20  |   Parametric . |
00001900  20 20 20 20 20 20 20 20  54 68 69 73 20 73 65 6c  |        This sel|
00001910  65 63 74 73 20 70 61 72  61 6d 65 74 72 69 63 20  |ects parametric |
00001920  66 75 6e 63 74 69 6f 6e  73 20 61 6e 64 20 61 78  |functions and ax|
00001930  65 73 2e 20 4f 74 68 65  72 20 74 79 70 65 73 20  |es. Other types |
00001940  61 72 65 20 0a 20 20 20  20 20 20 20 20 20 73 74  |are .         st|
00001950  6f 72 65 64 20 69 6e 74  65 72 6e 61 6c 6c 79 2e  |ored internally.|
00001960  20 41 6e 79 20 70 72 65  73 65 6e 74 20 70 61 72  | Any present par|
00001970  61 6d 65 74 72 69 63 20  66 75 6e 63 74 69 6f 6e  |ametric function|
00001980  73 20 61 72 65 20 0a 20  20 20 20 20 20 20 20 20  |s are .         |
00001990  63 61 6c 63 75 6c 61 74  65 64 20 61 6e 64 20 64  |calculated and d|
000019a0  69 73 70 6c 61 79 65 64  2e 20 0a 20 20 20 20 20  |isplayed. .     |
000019b0  0a 20 20 20 20 39 20 20  20 20 44 65 67 72 65 65  |.    9    Degree|
000019c0  73 20 0a 20 20 20 20 20  20 20 20 20 54 68 69 73  |s .         This|
000019d0  20 73 65 6c 65 63 74 73  20 62 65 74 77 65 65 6e  | selects between|
000019e0  20 64 65 67 72 65 65 73  20 61 6e 64 20 72 61 64  | degrees and rad|
000019f0  69 61 6e 20 61 6e 67 75  6c 61 72 20 6d 65 61 73  |ian angular meas|
00001a00  75 72 65 2e 20 0a 20 20  20 20 20 20 20 20 20 54  |ure. .         T|
00001a10  68 69 73 20 6d 61 79 20  62 65 20 74 69 63 6b 65  |his may be ticke|
00001a20  64 20 28 74 6f 20 69 6e  64 69 63 61 74 65 20 64  |d (to indicate d|
00001a30  65 67 72 65 65 73 20 61  72 65 20 74 6f 20 62 65  |egrees are to be|
00001a40  20 75 73 65 64 29 20 6f  72 20 0a 20 20 20 20 20  | used) or .     |
00001a50  20 20 20 20 75 6e 74 69  63 6b 65 64 20 28 74 6f  |    unticked (to|
00001a60  20 69 6e 64 69 63 61 74  65 20 74 68 65 20 75 73  | indicate the us|
00001a70  65 20 6f 66 20 72 61 64  69 61 6e 73 29 2e 20 53  |e of radians). S|
00001a80  65 6c 65 63 74 20 63 68  61 6e 67 65 73 20 74 68  |elect changes th|
00001a90  65 20 0a 20 20 20 20 20  20 20 20 20 73 74 61 74  |e .         stat|
00001aa0  65 20 6f 66 20 74 68 65  20 74 69 63 6b 2e 20 28  |e of the tick. (|
00001ab0  44 65 66 61 75 6c 74 20  6e 6f 74 20 74 69 63 6b  |Default not tick|
00001ac0  65 64 29 20 0a 0a 0a 20  20 20 20 20 20 20 20 20  |ed) ...         |
00001ad0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00001ae0  20 20 20 20 20 20 20 20  20 20 20 50 61 67 65 20  |           Page |
00001af0  33 0a 0a 0a 0a 0a 0a 0a  0a 0a 0a 20 20 20 20 20  |3..........     |
00001b00  0a 20 20 20 20 31 30 20  20 20 53 68 6f 77 20 61  |.    10   Show a|
00001b10  78 65 73 20 0a 20 20 20  20 20 20 20 20 20 54 68  |xes .         Th|
00001b20  69 73 20 73 65 6c 65 63  74 73 20 62 65 74 77 65  |is selects betwe|
00001b30  65 6e 20 64 69 73 70 6c  61 79 69 6e 67 20 61 6e  |en displaying an|
00001b40  64 20 6e 6f 74 20 64 69  73 70 6c 61 79 69 6e 67  |d not displaying|
00001b50  20 74 68 65 20 61 78 65  73 2e 20 57 68 65 6e 20  | the axes. When |
00001b60  0a 20 20 20 20 20 20 20  20 20 74 69 63 6b 65 64  |.         ticked|
00001b70  20 74 68 65 20 61 78 65  73 20 77 69 6c 6c 20 62  | the axes will b|
00001b80  65 20 64 69 73 70 6c 61  79 65 64 2e 20 28 44 65  |e displayed. (De|
00001b90  66 61 75 6c 74 20 69 73  20 74 69 63 6b 65 64 29  |fault is ticked)|
