Home » Archimedes archive » Acorn User » AU 1997-11 B.adf » Demos » FF/polydraw/!PolyDraw/Docs/Glossary

FF/polydraw/!PolyDraw/Docs/Glossary

This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.

Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.

Tape/disk: Home » Archimedes archive » Acorn User » AU 1997-11 B.adf » Demos
Filename: FF/polydraw/!PolyDraw/Docs/Glossary
Read OK:
File size: 123A bytes
Load address: 0000
Exec address: 0000
File contents
        HELP/GLOSSARY information for  PolyDraw and PolyNet  22 Jun 97

Names of Polyhedra

  Polyhedra were first studied by people like Plato and Archimedes, so they
have names based on ancient Greek words. The names are made up of several
parts, depending on whether they refer to 2 or 3D objects, and the number of
sides or faces.
         
  Part of 
   word    meaning                     example

   poly-    many                       a 'polygon' is a 2D figure
  -gon     a plane figure, 2D          a 'polygon' has many sides
  -hedron  a 3D solid
  -hedra   more than one 3D solid

  tetra-    4 faces                   a 'tetrahedron' is a 3D solid
  penta-    5 sides or faces                          with 4 faces
  hexa-     6 sides or faces 
  octa-     8 sides or faces        
  deca-     10 sides or faces       rhombi - a 4 sided polygon, with all 
  dodeca-   12 sides or faces           sides equal but not all angles
  icosa-    20 sides or faces       
  triaconta-30 sides or faces       delta - a triangle, or 3 sided polygon
  ???       60 sides or faces          which looks like the Greek letter D

Antiprism
   a polyhedron made with two opposite faces identical regular polygons,
   with n sides, and the other faces made up of 2n equilateral triangles

Duals
 2 polyhedra are duals if the vertices of one can be put into a one-to-one 
 correspondence with the centres of the faces of the other.

Archimedean or semi-regular solids
 13 polyhedra made from more than one kind of regular polygon,
  with all vertices equal.
  5 are made by truncating the Platonic solids
  2 are 'quasi-regular' with only 2 kinds of faces, each one entirely
    surrounded by the other
  2 are made by truncating the quasi-regular ones
  2 rhombi-***
  1 snub cube
  1 snub dodecahedron 

Compound
 polyhedron made by combining 2 or more Platonic solids with the same centre

Congruent
 identically equal

Convex polygon
   one with all the angles between its edges less than 180 degrees

Convex polyhedron
   one with all its dihedral angles less than 180 degrees

Deltahedron
  has faces made only from triangles, usually equilateral

Dihedral angle
  internal angle between 2 faces which meet along a common edge

Edge of a polyhedron
  line where two faces meet

Entantiomorphic
  a polyhedron which can exist in two forms, left and right handed,
  for example, the snub cube 

Face of a polyhedron
  one of the polygons making up the surface of the polyhedron

Johnson solids
  all convex polyhedra with faces which are regular polygons, excluding
  the Platonic and Archimeadean solids and the infinite sets of prisms
  and antiprisms.  

Kepler/Poinsot solids
  similar to Platonic solids but with star polygons as faces.
  compounds made from a regular polygon and its dual stuck together so that
  their edges bisect at right angles.

  They are the Stella Octangula, the great icosahedron and the 3 stellations
  of the dodecahedron

Net - see Planar Net

Planar Net - a plane shape which can be folded into a polyhedron. 
   A given polyhedron may have several different nets.
 
Platonic solids 
   The five made from convex regular polygons of the same kind, 
   with all vertices identical and all dihedral angles equal 

Polygon
   a plane figure bounded by straight edges and vertices

Polyhedron
   a set of polygons enclosing a portion of 3D space

Prism
   a polyhedron made with two opposite faces identical regular polygons, 
   with n sides and the other faces  n squares

Pyramid
   a polyhedron with a base and triangular faces all connecting the base
   to a single point above it. The base is usually a regular polygon. 

Regular polygon
  one with all sides the same length, and the internal angles between all
  the sides equal

Regular polyhedron
  As defined by Plato these are solids made from equal regular polygons.
  This is not sufficient for a truly regular solid because all the deltahedra
  (made from equilateral triangles) satisfy the condition. 
  In addition we must require all the vertices to be identical.
 
