Home » Archimedes archive » Acorn User » AU 1995-11.adf » !Regulars » Regulars/StarInfo/Radford/ReadMe
Regulars/StarInfo/Radford/ReadMe
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » Archimedes archive » Acorn User » AU 1995-11.adf » !Regulars |
Filename: | Regulars/StarInfo/Radford/ReadMe |
Read OK: | ✔ |
File size: | 0F6B bytes |
Load address: | 0000 |
Exec address: | 0000 |
File contents
Detailed on this disk are several Assembler Libraries that will add, multiply and divide any number to an unlimited degree of accuracy dependent only upon memory constraints. Currently these limits are set to numbers of 400 digits in length, but these may be altered to suit numbers of any length. The three files "ASS_ADD", "ASS_DIV", "ASS_MUL" are demonstration files of the routines and will add, divide and multiply any integers up to 400 digits in length. To run these simply double click on the file and type in the numbers you wish the routine to operate on. The three libraries are unified into one general library called "Calc_lib", thus all of these routines can be used from any basic program without any understanding of how these routines work. This library is used as follows:- i.) First you must make a call to assemble the code this is done with the following command PROCassemble_calculator ii.) Next you must specify the operand to be used by the respective routine, this is done as follows:- operand1$=" first number " operand2$=" second number " operand1?0=0 operand2?0=0 FOR A=1 TO LEN(operand1$) operand1?(A)=VAL(MID$(operand1$,A,1)) NEXT operand1?(A)=10 FOR A=1 TO LEN(operand2$) operand2?(A)=VAL(MID$(operand2$,A,1)) NEXT operand2?(A)=10 Each routine takes its input as a series of bytes contained in operand1 and operand2, the first byte of which must be a 0. values of 1-9 correspeond to the actual digits one to nine, and a value of ten corresponds to the terminating byte in each of the operands, e.g. to specify operand 1 as 21 you could use the following :- operand1?0=0 \ leading 0 operand1?1=2 operand1?2=1 operand1?3=10 \ terminating byte iii.) finally you must call the routine:- USE EITHER : CALL begin_addition : CALL begin_division : CALL begin_multiplication the result is returned in the variable 'result' and is terminated by a value of 10, it could be accessed as follows:- A=0 REPEAT PRINT STR$((result?A)); A+=1 UNTIL result?(A+1)=10 IF both operands 1 and 2 and the result were passed as simple strings then calculations would be restricted to a maximum accuracy of 256 digits, since this is the maximum length for a string under RISC OS, this is why the above convention for passing the operands is used. Floating point addition, division, and multiplication can be achieved by multiplying up the first operand by a very large number, say 10^100, the