00001ba0  20 0a 20 20 20 20 20 0a  20 20 20 20 52 65 64 72  | .     .    Redr|
00001bb0  61 77 69 6e 67 20 74 68  65 20 67 72 61 70 68 73  |awing the graphs|
00001bc0  20 0a 20 20 20 20 20 0a  20 20 20 20 53 69 6e 63  | .     .    Sinc|
00001bd0  65 20 74 68 65 20 72 65  64 72 61 77 69 6e 67 20  |e the redrawing |
00001be0  6f 66 20 61 20 67 72 61  70 68 20 74 61 6b 65 73  |of a graph takes|
00001bf0  20 61 20 6c 69 74 74 6c  65 20 77 68 69 6c 65 20  | a little while |
00001c00  28 64 65 70 65 6e 64 69  6e 67 20 6f 6e 20 74 68  |(depending on th|
00001c10  65 20 0a 20 20 20 20 63  6f 6d 70 6c 65 78 69 74  |e .    complexit|
00001c20  79 20 6f 66 20 74 68 65  20 67 72 61 70 68 29 20  |y of the graph) |
00001c30  74 68 65 20 64 69 73 70  6c 61 79 20 69 73 20 6f  |the display is o|
00001c40  6e 6c 79 20 72 65 63 61  6c 63 75 6c 61 74 65 64  |nly recalculated|
00001c50  20 77 68 65 6e 20 0a 20  20 20 20 72 65 71 75 69  | when .    requi|
00001c60  72 65 64 2e 20 54 6f 20  66 6f 72 63 65 20 72 65  |red. To force re|
00001c70  2d 63 61 6c 63 75 6c 61  74 69 6f 6e 20 70 72 65  |-calculation pre|
00001c80  73 73 20 73 65 6c 65 63  74 20 77 68 69 73 74 20  |ss select whist |
00001c90  6f 76 65 72 20 74 68 65  20 67 72 61 70 68 20 0a  |over the graph .|
00001ca0  20 20 20 20 77 69 6e 64  6f 77 2e 20 54 68 65 20  |    window. The |
00001cb0  73 74 61 6e 64 61 72 64  20 68 6f 75 72 20 67 6c  |standard hour gl|
00001cc0  61 73 73 20 77 69 6c 6c  20 62 65 20 64 69 73 70  |ass will be disp|
00001cd0  6c 61 79 65 64 20 77 68  69 73 74 20 72 65 2d 63  |layed whist re-c|
00001ce0  61 6c 63 75 6c 61 74 69  6f 6e 20 0a 20 20 20 20  |alculation .    |
00001cf0  74 61 6b 65 73 20 70 6c  61 63 65 2e 20 41 6e 79  |takes place. Any|
00001d00  20 72 65 67 69 6f 6e 73  20 6f 66 20 74 68 65 20  | regions of the |
00001d10  67 72 61 70 68 20 77 68  65 72 65 20 74 68 65 20  |graph where the |
00001d20  66 75 6e 63 74 69 6f 6e  20 65 76 61 6c 75 61 74  |function evaluat|
00001d30  69 6f 6e 73 20 0a 20 20  20 20 61 72 65 20 6e 6f  |ions .    are no|
00001d40  74 20 70 6f 73 73 69 62  6c 65 20 28 45 2e 47 2e  |t possible (E.G.|
00001d50  20 73 71 75 61 72 65 20  72 6f 6f 74 73 20 6f 66  | square roots of|
00001d60  20 6e 65 67 61 74 69 76  65 20 76 61 6c 75 65 73  | negative values|
00001d70  29 20 77 69 6c 6c 20 72  65 73 75 6c 74 20 69 6e  |) will result in|
00001d80  20 0a 20 20 20 20 73 6c  6f 77 65 72 20 63 6f 6d  | .    slower com|
00001d90  70 75 74 61 74 69 6f 6e  2e 20 20 0a 20 20 20 20  |putation.  .    |
00001da0  20 0a 20 20 20 20 4c 6f  61 64 69 6e 67 20 61 20  | .    Loading a |
00001db0  66 69 6c 65 20 0a 20 20  20 20 20 0a 20 20 20 20  |file .     .    |
00001dc0  57 69 74 68 20 74 68 65  20 61 70 70 6c 69 63 61  |With the applica|
00001dd0  74 69 6f 6e 20 6c 6f 61  64 65 64 20 61 20 67 72  |tion loaded a gr|
00001de0  61 70 68 20 64 61 74 61  20 66 69 6c 65 20 6d 61  |aph data file ma|
00001df0  79 20 62 65 20 6c 6f 61  64 65 64 20 65 69 74 68  |y be loaded eith|
00001e00  65 72 20 0a 20 20 20 20  62 79 3a 2d 20 0a 20 20  |er .    by:- .  |
00001e10  20 20 20 0a 20 20 20 20  31 20 20 20 20 44 6f 75  |   .    1    Dou|
00001e20  62 6c 65 20 63 6c 69 63  6b 69 6e 67 20 6f 6e 20  |ble clicking on |
00001e30  74 68 65 20 66 69 6c 65  20 69 6e 20 61 20 64 69  |the file in a di|
00001e40  72 65 63 74 6f 72 79 20  76 69 65 77 65 72 2e 20  |rectory viewer. |