Star polygon
  one with equal length sides, but some angles at their vertices are 
   greater than 180 degrees, so they are not convex

Stellation
  a process of extending sides of polygons, (or planes of polyhedra)
  until they intersect to form another polyhedron 

Uniform polyhedron
 one with all the faces regular polygons, and all the vertices identical,
 that is, each vertex has same number of faces of the same kind arranged
 in the same order.

Vertex - point on a polyhedron where at least 3 edges meet
  
Wenninger
  A polyhedron described in the book 'Polyhedron Models' by M.J.Wenninger 
00000000  20 20 20 20 20 20 20 20  48 45 4c 50 2f 47 4c 4f  |        HELP/GLO|
00000010  53 53 41 52 59 20 69 6e  66 6f 72 6d 61 74 69 6f  |SSARY informatio|
00000020  6e 20 66 6f 72 20 20 50  6f 6c 79 44 72 61 77 20  |n for  PolyDraw |
00000030  61 6e 64 20 50 6f 6c 79  4e 65 74 20 20 32 32 20  |and PolyNet  22 |
00000040  4a 75 6e 20 39 37 0a 0a  4e 61 6d 65 73 20 6f 66  |Jun 97..Names of|
00000050  20 50 6f 6c 79 68 65 64  72 61 0a 0a 20 20 50 6f  | Polyhedra..  Po|
00000060  6c 79 68 65 64 72 61 20  77 65 72 65 20 66 69 72  |lyhedra were fir|
00000070  73 74 20 73 74 75 64 69  65 64 20 62 79 20 70 65  |st studied by pe|
00000080  6f 70 6c 65 20 6c 69 6b  65 20 50 6c 61 74 6f 20  |ople like Plato |
00000090  61 6e 64 20 41 72 63 68  69 6d 65 64 65 73 2c 20  |and Archimedes, |
000000a0  73 6f 20 74 68 65 79 0a  68 61 76 65 20 6e 61 6d  |so they.have nam|
000000b0  65 73 20 62 61 73 65 64  20 6f 6e 20 61 6e 63 69  |es based on anci|
000000c0  65 6e 74 20 47 72 65 65  6b 20 77 6f 72 64 73 2e  |ent Greek words.|
000000d0  20 54 68 65 20 6e 61 6d  65 73 20 61 72 65 20 6d  | The names are m|
000000e0  61 64 65 20 75 70 20 6f  66 20 73 65 76 65 72 61  |ade up of severa|
000000f0  6c 0a 70 61 72 74 73 2c  20 64 65 70 65 6e 64 69  |l.parts, dependi|
00000100  6e 67 20 6f 6e 20 77 68  65 74 68 65 72 20 74 68  |ng on whether th|
00000110  65 79 20 72 65 66 65 72  20 74 6f 20 32 20 6f 72  |ey refer to 2 or|
00000120  20 33 44 20 6f 62 6a 65  63 74 73 2c 20 61 6e 64  | 3D objects, and|
00000130  20 74 68 65 20 6e 75 6d  62 65 72 20 6f 66 0a 73  | the number of.s|
00000140  69 64 65 73 20 6f 72 20  66 61 63 65 73 2e 0a 20  |ides or faces.. |
00000150  20 20 20 20 20 20 20 20  0a 20 20 50 61 72 74 20  |        .  Part |
00000160  6f 66 20 0a 20 20 20 77  6f 72 64 20 20 20 20 6d  |of .   word    m|
00000170  65 61 6e 69 6e 67 20 20  20 20 20 20 20 20 20 20  |eaning          |
00000180  20 20 20 20 20 20 20 20  20 20 20 65 78 61 6d 70  |           examp|
00000190  6c 65 0a 0a 20 20 20 70  6f 6c 79 2d 20 20 20 20  |le..   poly-    |
000001a0  6d 61 6e 79 20 20 20 20  20 20 20 20 20 20 20 20  |many            |
000001b0  20 20 20 20 20 20 20 20  20 20 20 61 20 27 70 6f  |           a 'po|