result is in effect (10^100 * the answer) and will include 10^100 digits past the decimal point. e.g. to divide 1 by 3 could be done as follows : make operand 1 = 10^100 make operand 2 = 3 call the division routine The result will be given as 10^100 * 1/3. A more complex example of this is given by the program "ASS_ECALC". This program calculates the number e (normally detailed as 2.718281828459) to a specified degree of accuracy. It uses the basis that e can be calculated from the expansion :- e = { 1/0! + 1/1! + 1/2! + 1/3! + 1/4! + ..... 1/n! } This program can calculate the factorial of very large numbers - a separate routine that illustrates this is called "fctrial" on the disc. the final result is given as e * 10^accuracy, where accuracy is the initial accuracy specified. The accuracy of the result, and the number of terms used to provide the approximation can be altered by changing the following variables at the beginning of the program:- it%= the number of iterations (initially 100) acc2% = the accuracy of the result (initially 100) ********************************************************************************************* ** the number 'e' listed to 1990 decimal places in contained in the file 'e' - the program ** ** took just under 24 hours to calculate all 2000 terms to nearly 2000 decimal places ** *********************************************************************************************
00000000 44 65 74 61 69 6c 65 64 20 6f 6e 20 74 68 69 73 |Detailed on this| 00000010 20 64 69 73 6b 20 61 72 65 20 73 65 76 65 72 61 | disk are severa| 00000020 6c 20 41 73 73 65 6d 62 6c 65 72 20 4c 69 62 72 |l Assembler Libr| 00000030 61 72 69 65 73 20 74 68 61 74 20 77 69 6c 6c 20 |aries that will | 00000040 61 64 64 2c 20 6d 75 6c 74 69 70 6c 79 20 61 6e |add, multiply an| 00000050 64 20 64 69 76 69 64 65 20 61 6e 79 20 6e 75 6d |d divide any num| 00000060 62 65 72 20 74 6f 20 61 6e 20 75 6e 6c 69 6d 69 |ber to an unlimi| 00000070 74 65 64 20 64 65 67 72 65 65 20 6f 66 20 61 63 |ted degree of ac| 00000080 63 75 72 61 63 79 20 64 65 70 65 6e 64 65 6e 74 |curacy dependent| 00000090 20 6f 6e 6c 79 20 75 70 6f 6e 20 6d 65 6d 6f 72 | only upon memor| 000000a0 79 20 63 6f 6e 73 74 72 61 69 6e 74 73 2e 20 20 |y constraints. | 000000b0 43 75 72 72 65 6e 74 6c 79 20 74 68 65 73 65 20 |Currently these | 000000c0 6c 69 6d 69 74 73 20 61 72 65 20 73 65 74 20 74 |limits are set t| 000000d0 6f 20 6e 75 6d 62 65 72 73 20 6f 66 20 34 30 30 |o numbers of 400| 000000e0 20 64 69 67 69 74 73 20 69 6e 20 6c 65 6e 67 74 | digits in lengt| 000000f0 68 2c 20 62 75 74 20 74 68 65 73 65 20 6d 61 79 |h, but these may| 00000100 20 62 65 20 61 6c 74 65 72 65 64 20 74 6f 20 73 | be altered to s| 00000110 75 69 74 20 6e 75 6d 62 65 72 73 20 6f 66 20 61 |uit numbers