00001e50  0a 20 20 20 20 32 20 20  20 20 44 72 61 67 67 69  |.    2    Draggi|
00001e60  6e 67 20 74 68 65 20 66  69 6c 65 20 61 6e 64 20  |ng the file and |
00001e70  64 72 6f 70 70 69 6e 67  20 69 74 20 6f 6e 20 74  |dropping it on t|
00001e80  68 65 20 21 67 72 61 70  68 20 69 63 6f 6e 20 6f  |he !graph icon o|
00001e90  6e 20 74 68 65 20 69 63  6f 6e 20 0a 20 20 20 20  |n the icon .    |
00001ea0  20 20 20 20 20 62 61 72  2e 20 0a 20 20 20 20 20  |     bar. .     |
00001eb0  0a 20 20 20 20 49 6e 20  62 6f 74 68 20 63 61 73  |.    In both cas|
00001ec0  65 73 20 74 68 65 20 67  72 61 70 68 20 64 61 74  |es the graph dat|
00001ed0  61 20 66 69 6c 65 20 77  69 6c 6c 20 62 65 20 6c  |a file will be l|
00001ee0  6f 61 64 65 64 20 61 6e  64 20 74 68 65 20 66 75  |oaded and the fu|
00001ef0  6e 63 74 69 6f 6e 73 20  0a 20 20 20 20 72 65 63  |nctions .    rec|
00001f00  61 6c 63 75 6c 61 74 65  64 2e 20 41 6e 79 20 70  |alculated. Any p|
00001f10  72 65 76 69 6f 75 73 20  66 75 6e 63 74 69 6f 6e  |revious function|
00001f20  73 20 77 69 6c 6c 20 62  65 20 6c 6f 73 74 2e 20  |s will be lost. |
00001f30  0a 20 20 20 20 20 0a 20  20 20 20 20 0a 20 20 20  |.     .     .   |
00001f40  20 46 75 6e 63 74 69 6f  6e 73 20 0a 20 20 20 20  | Functions .    |
00001f50  20 0a 20 20 20 20 43 61  72 74 65 73 69 61 6e 20  | .    Cartesian |
00001f60  66 75 6e 63 74 69 6f 6e  73 20 61 72 65 20 65 6e  |functions are en|
00001f70  74 65 72 65 64 20 69 6e  20 74 65 72 6d 73 20 6f  |tered in terms o|
00001f80  66 20 74 68 65 20 76 61  72 69 61 62 6c 65 20 78  |f the variable x|
00001f90  2e 20 0a 20 20 20 20 20  0a 20 20 20 20 50 6f 6c  |. .     .    Pol|
00001fa0  61 72 20 61 6e 64 20 70  61 72 61 6d 65 74 72 69  |ar and parametri|
00001fb0  63 20 66 75 6e 63 74 69  6f 6e 73 20 61 72 65 20  |c functions are |
00001fc0  65 6e 74 65 72 65 64 20  69 6e 20 74 65 72 6d 73  |entered in terms|
00001fd0  20 6f 66 20 74 68 65 20  76 61 72 69 61 62 6c 65  | of the variable|
00001fe0  20 74 2e 20 0a 20 20 20  20 20 0a 20 20 20 20 46  | t. .     .    F|
00001ff0  75 6e 63 74 69 6f 6e 73  20 63 61 6e 20 62 65 20  |unctions can be |
00002000  65 6e 74 65 72 65 64 20  69 6e 20 74 72 75 65 20  |entered in true |
00002010  61 6c 67 65 62 72 61 69  63 20 66 6f 72 6d 2e 20  |algebraic form. |
00002020  20 0a 20 20 20 20 46 6f  72 20 65 78 61 6d 70 6c  | .    For exampl|
00002030  65 20 20 0a 20 20 20 20  20 0a 20 20 20 20 20 20  |e  .     .      |
00002040  20 20 20 63 6f 73 20 33  78 20 73 69 6e 20 32 78  |   cos 3x sin 2x|
00002050  20 20 0a 20 20 20 20 20  0a 20 20 20 20 77 69 6c  |  .     .    wil|
00002060  6c 20 62 65 20 65 76 61  6c 75 61 74 65 64 20 61  |l be evaluated a|
00002070  73 20 28 63 6f 73 28 33  2a 78 29 29 20 2a 20 28  |s (cos(3*x)) * (|
00002080  73 69 6e 28 32 2a 78 29  29 20 0a 20 20 20 20 20  |sin(2*x)) .     |
00002090  0a 20 20 20 20 49 66 20  69 6e 20 64 6f 75 62 74  |.    If in doubt|
000020a0  20 61 62 6f 75 74 20 74  68 65 20 6f 72 64 65 72  | about the order|
000020b0  20 6f 66 20 65 76 61 6c  75 61 74 69 6f 6e 20 61  | of evaluation a|
000020c0  64 64 20 62 72 61 63 6b  65 74 73 20 74 6f 20 66  |dd brackets to f|
000020d0  6f 72 63 65 20 0a 20 20  20 20 63 6f 72 72 65 63  |orce .    correc|
000020e0  74 20 65 76 61 6c 75 61  74 69 6f 6e 20 6f 72 64  |t evaluation ord|