000001c0  6c 79 67 6f 6e 27 20 69  73 20 61 20 32 44 20 66  |lygon' is a 2D f|
000001d0  69 67 75 72 65 0a 20 20  2d 67 6f 6e 20 20 20 20  |igure.  -gon    |
000001e0  20 61 20 70 6c 61 6e 65  20 66 69 67 75 72 65 2c  | a plane figure,|
000001f0  20 32 44 20 20 20 20 20  20 20 20 20 20 61 20 27  | 2D          a '|
00000200  70 6f 6c 79 67 6f 6e 27  20 68 61 73 20 6d 61 6e  |polygon' has man|
00000210  79 20 73 69 64 65 73 0a  20 20 2d 68 65 64 72 6f  |y sides.  -hedro|
00000220  6e 20 20 61 20 33 44 20  73 6f 6c 69 64 0a 20 20  |n  a 3D solid.  |
00000230  2d 68 65 64 72 61 20 20  20 6d 6f 72 65 20 74 68  |-hedra   more th|
00000240  61 6e 20 6f 6e 65 20 33  44 20 73 6f 6c 69 64 0a  |an one 3D solid.|
00000250  0a 20 20 74 65 74 72 61  2d 20 20 20 20 34 20 66  |.  tetra-    4 f|
00000260  61 63 65 73 20 20 20 20  20 20 20 20 20 20 20 20  |aces            |
00000270  20 20 20 20 20 20 20 61  20 27 74 65 74 72 61 68  |       a 'tetrah|
00000280  65 64 72 6f 6e 27 20 69  73 20 61 20 33 44 20 73  |edron' is a 3D s|
00000290  6f 6c 69 64 0a 20 20 70  65 6e 74 61 2d 20 20 20  |olid.  penta-   |
000002a0  20 35 20 73 69 64 65 73  20 6f 72 20 66 61 63 65  | 5 sides or face|
000002b0  73 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |s               |
000002c0  20 20 20 20 20 20 20 20  20 20 20 77 69 74 68 20  |           with |
000002d0  34 20 66 61 63 65 73 0a  20 20 68 65 78 61 2d 20  |4 faces.  hexa- |
000002e0  20 20 20 20 36 20 73 69  64 65 73 20 6f 72 20 66  |    6 sides or f|
000002f0  61 63 65 73 20 0a 20 20  6f 63 74 61 2d 20 20 20  |aces .  octa-   |
00000300  20 20 38 20 73 69 64 65  73 20 6f 72 20 66 61 63  |  8 sides or fac|
00000310  65 73 20 20 20 20 20 20  20 20 0a 20 20 64 65 63  |es        .  dec|
00000320  61 2d 20 20 20 20 20 31  30 20 73 69 64 65 73 20  |a-     10 sides |
00000330  6f 72 20 66 61 63 65 73  20 20 20 20 20 20 20 72  |or faces       r|
00000340  68 6f 6d 62 69 20 2d 20  61 20 34 20 73 69 64 65  |hombi - a 4 side|
00000350  64 20 70 6f 6c 79 67 6f  6e 2c 20 77 69 74 68 20  |d polygon, with |
00000360  61 6c 6c 20 0a 20 20 64  6f 64 65 63 61 2d 20 20  |all .  dodeca-  |
00000370  20 31 32 20 73 69 64 65  73 20 6f 72 20 66 61 63  | 12 sides or fac|
00000380  65 73 20 20 20 20 20 20  20 20 20 20 20 73 69 64  |es           sid|
00000390  65 73 20 65 71 75 61 6c  20 62 75 74 20 6e 6f 74  |es equal but not|
000003a0  20 61 6c 6c 20 61 6e 67  6c 65 73 0a 20 20 69 63  | all angles.  ic|
000003b0  6f 73 61 2d 20 20 20 20  32 30 20 73 69 64 65 73  |osa-    20 sides|
000003c0  20 6f 72 20 66 61 63 65  73 20 20 20 20 20 20 20  | or faces       |
000003d0  0a 20 20 74 72 69 61 63  6f 6e 74 61 2d 33 30 20  |.  triaconta-30 |
000003e0  73 69 64 65 73 20 6f 72  20 66 61 63 65 73 20 20  |sides or faces  |
000003f0  20 20 20 20 20 64 65 6c  74 61 20 2d 20 61 20 74  |     delta - a t|