of a| 00000120 6e 79 20 6c 65 6e 67 74 68 2e 0a 0a 54 68 65 20 |ny length...The | 00000130 74 68 72 65 65 20 66 69 6c 65 73 20 22 41 53 53 |three files "ASS| 00000140 5f 41 44 44 22 2c 20 22 41 53 53 5f 44 49 56 22 |_ADD", "ASS_DIV"| 00000150 2c 20 22 41 53 53 5f 4d 55 4c 22 20 61 72 65 20 |, "ASS_MUL" are | 00000160 64 65 6d 6f 6e 73 74 72 61 74 69 6f 6e 20 66 69 |demonstration fi| 00000170 6c 65 73 20 6f 66 20 74 68 65 20 72 6f 75 74 69 |les of the routi| 00000180 6e 65 73 20 61 6e 64 20 77 69 6c 6c 20 61 64 64 |nes and will add| 00000190 2c 20 64 69 76 69 64 65 20 61 6e 64 20 6d 75 6c |, divide and mul| 000001a0 74 69 70 6c 79 20 61 6e 79 20 69 6e 74 65 67 65 |tiply any intege| 000001b0 72 73 20 75 70 20 74 6f 20 34 30 30 20 64 69 67 |rs up to 400 dig| 000001c0 69 74 73 20 69 6e 20 6c 65 6e 67 74 68 2e 20 20 |its in length. | 000001d0 54 6f 20 72 75 6e 20 74 68 65 73 65 20 73 69 6d |To run these sim| 000001e0 70 6c 79 20 64 6f 75 62 6c 65 20 63 6c 69 63 6b |ply double click| 000001f0 20 6f 6e 20 74 68 65 20 66 69 6c 65 20 61 6e 64 | on the file and| 00000200 20 74 79 70 65 20 69 6e 20 74 68 65 20 6e 75 6d | type in the num| 00000210 62 65 72 73 20 79 6f 75 20 77 69 73 68 20 74 68 |bers you wish th| 00000220 65 20 72 6f 75 74 69 6e 65 20 74 6f 20 6f 70 65 |e routine to ope| 00000230 72 61 74 65 20 6f 6e 2e 0a 0a 54 68 65 20 74 68 |rate on...The th| 00000240 72 65 65 20 6c 69 62 72 61 72 69 65 73 20 61 72 |ree libraries ar| 00000250 65 20 75 6e 69 66 69 65 64 20 69 6e 74 6f 20 6f |e unified into o| 00000260 6e 65 20 67 65 6e 65 72 61 6c 20 6c 69 62 72 61 |ne general libra| 00000270 72 79 20 63 61 6c 6c 65 64 20 22 43 61 6c 63 5f |ry called "Calc_| 00000280 6c 69 62 22 2c 20 74 68 75 73 20 61 6c 6c 20 6f |lib", thus all o| 00000290 66 20 74 68 65 73 65 20 72 6f 75 74 69 6e 65 73 |f these routines| 000002a0 20 63 61 6e 20 62 65 20 75 73 65 64 20 66 72 6f | can be used fro| 000002b0 6d 20 61 6e 79 20 62 61 73 69 63 20 70 72 6f 67 |m any basic prog| 000002c0 72 61 6d 20 77 69 74 68 6f 75 74 20 61 6e 79 20 |ram without any | 000002d0 75 6e 64 65 72 73 74 61 6e 64 69 6e 67 20 6f 66 |understanding of| 000002e0 20 68 6f 77 20 74 68 65 73 65 20 72 6f 75 74 69 | how these routi| 000002f0 6e 65 73 20 77 6f 72 6b 2e 20 20 54 68 69 73 20 |nes work. This | 00000300 6c 69 62 72 61 72 79 20 69 73 20 75 73 65 64 20 |library is used | 00000310 61 73 20 66 6f 6c 6c 6f 77 73 3a 2d 0a 0a 69 2e |as follows:-..i.