000020f0  65 72 2e 20 46 75 6e 63  74 69 6f 6e 73 20 6d 61  |er. Functions ma|
00002100  79 20 62 65 20 65 6e 74  65 72 65 64 20 69 6e 20  |y be entered in |
00002110  75 70 70 65 72 20 6f 72  20 6c 6f 77 65 72 20 0a  |upper or lower .|
00002120  20 20 20 20 63 61 73 65  20 61 6e 64 20 73 70 61  |    case and spa|
00002130  63 65 73 20 61 72 65 20  6e 6f 74 20 69 6d 70 6f  |ces are not impo|
00002140  72 74 61 6e 74 2e 20 0a  20 20 20 20 20 0a 20 20  |rtant. .     .  |
00002150  20 20 48 65 6c 70 20 0a  20 20 20 20 20 0a 20 20  |  Help .     .  |
00002160  20 20 42 79 20 69 6e 73  74 61 6c 6c 69 6e 67 20  |  By installing |
00002170  74 68 65 20 61 70 70 6c  69 63 61 74 69 6f 6e 20  |the application |
00002180  21 68 65 6c 70 20 74 68  65 20 70 72 6f 67 72 61  |!help the progra|
00002190  6d 20 77 69 6c 6c 20 67  69 76 65 20 72 65 6c 65  |m will give rele|
000021a0  76 61 6e 74 20 0a 20 20  20 20 68 65 6c 70 20 64  |vant .    help d|
000021b0  65 70 65 6e 64 69 6e 67  20 75 70 6f 6e 20 74 68  |epending upon th|
000021c0  65 20 70 6f 73 69 74 69  6f 6e 20 6f 66 20 74 68  |e position of th|
000021d0  65 20 6d 6f 75 73 65 2e  20 0a 0a 0a 0a 0a 0a 0a  |e mouse. .......|
000021e0  0a 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |.               |
000021f0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00002200  20 20 20 20 20 50 61 67  65 20 34 0a 0a 0a 0a 0a  |     Page 4.....|
00002210  0a 0a 0a 0a 0a 20 20 20  20 4f 70 65 72 61 74 6f  |.....    Operato|
00002220  72 73 20 61 6e 64 20 66  75 6e 63 74 69 6f 6e 73  |rs and functions|
00002230  20 75 73 65 64 20 0a 20  20 20 20 20 0a 20 20 20  | used .     .   |
00002240  20 2b 20 20 20 20 20 20  20 20 20 41 64 64 69 74  | +         Addit|
00002250  69 6f 6e 20 0a 20 20 20  20 2d 20 20 20 20 20 20  |ion .    -      |
00002260  20 20 20 53 75 62 74 72  61 63 74 69 6f 6e 20 0a  |   Subtraction .|
00002270  20 20 20 20 2a 20 20 20  20 20 20 20 20 20 4d 75  |    *         Mu|
00002280  6c 74 69 70 6c 69 63 61  74 69 6f 6e 20 0a 20 20  |ltiplication .  |
00002290  20 20 2f 20 20 20 20 20  20 20 20 20 44 69 76 69  |  /         Divi|
000022a0  73 69 6f 6e 20 0a 20 20  20 20 20 0a 20 20 20 20  |sion .     .    |
000022b0  5e 20 20 20 20 20 20 20  20 20 69 73 20 75 73 65  |^         is use|
000022c0  64 20 74 6f 20 72 61 69  73 65 20 74 6f 20 61 20  |d to raise to a |
000022d0  70 6f 77 65 72 2e 20 45  47 20 20 78 5e 33 20 66  |power. EG  x^3 f|
000022e0  6f 72 20 78 20 63 75 62  65 64 2e 20 0a 20 20 20  |or x cubed. .   |
000022f0  20 44 49 56 20 20 20 20  20 20 20 54 68 65 20 69  | DIV       The i|
00002300  6e 74 65 67 65 72 20 70  61 72 74 20 6f 66 20 74  |nteger part of t|
00002310  68 65 20 64 69 76 69 73  69 6f 6e 20 65 67 20 78  |he division eg x|
00002320  20 44 49 56 20 35 20 0a  20 20 20 20 4d 4f 44 20  | DIV 5 .    MOD |
00002330  20 20 20 20 20 20 54 68  65 20 72 65 6d 61 69 6e  |      The remain|
00002340  64 65 72 20 70 61 72 74  20 6f 66 20 74 68 65 20  |der part of the |
00002350  64 69 76 69 73 69 6f 6e  20 65 67 20 78 20 4d 4f  |division eg x MO|
00002360  44 20 35 20 0a 20 20 20  20 49 4e 54 20 20 20 20  |D 5 .    INT    |
00002370  20 20 20 54 68 65 20 69  6e 74 65 67 65 72 20 70  |   The integer p|
00002380  61 72 74 20 6f 66 20 74  68 65 20 66 6f 6c 6c 6f  |art of the follo|
00002390  77 69 6e 67 20 65 78 70  72 65 73 73 69 6f 6e 2e  |wing expression.|