00000400  72 69 61 6e 67 6c 65 2c  20 6f 72 20 33 20 73 69  |riangle, or 3 si|
00000410  64 65 64 20 70 6f 6c 79  67 6f 6e 0a 20 20 3f 3f  |ded polygon.  ??|
00000420  3f 20 20 20 20 20 20 20  36 30 20 73 69 64 65 73  |?       60 sides|
00000430  20 6f 72 20 66 61 63 65  73 20 20 20 20 20 20 20  | or faces       |
00000440  20 20 20 77 68 69 63 68  20 6c 6f 6f 6b 73 20 6c  |   which looks l|
00000450  69 6b 65 20 74 68 65 20  47 72 65 65 6b 20 6c 65  |ike the Greek le|
00000460  74 74 65 72 20 44 0a 0a  41 6e 74 69 70 72 69 73  |tter D..Antipris|
00000470  6d 0a 20 20 20 61 20 70  6f 6c 79 68 65 64 72 6f  |m.   a polyhedro|
00000480  6e 20 6d 61 64 65 20 77  69 74 68 20 74 77 6f 20  |n made with two |
00000490  6f 70 70 6f 73 69 74 65  20 66 61 63 65 73 20 69  |opposite faces i|
000004a0  64 65 6e 74 69 63 61 6c  20 72 65 67 75 6c 61 72  |dentical regular|
000004b0  20 70 6f 6c 79 67 6f 6e  73 2c 0a 20 20 20 77 69  | polygons,.   wi|
000004c0  74 68 20 6e 20 73 69 64  65 73 2c 20 61 6e 64 20  |th n sides, and |
000004d0  74 68 65 20 6f 74 68 65  72 20 66 61 63 65 73 20  |the other faces |
000004e0  6d 61 64 65 20 75 70 20  6f 66 20 32 6e 20 65 71  |made up of 2n eq|
000004f0  75 69 6c 61 74 65 72 61  6c 20 74 72 69 61 6e 67  |uilateral triang|
00000500  6c 65 73 0a 0a 44 75 61  6c 73 0a 20 32 20 70 6f  |les..Duals. 2 po|
00000510  6c 79 68 65 64 72 61 20  61 72 65 20 64 75 61 6c  |lyhedra are dual|
00000520  73 20 69 66 20 74 68 65  20 76 65 72 74 69 63 65  |s if the vertice|
00000530  73 20 6f 66 20 6f 6e 65  20 63 61 6e 20 62 65 20  |s of one can be |
00000540  70 75 74 20 69 6e 74 6f  20 61 20 6f 6e 65 2d 74  |put into a one-t|
00000550  6f 2d 6f 6e 65 20 0a 20  63 6f 72 72 65 73 70 6f  |o-one . correspo|
00000560  6e 64 65 6e 63 65 20 77  69 74 68 20 74 68 65 20  |ndence with the |
00000570  63 65 6e 74 72 65 73 20  6f 66 20 74 68 65 20 66  |centres of the f|
00000580  61 63 65 73 20 6f 66 20  74 68 65 20 6f 74 68 65  |aces of the othe|
00000590  72 2e 0a 0a 41 72 63 68  69 6d 65 64 65 61 6e 20  |r...Archimedean |
000005a0  6f 72 20 73 65 6d 69 2d  72 65 67 75 6c 61 72 20  |or semi-regular |
000005b0  73 6f 6c 69 64 73 0a 20  31 33 20 70 6f 6c 79 68  |solids. 13 polyh|
000005c0  65 64 72 61 20 6d 61 64  65 20 66 72 6f 6d 20 6d  |edra made from m|
000005d0  6f 72 65 20 74 68 61 6e  20 6f 6e 65 20 6b 69 6e  |ore than one kin|
000005e0  64 20 6f 66 20 72 65 67  75 6c 61 72 20 70 6f 6c  |d of regular pol|
000005f0  79 67 6f 6e 2c 0a 20 20  77 69 74 68 20 61 6c 6c  |ygon,.  with all|
00000600  20 76 65 72 74 69 63 65  73 20 65 71 75 61 6c 2e  | vertices equal.|
00000610  0a 20 20 35 20 61 72 65  20 6d 61 64 65 20 62 79  |.  5 are made by|
00000620  20 74 72 75 6e 63 61 74  69 6e 67 20 74 68 65 20  | truncating the |
00000630  50 6c 61 74 6f 6e 69 63  20 73 6f 6c 69 64 73 0a  |Platonic solids.|