| 00000320 29 20 46 69 72 73 74 20 79 6f 75 20 6d 75 73 74 |) First you must| 00000330 20 6d 61 6b 65 20 61 20 63 61 6c 6c 20 74 6f 20 | make a call to | 00000340 61 73 73 65 6d 62 6c 65 20 74 68 65 20 63 6f 64 |assemble the cod| 00000350 65 20 74 68 69 73 20 69 73 20 64 6f 6e 65 20 77 |e this is done w| 00000360 69 74 68 20 74 68 65 20 66 6f 6c 6c 6f 77 69 6e |ith the followin| 00000370 67 20 63 6f 6d 6d 61 6e 64 0a 0a 50 52 4f 43 61 |g command..PROCa| 00000380 73 73 65 6d 62 6c 65 5f 63 61 6c 63 75 6c 61 74 |ssemble_calculat| 00000390 6f 72 0a 0a 69 69 2e 29 20 4e 65 78 74 20 79 6f |or..ii.) Next yo| 000003a0 75 20 6d 75 73 74 20 73 70 65 63 69 66 79 20 74 |u must specify t| 000003b0 68 65 20 6f 70 65 72 61 6e 64 20 74 6f 20 62 65 |he operand to be| 000003c0 20 75 73 65 64 20 62 79 20 74 68 65 20 72 65 73 | used by the res| 000003d0 70 65 63 74 69 76 65 20 72 6f 75 74 69 6e 65 2c |pective routine,| 000003e0 20 74 68 69 73 20 69 73 20 64 6f 6e 65 20 61 73 | this is done as| 000003f0 20 66 6f 6c 6c 6f 77 73 3a 2d 0a 0a 0a 6f 70 65 | follows:-...ope| 00000400 72 61 6e 64 31 24 3d 22 20 20 20 20 20 20 20 20 |rand1$=" | 00000410 20 20 66 69 72 73 74 20 6e 75 6d 62 65 72 20 20 | first number | 00000420 20 20 20 20 20 20 20 20 22 0a 6f 70 65 72 61 6e | ".operan| 00000430 64 32 24 3d 22 20 20 20 20 20 20 20 20 20 73 65 |d2$=" se| 00000440 63 6f 6e 64 20 6e 75 6d 62 65 72 20 20 20 20 20 |cond number | 00000450 20 20 20 20 20 22 0a 6f 70 65 72 61 6e 64 31 3f | ".operand1?| 00000460 30 3d 30 0a 6f 70 65 72 61 6e 64 32 3f 30 3d 30 |0=0.operand2?0=0| 00000470 0a 0a 46 4f 52 20 41 3d 31 20 54 4f 20 4c 45 4e |..FOR A=1 TO LEN| 00000480 28 6f 70 65 72 61 6e 64 31 24 29 0a 6f 70 65 72 |(operand1$).oper| 00000490 61 6e 64 31 3f 28 41 29 3d 56 41 4c 28 4d 49 44 |and1?(A)=VAL(MID| 000004a0 24 28 6f 70 65 72 61 6e 64 31 24 2c 41 2c 31 29 |$(operand1$,A,1)| 000004b0 29 0a 4e 45 58 54 0a 6f 70 65 72 61 6e 64 31 3f |).NEXT.operand1?| 000004c0 28 41 29 3d 31 30 0a 0a 46 4f 52 20 41 3d 31 20 |(A)=10..FOR A=1 | 000004d0 54 4f 20 4c 45 4e 28 6f 70 65 72 61 6e 64 32 24 |TO LEN(operand2$| 000004e0 29 0a 6f 70 65 72 61 6e 64 32 3f 28 41 29 3d 56 |).operand2?(A)=V| 000004f0 41 4c 28 4d 49 44 24 28 6f 70 65 72 61 6e 64 32 |AL(MID$(operand2| 00000500 24 2c 41 2c 31 29 29 0a 4e 45 58 54 0a 6f 70 65 |$,A,1)).NEXT.ope| 00000510 72 61 6e 64 32 3f 28 41 29 3d 31 30 0a 0a 45 61 |rand2?(A)=10..Ea| 00000520 63 68 20 72 6f 75 74 69 6e 65 20 74 61 6b 65 73 |ch routine takes| 00000530 20 69 74 73 20 69 6e 70 75 74 20 61 73 20 61 20 | its input as a | 00000540 73 65 72 69 65 73 20 6f 66 20 62 79 74 65 73 20 |series of bytes | 00000550 63 6f 6e 74 61 69 6e 65 64 20 69 6e 20 6f 70 65 |contained in ope| 00000560 72 61 6e 64 31 20 61 6e 64 20 6f 70 65 72 61 6e |rand1 and operan| 00000570 64 32 2c 20 74 68 65 20 66 69 72 73 74 20 62 79 |d2, the first by| 00000580 74 65 20 6f 66 20 77 68 69 63 68 20 6d 75 73 74 |te of which must| 00000590 20 62 65 20 61 20 30 2e 20 20 76 61 6c 75 65 73 | be a 0. values| 000005a0 20 6f 66 20 31 2d 39 20 63 6f 72 72 65 73 70 65 | of 1-9 correspe| 000005b0 6f 6e 64 20 74 6f 20 74 68 65 20 61 63 74 75 61 |ond to the