000023a0  20 65 67 20 49 4e 54 20  78 20 0a 20 20 20 20 53  | eg INT x .    S|
000023b0  47 4e 20 20 20 20 20 20  20 54 68 65 20 73 69 67  |GN       The sig|
000023c0  6e 20 6f 66 20 74 68 65  20 65 78 70 72 65 73 73  |n of the express|
000023d0  69 6f 6e 2e 20 2d 31 20  66 6f 72 20 6e 65 67 61  |ion. -1 for nega|
000023e0  74 69 76 65 2c 20 30 20  66 6f 72 20 7a 65 72 6f  |tive, 0 for zero|
000023f0  20 31 20 0a 20 20 20 20  20 20 20 20 20 20 20 20  | 1 .            |
00002400  20 20 66 6f 72 20 70 6f  73 69 74 69 76 65 2e 20  |  for positive. |
00002410  0a 20 20 20 20 41 42 53  20 20 20 20 20 20 20 54  |.    ABS       T|
00002420  68 65 20 61 62 73 6f 6c  75 74 65 20 76 61 6c 75  |he absolute valu|
00002430  65 20 6f 66 20 74 68 65  20 66 6f 6c 6c 6f 77 69  |e of the followi|
00002440  6e 67 20 65 78 70 72 65  73 73 69 6f 6e 20 65 67  |ng expression eg|
00002450  20 41 42 53 20 78 20 0a  20 20 20 20 50 49 20 20  | ABS x .    PI  |
00002460  20 20 20 20 20 20 54 68  65 20 63 6f 6e 73 74 61  |      The consta|
00002470  6e 74 20 33 2e 31 34 31  35 39 32 36 35 20 0a 20  |nt 3.14159265 . |
00002480  20 20 20 52 4e 44 20 20  20 20 20 20 20 41 20 70  |   RND       A p|
00002490  73 65 75 64 6f 20 72 61  6e 64 6f 6d 20 6e 75 6d  |seudo random num|
000024a0  62 65 72 20 69 6e 20 74  68 65 20 72 61 6e 67 65  |ber in the range|
000024b0  20 30 20 74 6f 20 31 20  0a 20 20 20 20 53 51 52  | 0 to 1 .    SQR|
000024c0  20 20 20 20 20 20 20 54  68 65 20 73 71 75 61 72  |       The squar|
000024d0  65 20 72 6f 6f 74 20 6f  66 20 74 68 65 20 66 6f  |e root of the fo|
000024e0  6c 6c 6f 77 69 6e 67 20  65 78 70 72 65 73 73 69  |llowing expressi|
000024f0  6f 6e 20 65 67 20 53 51  52 20 78 20 0a 20 20 20  |on eg SQR x .   |
00002500  20 4c 4e 20 20 20 20 20  20 20 20 54 68 65 20 6e  | LN        The n|
00002510  61 74 75 72 61 6c 20 6c  6f 67 61 72 69 74 68 6d  |atural logarithm|
00002520  20 6f 66 20 74 68 65 20  66 6f 6c 6c 6f 77 69 6e  | of the followin|
00002530  67 20 65 78 70 72 65 73  73 69 6f 6e 20 65 67 20  |g expression eg |
00002540  4c 4e 20 78 20 0a 20 20  20 20 4c 4f 47 20 20 20  |LN x .    LOG   |
00002550  20 20 20 20 54 68 65 20  6c 6f 67 61 72 69 74 68  |    The logarith|
00002560  6d 20 74 6f 20 62 61 73  65 20 74 65 6e 20 6f 66  |m to base ten of|
00002570  20 74 68 65 20 66 6f 6c  6c 6f 77 69 6e 67 20 65  | the following e|
00002580  78 70 72 65 73 73 69 6f  6e 2e 20 65 67 20 0a 20  |xpression. eg . |
00002590  20 20 20 20 20 20 20 20  20 20 20 20 20 4c 4f 47  |             LOG|
000025a0  20 78 20 0a 20 20 20 20  45 58 50 20 20 20 20 20  | x .    EXP     |
000025b0  20 20 65 20 72 61 69 73  65 64 20 74 6f 20 74 68  |  e raised to th|
000025c0  65 20 70 6f 77 65 72 20  6f 66 20 74 68 65 20 65  |e power of the e|
000025d0  78 70 72 65 73 73 69 6f  6e 2e 20 65 67 20 45 58  |xpression. eg EX|
000025e0  50 20 78 20 0a 20 20 20  20 20 0a 20 20 20 20 46  |P x .     .    F|
000025f0  41 43 54 20 20 20 20 20  20 54 68 65 20 66 61 63  |ACT      The fac|
00002600  74 6f 72 69 61 6c 20 6f  66 20 74 68 65 20 65 78  |torial of the ex|
00002610  70 72 65 73 73 69 6f 6e  20 69 6e 20 62 72 61 63  |pression in brac|
00002620  6b 65 74 73 20 65 67 20  46 41 43 54 36 20 0a 20  |kets eg FACT6 . |
00002630  20 20 20 20 0a 20 20 20  20 43 4f 53 48 20 20 20  |    .    COSH   |