00000640  20 20 32 20 61 72 65 20  27 71 75 61 73 69 2d 72  |  2 are 'quasi-r|
00000650  65 67 75 6c 61 72 27 20  77 69 74 68 20 6f 6e 6c  |egular' with onl|
00000660  79 20 32 20 6b 69 6e 64  73 20 6f 66 20 66 61 63  |y 2 kinds of fac|
00000670  65 73 2c 20 65 61 63 68  20 6f 6e 65 20 65 6e 74  |es, each one ent|
00000680  69 72 65 6c 79 0a 20 20  20 20 73 75 72 72 6f 75  |irely.    surrou|
00000690  6e 64 65 64 20 62 79 20  74 68 65 20 6f 74 68 65  |nded by the othe|
000006a0  72 0a 20 20 32 20 61 72  65 20 6d 61 64 65 20 62  |r.  2 are made b|
000006b0  79 20 74 72 75 6e 63 61  74 69 6e 67 20 74 68 65  |y truncating the|
000006c0  20 71 75 61 73 69 2d 72  65 67 75 6c 61 72 20 6f  | quasi-regular o|
000006d0  6e 65 73 0a 20 20 32 20  72 68 6f 6d 62 69 2d 2a  |nes.  2 rhombi-*|
000006e0  2a 2a 0a 20 20 31 20 73  6e 75 62 20 63 75 62 65  |**.  1 snub cube|
000006f0  0a 20 20 31 20 73 6e 75  62 20 64 6f 64 65 63 61  |.  1 snub dodeca|
00000700  68 65 64 72 6f 6e 20 0a  0a 43 6f 6d 70 6f 75 6e  |hedron ..Compoun|
00000710  64 0a 20 70 6f 6c 79 68  65 64 72 6f 6e 20 6d 61  |d. polyhedron ma|
00000720  64 65 20 62 79 20 63 6f  6d 62 69 6e 69 6e 67 20  |de by combining |
00000730  32 20 6f 72 20 6d 6f 72  65 20 50 6c 61 74 6f 6e  |2 or more Platon|
00000740  69 63 20 73 6f 6c 69 64  73 20 77 69 74 68 20 74  |ic solids with t|
00000750  68 65 20 73 61 6d 65 20  63 65 6e 74 72 65 0a 0a  |he same centre..|
00000760  43 6f 6e 67 72 75 65 6e  74 0a 20 69 64 65 6e 74  |Congruent. ident|
00000770  69 63 61 6c 6c 79 20 65  71 75 61 6c 0a 0a 43 6f  |ically equal..Co|
00000780  6e 76 65 78 20 70 6f 6c  79 67 6f 6e 0a 20 20 20  |nvex polygon.   |
00000790  6f 6e 65 20 77 69 74 68  20 61 6c 6c 20 74 68 65  |one with all the|
000007a0  20 61 6e 67 6c 65 73 20  62 65 74 77 65 65 6e 20  | angles between |
000007b0  69 74 73 20 65 64 67 65  73 20 6c 65 73 73 20 74  |its edges less t|
000007c0  68 61 6e 20 31 38 30 20  64 65 67 72 65 65 73 0a  |han 180 degrees.|
000007d0  0a 43 6f 6e 76 65 78 20  70 6f 6c 79 68 65 64 72  |.Convex polyhedr|
000007e0  6f 6e 0a 20 20 20 6f 6e  65 20 77 69 74 68 20 61  |on.   one with a|
000007f0  6c 6c 20 69 74 73 20 64  69 68 65 64 72 61 6c 20  |ll its dihedral |
00000800  61 6e 67 6c 65 73 20 6c  65 73 73 20 74 68 61 6e  |angles less than|
00000810  20 31 38 30 20 64 65 67  72 65 65 73 0a 0a 44 65  | 180 degrees..De|
00000820  6c 74 61 68 65 64 72 6f  6e 0a 20 20 68 61 73 20  |ltahedron.  has |
00000830  66 61 63 65 73 20 6d 61  64 65 20 6f 6e 6c 79 20  |faces made only |
00000840  66 72 6f 6d 20 74 72 69  61 6e 67 6c 65 73 2c 20  |from triangles, |
00000850  75 73 75 61 6c 6c 79 20  65 71 75 69 6c 61 74 65  |usually equilate|
00000860  72 61 6c 0a 0a 44 69 68  65 64 72 61 6c 20 61 6e  |ral..Dihedral an|
00000870  67 6c 65 0a 20 20 69 6e  74 65 72 6e 61 6c 20 61  |gle.  internal a|