actua| 000005c0 6c 20 64 69 67 69 74 73 20 6f 6e 65 20 74 6f 20 |l digits one to | 000005d0 6e 69 6e 65 2c 20 61 6e 64 20 61 20 76 61 6c 75 |nine, and a valu| 000005e0 65 20 6f 66 20 74 65 6e 20 63 6f 72 72 65 73 70 |e of ten corresp| 000005f0 6f 6e 64 73 20 74 6f 20 74 68 65 20 74 65 72 6d |onds to the term| 00000600 69 6e 61 74 69 6e 67 20 62 79 74 65 20 69 6e 20 |inating byte in | 00000610 65 61 63 68 20 6f 66 20 74 68 65 20 6f 70 65 72 |each of the oper| 00000620 61 6e 64 73 2c 20 65 2e 67 2e 20 74 6f 20 73 70 |ands, e.g. to sp| 00000630 65 63 69 66 79 20 6f 70 65 72 61 6e 64 20 31 20 |ecify operand 1 | 00000640 61 73 20 32 31 20 79 6f 75 20 63 6f 75 6c 64 20 |as 21 you could | 00000650 75 73 65 20 74 68 65 20 66 6f 6c 6c 6f 77 69 6e |use the followin| 00000660 67 20 3a 2d 0a 0a 6f 70 65 72 61 6e 64 31 3f 30 |g :-..operand1?0| 00000670 3d 30 20 20 20 20 20 5c 20 6c 65 61 64 69 6e 67 |=0 \ leading| 00000680 20 30 0a 6f 70 65 72 61 6e 64 31 3f 31 3d 32 0a | 0.operand1?1=2.| 00000690 6f 70 65 72 61 6e 64 31 3f 32 3d 31 0a 6f 70 65 |operand1?2=1.ope| 000006a0 72 61 6e 64 31 3f 33 3d 31 30 20 20 20 20 5c 20 |rand1?3=10 \ | 000006b0 74 65 72 6d 69 6e 61 74 69 6e 67 20 62 79 74 65 |terminating byte| 000006c0 0a 0a 69 69 69 2e 29 0a 0a 66 69 6e 61 6c 6c 79 |..iii.)..finally| 000006d0 20 79 6f 75 20 6d 75 73 74 20 63 61 6c 6c 20 74 | you must call t| 000006e0 68 65 20 72 6f 75 74 69 6e 65 3a 2d 0a 0a 55 53 |he routine:-..US| 000006f0 45 20 45 49 54 48 45 52 20 20 3a 20 43 41 4c 4c |E EITHER : CALL| 00000700 20 62 65 67 69 6e 5f 61 64 64 69 74 69 6f 6e 0a | begin_addition.| 00000710 20 20 20 20 20 20 20 20 20 20 20 20 3a 20 43 41 | : CA| 00000720 4c 4c 20 62 65 67 69 6e 5f 64 69 76 69 73 69 6f |LL begin_divisio| 00000730 6e 0a 20 20 20 20 20 20 20 20 20 20 20 20 3a 20 |n. : | 00000740 43 41 4c 4c 20 62 65 67 69 6e 5f 6d 75 6c 74 69 |CALL begin_multi| 00000750 70 6c 69 63 61 74 69 6f 6e 0a 0a 74 68 65 20 72 |plication..the r| 00000760 65 73 75 6c 74 20 69 73 20 72 65 74 75 72 6e 65 |esult is returne| 00000770 64 20 69 6e 20 74 68 65 20 76 61 72 69 61 62 6c |d in the variabl| 00000780 65 20 27 72 65 73 75 6c 74 27 20 61 6e 64 20 69 |e 'result' and i| 00000790 73 20 74 65 72 6d 69 6e 61 74 65 64 20 62 79 20 |s terminated by | 000007a0 61 20 76 61 6c 75 65 20 6f 66 20 31 30 2c 20 69 |a value of 10, i| 000007b0 74 20 63 6f 75 6c 64 20 62 65 20 61 63 63 65 73 |t could be acces| 000007c0 73 65 64 20 61 73 20 66 6f 6c 6c 6f 77 73 3a 2d |sed as follows:-| 000007d0 0a 0a 41 3d 30 0a 52 45 50 45 41 54 0a 50 52 49 |..A=0.REPEAT.PRI| 000007e0 4e 54 20 53 54 52 24 28 28 72 65 73 75 6c 74 3f |NT STR$((result?| 000007f0 41 29 29 3b 0a 41 2b 3d 31 0a 55 4e 54 49 4c 20 |A));.A+=1.UNTIL | 00000800 72 65 73 75 6c 74 3f 28 41 2b 31 29 3d 31 30 0a |result?(A+1)=10.