00002640  20 20 20 54 68 65 20 68  79 70 65 72 62 6f 6c 69  |   The hyperboli|
00002650  63 20 63 6f 73 69 6e 65  20 6f 66 20 74 68 65 20  |c cosine of the |
00002660  65 78 70 72 65 73 73 69  6f 6e 2e 20 65 67 20 43  |expression. eg C|
00002670  4f 53 48 78 20 0a 20 20  20 20 53 49 4e 48 20 20  |OSHx .    SINH  |
00002680  20 20 20 20 54 68 65 20  68 79 70 65 72 62 6f 6c  |    The hyperbol|
00002690  69 63 20 73 69 6e 65 20  6f 66 20 74 68 65 20 65  |ic sine of the e|
000026a0  78 70 72 65 73 73 69 6f  6e 2e 20 65 67 20 53 49  |xpression. eg SI|
000026b0  4e 48 78 20 0a 20 20 20  20 54 41 4e 48 20 20 20  |NHx .    TANH   |
000026c0  20 20 20 54 68 65 20 68  79 70 65 72 62 6f 6c 69  |   The hyperboli|
000026d0  63 20 74 61 6e 67 65 6e  74 20 6f 66 20 74 68 65  |c tangent of the|
000026e0  20 65 78 70 72 65 73 73  69 6f 6e 2e 20 65 67 20  | expression. eg |
000026f0  54 41 4e 48 78 20 0a 20  20 20 20 41 52 43 43 4f  |TANHx .    ARCCO|
00002700  53 48 20 20 20 54 68 65  20 69 6e 76 65 72 73 65  |SH   The inverse|
00002710  20 68 79 70 65 72 62 6f  6c 69 63 20 63 6f 73 69  | hyperbolic cosi|
00002720  6e 65 20 6f 66 20 74 68  65 20 65 78 70 72 65 73  |ne of the expres|
00002730  73 69 6f 6e 2e 20 65 67  20 41 52 43 43 4f 53 48  |sion. eg ARCCOSH|
00002740  78 20 0a 20 20 20 20 41  52 43 53 49 4e 48 20 20  |x .    ARCSINH  |
00002750  20 54 68 65 20 69 6e 76  65 72 73 65 20 68 79 70  | The inverse hyp|
00002760  65 72 62 6f 6c 69 63 20  73 69 6e 65 20 6f 66 20  |erbolic sine of |
00002770  74 68 65 20 65 78 70 72  65 73 73 69 6f 6e 2e 20  |the expression. |
00002780  65 67 20 41 52 43 53 49  4e 48 78 20 0a 20 20 20  |eg ARCSINHx .   |
00002790  20 41 52 43 54 41 4e 48  20 20 20 54 68 65 20 69  | ARCTANH   The i|
000027a0  6e 76 65 72 73 65 20 68  79 70 65 72 62 6f 6c 69  |nverse hyperboli|
000027b0  63 20 74 61 6e 67 65 6e  74 20 6f 66 20 74 68 65  |c tangent of the|
000027c0  20 65 78 70 72 65 73 73  69 6f 6e 2e 20 65 67 20  | expression. eg |
000027d0  0a 20 20 20 20 20 20 20  20 20 20 20 20 20 20 41  |.              A|
000027e0  52 43 54 41 4e 48 78 20  0a 20 20 20 20 20 0a 20  |RCTANHx .     . |
000027f0  20 20 20 20 0a 20 20 20  20 54 68 65 20 66 6f 6c  |    .    The fol|
00002800  6c 6f 77 69 6e 67 20 74  61 6b 65 20 6e 6f 74 69  |lowing take noti|
00002810  63 65 20 6f 66 20 74 68  65 20 64 65 67 72 65 65  |ce of the degree|
00002820  5c 72 61 64 69 61 6e 20  6d 6f 64 65 20 73 65 6c  |\radian mode sel|
00002830  65 63 74 69 6f 6e 2e 20  20 0a 20 20 20 20 20 0a  |ection.  .     .|
00002840  20 20 20 20 53 49 4e 20  20 20 20 20 20 20 54 68  |    SIN       Th|
00002850  65 20 73 69 6e 65 20 6f  66 20 74 68 65 20 65 78  |e sine of the ex|
00002860  70 72 65 73 73 69 6f 6e  20 65 67 20 53 49 4e 20  |pression eg SIN |
00002870  78 20 0a 20 20 20 20 43  4f 53 20 20 20 20 20 20  |x .    COS      |
00002880  20 54 68 65 20 63 6f 73  69 6e 65 20 6f 66 20 74  | The cosine of t|
00002890  68 65 20 65 78 70 72 65  73 73 69 6f 6e 20 65 67  |he expression eg|
000028a0  20 43 4f 53 20 78 20 0a  20 20 20 20 54 41 4e 20  | COS x .    TAN |
000028b0  20 20 20 20 20 20 54 68  65 20 74 61 6e 67 65 6e  |      The tangen|
000028c0  74 20 6f 66 20 74 68 65  20 65 78 70 72 65 73 73  |t of the express|
000028d0  69 6f 6e 20 65 67 20 54  41 4e 20 78 20 0a 20 20  |ion eg TAN x .  |
000028e0  20 20 41 53 43 20 20 20  20 20 20 20 54 68 65 20  |  ASC       The |