00000880  6e 67 6c 65 20 62 65 74  77 65 65 6e 20 32 20 66  |ngle between 2 f|
00000890  61 63 65 73 20 77 68 69  63 68 20 6d 65 65 74 20  |aces which meet |
000008a0  61 6c 6f 6e 67 20 61 20  63 6f 6d 6d 6f 6e 20 65  |along a common e|
000008b0  64 67 65 0a 0a 45 64 67  65 20 6f 66 20 61 20 70  |dge..Edge of a p|
000008c0  6f 6c 79 68 65 64 72 6f  6e 0a 20 20 6c 69 6e 65  |olyhedron.  line|
000008d0  20 77 68 65 72 65 20 74  77 6f 20 66 61 63 65 73  | where two faces|
000008e0  20 6d 65 65 74 0a 0a 45  6e 74 61 6e 74 69 6f 6d  | meet..Entantiom|
000008f0  6f 72 70 68 69 63 0a 20  20 61 20 70 6f 6c 79 68  |orphic.  a polyh|
00000900  65 64 72 6f 6e 20 77 68  69 63 68 20 63 61 6e 20  |edron which can |
00000910  65 78 69 73 74 20 69 6e  20 74 77 6f 20 66 6f 72  |exist in two for|
00000920  6d 73 2c 20 6c 65 66 74  20 61 6e 64 20 72 69 67  |ms, left and rig|
00000930  68 74 20 68 61 6e 64 65  64 2c 0a 20 20 66 6f 72  |ht handed,.  for|
00000940  20 65 78 61 6d 70 6c 65  2c 20 74 68 65 20 73 6e  | example, the sn|
00000950  75 62 20 63 75 62 65 20  0a 0a 46 61 63 65 20 6f  |ub cube ..Face o|
00000960  66 20 61 20 70 6f 6c 79  68 65 64 72 6f 6e 0a 20  |f a polyhedron. |
00000970  20 6f 6e 65 20 6f 66 20  74 68 65 20 70 6f 6c 79  | one of the poly|
00000980  67 6f 6e 73 20 6d 61 6b  69 6e 67 20 75 70 20 74  |gons making up t|
00000990  68 65 20 73 75 72 66 61  63 65 20 6f 66 20 74 68  |he surface of th|
000009a0  65 20 70 6f 6c 79 68 65  64 72 6f 6e 0a 0a 4a 6f  |e polyhedron..Jo|
000009b0  68 6e 73 6f 6e 20 73 6f  6c 69 64 73 0a 20 20 61  |hnson solids.  a|
000009c0  6c 6c 20 63 6f 6e 76 65  78 20 70 6f 6c 79 68 65  |ll convex polyhe|
000009d0  64 72 61 20 77 69 74 68  20 66 61 63 65 73 20 77  |dra with faces w|
000009e0  68 69 63 68 20 61 72 65  20 72 65 67 75 6c 61 72  |hich are regular|
000009f0  20 70 6f 6c 79 67 6f 6e  73 2c 20 65 78 63 6c 75  | polygons, exclu|
00000a00  64 69 6e 67 0a 20 20 74  68 65 20 50 6c 61 74 6f  |ding.  the Plato|
00000a10  6e 69 63 20 61 6e 64 20  41 72 63 68 69 6d 65 61  |nic and Archimea|
00000a20  64 65 61 6e 20 73 6f 6c  69 64 73 20 61 6e 64 20  |dean solids and |
00000a30  74 68 65 20 69 6e 66 69  6e 69 74 65 20 73 65 74  |the infinite set|
00000a40  73 20 6f 66 20 70 72 69  73 6d 73 0a 20 20 61 6e  |s of prisms.  an|
00000a50  64 20 61 6e 74 69 70 72  69 73 6d 73 2e 20 20 0a  |d antiprisms.  .|
00000a60  0a 4b 65 70 6c 65 72 2f  50 6f 69 6e 73 6f 74 20  |.Kepler/Poinsot |
00000a70  73 6f 6c 69 64 73 0a 20  20 73 69 6d 69 6c 61 72  |solids.  similar|
00000a80  20 74 6f 20 50 6c 61 74  6f 6e 69 63 20 73 6f 6c  | to Platonic sol|
00000a90  69 64 73 20 62 75 74 20  77 69 74 68 20 73 74 61  |ids but with sta|
00000aa0  72 20 70 6f 6c 79 67 6f  6e 73 20 61 73 20 66 61  |r polygons as fa|
00000ab0  63 65 73 2e 0a 20 20 63  6f 6d 70 6f 75 6e 64 73  |ces..  compounds|