| 00000810 0a 0a 49 46 20 62 6f 74 68 20 6f 70 65 72 61 6e |..IF both operan| 00000820 64 73 20 31 20 61 6e 64 20 32 20 61 6e 64 20 74 |ds 1 and 2 and t| 00000830 68 65 20 72 65 73 75 6c 74 20 77 65 72 65 20 70 |he result were p| 00000840 61 73 73 65 64 20 61 73 20 73 69 6d 70 6c 65 20 |assed as simple | 00000850 73 74 72 69 6e 67 73 20 74 68 65 6e 20 63 61 6c |strings then cal| 00000860 63 75 6c 61 74 69 6f 6e 73 20 77 6f 75 6c 64 20 |culations would | 00000870 62 65 20 72 65 73 74 72 69 63 74 65 64 20 74 6f |be restricted to| 00000880 20 61 20 6d 61 78 69 6d 75 6d 20 61 63 63 75 72 | a maximum accur| 00000890 61 63 79 20 6f 66 20 32 35 36 20 64 69 67 69 74 |acy of 256 digit| 000008a0 73 2c 20 73 69 6e 63 65 20 74 68 69 73 20 69 73 |s, since this is| 000008b0 20 74 68 65 20 6d 61 78 69 6d 75 6d 20 6c 65 6e | the maximum len| 000008c0 67 74 68 20 66 6f 72 20 61 20 73 74 72 69 6e 67 |gth for a string| 000008d0 20 75 6e 64 65 72 20 52 49 53 43 20 4f 53 2c 20 | under RISC OS, | 000008e0 74 68 69 73 20 69 73 20 77 68 79 20 74 68 65 20 |this is why the | 000008f0 61 62 6f 76 65 20 63 6f 6e 76 65 6e 74 69 6f 6e |above convention| 00000900 20 66 6f 72 20 70 61 73 73 69 6e 67 20 74 68 65 | for passing the| 00000910 20 6f 70 65 72 61 6e 64 73 20 69 73 20 75 73 65 | operands is use| 00000920 64 2e 0a 0a 0a 46 6c 6f 61 74 69 6e 67 20 70 6f |d....Floating po| 00000930 69 6e 74 20 61 64 64 69 74 69 6f 6e 2c 20 64 69 |int addition, di| 00000940 76 69 73 69 6f 6e 2c 20 61 6e 64 20 6d 75 6c 74 |vision, and mult| 00000950 69 70 6c 69 63 61 74 69 6f 6e 20 63 61 6e 20 62 |iplication can b| 00000960 65 20 61 63 68 69 65 76 65 64 20 62 79 20 6d 75 |e achieved by mu| 00000970 6c 74 69 70 6c 79 69 6e 67 20 75 70 20 74 68 65 |ltiplying up the| 00000980 20 66 69 72 73 74 20 6f 70 65 72 61 6e 64 20 62 | first operand b| 00000990 79 20 61 20 76 65 72 79 20 6c 61 72 67 65 20 6e |y a very large n| 000009a0 75 6d 62 65 72 2c 20 73 61 79 20 31 30 5e 31 30 |umber, say 10^10| 000009b0 30 2c 20 74 68 65 20 72 65 73 75 6c 74 20 69 73 |0, the result is| 000009c0 20 69 6e 20 65 66 66 65 63 74 20 28 31 30 5e 31 | in effect (10^1| 000009d0 30 30 20 2a 20 74 68 65 20 61 6e 73 77 65 72 29 |00 * the answer)| 000009e0 20 61 6e 64 20 77 69 6c 6c 20 69 6e 63 6c 75 64 | and will includ| 000009f0 65 20 31 30 5e 31 30 30 20 64 69 67 69 74 73 20 |e 10^100 digits | 00000a00 70 61 73 74 20 74 68 65 20 64 65 63 69 6d 61 6c |past the decimal| 00000a10 20 70 6f 69 6e 74 2e 20 65 2e 67 2e 20 74 6f 20 | point. e.g. to | 00000a20 64 69 76 69 64 65 20 31 20 62 79 20 33 20 63 6f |divide 1 by 3 co| 00000a30 75 6c 64 20 62 65 20 64 6f 6e 65 20 61 73 20 66 |uld be done as f| 00000a40 6f 6c 6c 6f 77 73 20 3a 0a 0a 6d 61 6b 65 20 6f |ollows :..make o| 00000a50 70 65 72 61 6e 64 20 31 20 20 3d 20 31 30 5e 31 |perand 