000028f0  69 6e 76 65 72 73 65 20  73 69 6e 65 20 28 61 72  |inverse sine (ar|
00002900  63 20 73 69 6e 65 29 20  6f 66 20 74 68 65 20 65  |c sine) of the e|
00002910  78 70 72 65 73 73 69 6f  6e 20 65 67 20 41 53 43  |xpression eg ASC|
00002920  20 78 20 0a 20 20 20 20  41 43 53 20 20 20 20 20  | x .    ACS     |
00002930  20 20 54 68 65 20 69 6e  76 65 72 73 65 20 63 6f  |  The inverse co|
00002940  73 69 6e 65 20 28 61 72  63 20 63 6f 73 69 6e 65  |sine (arc cosine|
00002950  29 20 6f 66 20 74 68 65  20 65 78 70 72 65 73 73  |) of the express|
00002960  69 6f 6e 20 65 67 20 41  43 53 20 78 20 0a 20 20  |ion eg ACS x .  |
00002970  20 20 41 54 4e 20 20 20  20 20 20 20 54 68 65 20  |  ATN       The |
00002980  69 6e 76 65 72 73 65 20  74 61 6e 67 65 6e 74 20  |inverse tangent |
00002990  28 61 72 63 20 74 61 6e  67 65 6e 74 29 20 6f 66  |(arc tangent) of|
000029a0  20 74 68 65 20 65 78 70  72 65 73 73 69 6f 6e 20  | the expression |
000029b0  65 67 20 41 54 4e 20 78  20 0a 20 20 20 20 20 0a  |eg ATN x .     .|
000029c0  20 20 20 20 20 0a 20 20  20 20 5a 6f 6f 6d 69 6e  |     .    Zoomin|
000029d0  67 20 0a 20 20 20 20 20  0a 20 20 20 20 57 68 65  |g .     .    Whe|
000029e0  6e 20 63 61 72 74 65 73  69 61 6e 20 61 78 65 73  |n cartesian axes|
000029f0  20 61 72 65 20 62 65 69  6e 67 20 75 73 65 64 20  | are being used |
00002a00  69 74 20 69 73 20 70 6f  73 73 69 62 6c 65 20 74  |it is possible t|
00002a10  6f 20 7a 6f 6f 6d 20 69  6e 20 6f 6e 20 61 6e 20  |o zoom in on an |
00002a20  0a 20 20 20 20 61 72 65  61 2e 20 4d 6f 76 65 20  |.    area. Move |
00002a30  74 6f 20 74 68 65 20 62  6f 74 74 6f 6d 20 6c 65  |to the bottom le|
00002a40  66 74 20 6f 66 20 74 68  65 20 62 6f 75 6e 64 61  |ft of the bounda|
00002a50  72 79 20 6f 66 20 74 68  65 20 72 65 67 69 6f 6e  |ry of the region|
00002a60  20 74 6f 20 62 65 20 0a  20 20 20 20 7a 6f 6f 6d  | to be .    zoom|
00002a70  65 64 2e 20 50 72 65 73  73 20 61 64 6a 75 73 74  |ed. Press adjust|
00002a80  2e 20 0a 20 20 20 20 20  0a 20 20 20 20 41 20 62  |. .     .    A b|
00002a90  6f 75 6e 64 69 6e 67 20  62 6f 78 20 77 69 6c 6c  |ounding box will|
00002aa0  20 62 65 20 64 72 61 77  6e 20 66 72 6f 6d 20 77  | be drawn from w|
00002ab0  68 65 72 65 20 74 68 65  20 70 6f 69 6e 74 65 72  |here the pointer|
00002ac0  20 69 73 20 74 6f 20 77  68 65 72 65 20 74 68 65  | is to where the|
00002ad0  20 0a 20 20 20 20 70 6f  69 6e 74 65 72 20 77 61  | .    pointer wa|
00002ae0  73 20 77 68 65 6e 20 61  64 6a 75 73 74 20 77 61  |s when adjust wa|
00002af0  73 20 63 6c 69 63 6b 65  64 2e 20 0a 20 20 20 20  |s clicked. .    |
00002b00  20 0a 20 20 20 20 4d 6f  76 65 20 74 6f 20 74 68  | .    Move to th|
00002b10  65 20 74 6f 70 20 72 69  67 68 74 20 6f 66 20 74  |e top right of t|
00002b20  68 65 20 61 72 65 61 20  73 6f 20 74 68 61 74 20  |he area so that |
00002b30  74 68 65 20 62 6f 75 6e  64 69 6e 67 20 62 6f 78  |the bounding box|
00002b40  20 63 6f 6e 74 61 69 6e  73 20 0a 20 20 20 20 74  | contains .    t|
00002b50  68 65 20 61 72 65 61 20  74 6f 20 62 65 20 7a 6f  |he area to be zo|
00002b60  6f 6d 65 64 2e 20 50 72  65 73 73 20 61 64 6a 75  |omed. Press adju|
00002b70  73 74 20 61 67 61 69 6e  2e 20 0a 0a 0a 20 20 20  |st again. ...   |
00002b80  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
*
00002ba0  20 50 61 67 65 20 35 0a  0a 0a 0a 0a 0a 0a 0a 0a  | Page 5.........|
00002bb0  0a 20 20 20 20 20 0a 20  20 20 20 54 68 65 20 67  |.     .    The g|
00002bc0  72 61 70 68 20 77 69 6c  6c 20 6e 6f 77 20 62 65  |raph will now be|
00002bd0  20 72 65 2d 64 72 61 77  6e 20 77 69 74 68 20 74  | re-drawn with t|
00002be0  68 65 20 6e 65 77 20 61  78 65 73 20 72 61 6e 67  |he new axes rang|
00002bf0  65 2e 20 0a 20 20 20 20  20 0a 20 20 20 20 20 0a  |e. .     .     .|
00002c00  20 20 20 20 53 61 76 69  6e 67 20 61 73 20 61 20  |    Saving as a |
00002c10  73 70 72 69 74 65 20 0a  20 20 20 20 20 0a 20 20  |sprite .     .  |
00002c20  20 20 49 74 20 69 73 20  75 73 75 61 6c 6c 79 20  |  It is usually |
00002c30  70 72 65 66 65 72 61 62  6c 65 20 74 6f 20 65 78  |preferable to ex|
00002c40  70 6f 72 74 20 74 68 65  20 67 72 61 70 68 20 61  |port the graph a|
00002c50  73 20 61 20 64 72 61 77  20 66 69 6c 65 2c 20 69  |s a draw file, i|
00002c60  74 20 6d 61 79 20 62 65  20 0a 20 20 20 20 73 61  |t may be .    sa|
00002c70  76 65 64 20 61 73 20 61  20 73 70 72 69 74 65 20  |ved as a sprite |
00002c80  62 79 20 75 73 69 6e 67  20 74 68 65 20 67 72 61  |by using the gra|
00002c90  62 20 73 70 72 69 74 65  20 6f 70 74 69 6f 6e 20  |b sprite option |
00002ca0  6f 6e 20 21 70 61 69 6e  74 20 61 6e 64 20 0a 20  |on !paint and . |
00002cb0  20 20 20 67 72 61 62 62  69 6e 67 20 74 68 65 20  |   grabbing the |
00002cc0  67 72 61 70 68 20 66 72  6f 6d 20 74 68 65 20 77  |graph from the w|
00002cd0  69 6e 64 6f 77 2e 20 0a  0a 0a 0a 0a 0a 0a 0a 0a  |indow. .........|
00002ce0  0a 0a 0a 0a 0a 0a 0a 0a  0a 0a 0a 0a 0a 0a 0a 0a  |................|
*
00002d00  0a 0a 0a 0a 0a 0a 0a 20  20 20 20 20 20 20 20 20  |.......         |
00002d10  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00002d20  20 20 20 20 20 20 20 20  20 20 20 50 61 67 65 20  |           Page |
00002d30  36 0a 0a 0a 0a 0a 0a 0a  0a 0a 0a 20 20 20 20 4e  |6..........    N|
00002d40  6f 74 65 20 0a 20 20 20  20 20 0a 20 20 20 20 54  |ote .     .    T|
00002d50  68 65 20 66 69 6c 65 20  74 79 70 65 20 37 37 37  |he file type 777|
00002d60  20 68 61 73 20 62 65 65  6e 20 75 73 65 64 20 66  | has been used f|
00002d70  6f 72 20 61 20 67 72 61  70 68 20 64 61 74 61 20  |or a graph data |
00002d80  66 69 6c 65 2e 20 20 0a  20 20 20 20 20 0a 20 20  |file.  .     .  |
00002d90  20 20 20 0a 20 20 20 20  20 0a 20 20 20 20 20 0a  |   .     .     .|
00002da0  20 20 20 20 41 20 46 20  4c 61 6e 65 20 0a 20 20  |    A F Lane .  |
00002db0  20 20 33 20 4c 61 6e 73  64 6f 77 6e 65 20 47 61  |  3 Lansdowne Ga|
00002dc0  72 64 65 6e 73 20 0a 20  20 20 20 48 61 69 6c 73  |rdens .    Hails|
00002dd0  68 61 6d 20 0a 20 20 20  20 45 61 73 74 20 53 75  |ham .    East Su|
00002de0  73 73 65 78 20 0a 20 20  20 20 42 4e 32 37 20 31  |ssex .    BN27 1|
00002df0  4c 51 20 0a 20 20 20 20  20 0a 20 20 20 20 46 65  |LQ .     .    Fe|
00002e00  62 72 75 61 72 79 20 31  39 39 30 20 0a 20 20 20  |bruary 1990 .   |
00002e10  20 20 0a 0a 0a 0a 0a 0a  0a 0a 0a 0a 0a 0a 0a 0a  |  ..............|
00002e20  0a 0a 0a 0a 0a 0a 0a 0a  0a 0a 0a 0a 0a 0a 0a 0a  |................|
00002e30  0a 0a 0a 0a 0a 0a 0a 0a  0a 0a 0a 0a 20 20 20 20  |............    |
00002e40  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
*
00002e60  50 61 67 65 20 37 0a 0a  0a 0a                    |Page 7....|
00002e6a