1 = 10^1| 00000a60 30 30 0a 6d 61 6b 65 20 6f 70 65 72 61 6e 64 20 |00.make operand | 00000a70 32 20 20 3d 20 33 0a 63 61 6c 6c 20 74 68 65 20 |2 = 3.call the | 00000a80 64 69 76 69 73 69 6f 6e 20 72 6f 75 74 69 6e 65 |division routine| 00000a90 0a 54 68 65 20 72 65 73 75 6c 74 20 77 69 6c 6c |.The result will| 00000aa0 20 62 65 20 67 69 76 65 6e 20 61 73 20 31 30 5e | be given as 10^| 00000ab0 31 30 30 20 2a 20 31 2f 33 2e 0a 0a 0a 0a 41 20 |100 * 1/3.....A | 00000ac0 6d 6f 72 65 20 63 6f 6d 70 6c 65 78 20 65 78 61 |more complex exa| 00000ad0 6d 70 6c 65 20 6f 66 20 74 68 69 73 20 69 73 20 |mple of this is | 00000ae0 67 69 76 65 6e 20 62 79 20 74 68 65 20 70 72 6f |given by the pro| 00000af0 67 72 61 6d 20 22 41 53 53 5f 45 43 41 4c 43 22 |gram "ASS_ECALC"| 00000b00 2e 20 20 54 68 69 73 20 70 72 6f 67 72 61 6d 20 |. This program | 00000b10 63 61 6c 63 75 6c 61 74 65 73 20 74 68 65 20 6e |calculates the n| 00000b20 75 6d 62 65 72 20 65 20 28 6e 6f 72 6d 61 6c 6c |umber e (normall| 00000b30 79 20 64 65 74 61 69 6c 65 64 20 61 73 20 32 2e |y detailed as 2.| 00000b40 37 31 38 32 38 31 38 32 38 34 35 39 29 20 74 6f |718281828459) to| 00000b50 20 61 20 73 70 65 63 69 66 69 65 64 20 64 65 67 | a specified deg| 00000b60 72 65 65 20 6f 66 20 61 63 63 75 72 61 63 79 2e |ree of accuracy.| 00000b70 20 20 49 74 20 75 73 65 73 20 74 68 65 20 62 61 | It uses the ba| 00000b80 73 69 73 20 74 68 61 74 20 65 20 63 61 6e 20 62 |sis that e can b| 00000b90 65 20 63 61 6c 63 75 6c 61 74 65 64 20 66 72 6f |e calculated fro| 00000ba0 6d 20 74 68 65 20 65 78 70 61 6e 73 69 6f 6e 20 |m the expansion | 00000bb0 3a 2d 0a 0a 20 20 20 20 20 20 65 20 3d 20 20 7b |:-.. e = {| 00000bc0 20 31 2f 30 21 20 2b 20 31 2f 31 21 20 2b 20 31 | 1/0! + 1/1! + 1| 00000bd0 2f 32 21 20 2b 20 31 2f 33 21 20 2b 20 31 2f 34 |/2! + 1/3! + 1/4| 00000be0 21 20 2b 20 2e 2e 2e 2e 2e 20 31 2f 6e 21 20 7d |! + ..... 1/n! }| 00000bf0 0a 0a 54 68 69 73 20 70 72 6f 67 72 61 6d 20 63 |..This program c| 00000c00 61 6e 20 63 61 6c 63 75 6c 61 74 65 20 74 68 65 |an calculate the| 00000c10 20 66 61 63 74 6f 72 69 61 6c 20 6f 66 20 76 65 | factorial of ve| 00000c20 72 79 20 6c 61 72 67 65 20 6e 75 6d 62 65 72 73 |ry large numbers| 00000c30 20 2d 20 61 20 73 65 70 61 72 61 74 65 20 72 6f | - a separate ro| 00000c40 75 74 69 6e 65 20 74 68 61 74 20 69 6c 6c 75 73 |utine that illus| 00000c50 74 72 61 74 65 73 20 74 68 69 73 20 69 73 20 63 |trates this is c| 00000c60 61 6c 6c 65 64 20 22 66 63 74 72 69 61 6c 22 20 |alled "fctrial" | 00000c70 6f 6e 20 74 68 65 20 64 69 73 63 2e 0a 0a 74 68 |on the disc...th| 00000c80 65 20 66 69 6e 61 6c 20 72 65 73 75 6c 74 20 69 |e final result i| 00000c90 73 20 67 69 76 65 6e 20 61 73 20 65 20 2a 20 31 |s given as e * 1| 00000ca0 30 5e 61 63 63 75 72 61 63 79 2c 20 77 68 65 72 |0^accuracy, wher| 00000cb0 65 20 61 63 63 75 72 61 63 79 20 69 73 20 74 68 |e accuracy is th| 00000cc0 65 20 69 6e 69 74 69 61 6c 20 61 63 63 75 72 61 |e initial accura| 00000cd0 63 79 20 73 70 65 63 69 66 69 65 64 2e 0a 0a 54 |cy specified...T| 00000ce0 68 65 20 61 63 63 75 72 61 63 79 20 6f 66 20 74 |he accuracy of t| 00000cf0 68 65 20 72 65 73 75 6c 74 2c 20 61 6e 64 20 74 |he result, and t| 00000d00 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 74 65 72 |he number of ter| 00000d10 6d 73 20 75 73 65 64 20 74 6f 20 70 72 6f 76 69 |ms used to provi| 00000d20 64 65 20 74 68 65 20 61 70 70 72 6f 78 69 6d 61 |de the approxima| 00000d30 74 69 6f 6e 20 63 61 6e 20 62 65 20 61 6c 74 65 |tion can be alte| 00000d40 72 65 64 20 62 79 20 63 68 61 6e 67 69 6e 67 20 |red by changing | 00000d50 74 68 65 20 66 6f 6c 6c 6f 77 69 6e 67 20 76 61 |the following va| 00000d60 72 69 61 62 6c 65 73 20 61 74 20 74 68 65 20 62 |riables at the b| 00000d70 65 67 69 6e 6e 69 6e 67 20 6f 66 20 74 68 65 20 |eginning of the | 00000d80 70 72 6f 67 72 61 6d 3a 2d 0a 0a 69 74 25 3d 20 |program:-..it%= | 00000d90 74 68 65 20 6e 75 6d 62 65 72 20 6f 66 20 69 74 |the number of it| 00000da0 65 72 61 74 69 6f 6e 73 20 28 69 6e 69 74 69 61 |erations (initia| 00000db0 6c 6c 79 20 31 30 30 29 0a 61 63 63 32 25 20 3d |lly 100).acc2% =| 00000dc0 20 74 68 65 20 61 63 63 75 72 61 63 79 20 6f 66 | the accuracy of| 00000dd0 20 74 68 65 20 72 65 73 75 6c 74 20 28 69 6e 69 | the result (ini| 00000de0 74 69 61 6c 6c 79 20 31 30 30 29 0a 0a 0a 20 2a |tially 100)... *| 00000df0 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a |****************| * 00000e40 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 0a 20 2a 2a |************. **| 00000e50 20 74 68 65 20 6e 75 6d 62 65 72 20 27 65 27 20 | the number 'e' | 00000e60 6c 69 73 74 65 64 20 74 6f 20 31 39 39 30 20 64 |listed to 1990 d| 00000e70 65 63 69 6d 61 6c 20 70 6c 61 63 65 73 20 69 6e |ecimal places in| 00000e80 20 63 6f 6e 74 61 69 6e 65 64 20 69 6e 20 74 68 | contained in th| 00000e90 65 20 66 69 6c 65 20 27 65 27 20 2d 20 74 68 65 |e file 'e' - the| 00000ea0 20 70 72 6f 67 72 61 6d 20 2a 2a 0a 20 2a 2a 20 | program **. ** | 00000eb0 74 6f 6f 6b 20 6a 75 73 74 20 75 6e 64 65 72 20 |took just under | 00000ec0 32 34 20 68 6f 75 72 73 20 74 6f 20 63 61 6c 63 |24 hours to calc| 00000ed0 75 6c 61 74 65 20 61 6c 6c 20 32 30 30 30 20 74 |ulate all 2000 t| 00000ee0 65 72 6d 73 20 74 6f 20 6e 65 61 72 6c 79 20 32 |erms to nearly 2| 00000ef0 30 30 30 20 64 65 63 69 6d 61 6c 20 70 6c 61 63 |000 decimal plac| 00000f00 65 73 20 20 20 20 20 20 2a 2a 0a 20 2a 2a 2a 2a |es **. ****| 00000f10 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a 2a |****************| * 00000f60 2a 2a 2a 2a 2a 2a 2a 2a 2a 0a 0a |*********..| 00000f6b