00000ac0  20 6d 61 64 65 20 66 72  6f 6d 20 61 20 72 65 67  | made from a reg|
00000ad0  75 6c 61 72 20 70 6f 6c  79 67 6f 6e 20 61 6e 64  |ular polygon and|
00000ae0  20 69 74 73 20 64 75 61  6c 20 73 74 75 63 6b 20  | its dual stuck |
00000af0  74 6f 67 65 74 68 65 72  20 73 6f 20 74 68 61 74  |together so that|
00000b00  0a 20 20 74 68 65 69 72  20 65 64 67 65 73 20 62  |.  their edges b|
00000b10  69 73 65 63 74 20 61 74  20 72 69 67 68 74 20 61  |isect at right a|
00000b20  6e 67 6c 65 73 2e 0a 0a  20 20 54 68 65 79 20 61  |ngles...  They a|
00000b30  72 65 20 74 68 65 20 53  74 65 6c 6c 61 20 4f 63  |re the Stella Oc|
00000b40  74 61 6e 67 75 6c 61 2c  20 74 68 65 20 67 72 65  |tangula, the gre|
00000b50  61 74 20 69 63 6f 73 61  68 65 64 72 6f 6e 20 61  |at icosahedron a|
00000b60  6e 64 20 74 68 65 20 33  20 73 74 65 6c 6c 61 74  |nd the 3 stellat|
00000b70  69 6f 6e 73 0a 20 20 6f  66 20 74 68 65 20 64 6f  |ions.  of the do|
00000b80  64 65 63 61 68 65 64 72  6f 6e 0a 0a 4e 65 74 20  |decahedron..Net |
00000b90  2d 20 73 65 65 20 50 6c  61 6e 61 72 20 4e 65 74  |- see Planar Net|
00000ba0  0a 0a 50 6c 61 6e 61 72  20 4e 65 74 20 2d 20 61  |..Planar Net - a|
00000bb0  20 70 6c 61 6e 65 20 73  68 61 70 65 20 77 68 69  | plane shape whi|
00000bc0  63 68 20 63 61 6e 20 62  65 20 66 6f 6c 64 65 64  |ch can be folded|
00000bd0  20 69 6e 74 6f 20 61 20  70 6f 6c 79 68 65 64 72  | into a polyhedr|
00000be0  6f 6e 2e 20 0a 20 20 20  41 20 67 69 76 65 6e 20  |on. .   A given |
00000bf0  70 6f 6c 79 68 65 64 72  6f 6e 20 6d 61 79 20 68  |polyhedron may h|
00000c00  61 76 65 20 73 65 76 65  72 61 6c 20 64 69 66 66  |ave several diff|
00000c10  65 72 65 6e 74 20 6e 65  74 73 2e 0a 20 0a 50 6c  |erent nets.. .Pl|
00000c20  61 74 6f 6e 69 63 20 73  6f 6c 69 64 73 20 0a 20  |atonic solids . |
00000c30  20 20 54 68 65 20 66 69  76 65 20 6d 61 64 65 20  |  The five made |
00000c40  66 72 6f 6d 20 63 6f 6e  76 65 78 20 72 65 67 75  |from convex regu|
00000c50  6c 61 72 20 70 6f 6c 79  67 6f 6e 73 20 6f 66 20  |lar polygons of |
00000c60  74 68 65 20 73 61 6d 65  20 6b 69 6e 64 2c 20 0a  |the same kind, .|
00000c70  20 20 20 77 69 74 68 20  61 6c 6c 20 76 65 72 74  |   with all vert|
00000c80  69 63 65 73 20 69 64 65  6e 74 69 63 61 6c 20 61  |ices identical a|
00000c90  6e 64 20 61 6c 6c 20 64  69 68 65 64 72 61 6c 20  |nd all dihedral |
00000ca0  61 6e 67 6c 65 73 20 65  71 75 61 6c 20 0a 0a 50  |angles equal ..P|
00000cb0  6f 6c 79 67 6f 6e 0a 20  20 20 61 20 70 6c 61 6e  |olygon.   a plan|
00000cc0  65 20 66 69 67 75 72 65  20 62 6f 75 6e 64 65 64  |e figure bounded|
00000cd0  20 62 79 20 73 74 72 61  69 67 68 74 20 65 64 67  | by straight edg|
00000ce0  65 73 20 61 6e 64 20 76  65 72 74 69 63 65 73 0a  |es and vertices.|
00000cf0  0a 50 6f 6c 79 68 65 64  72 6f 6e 0a 20 20 20 61  |.Polyhedron.   a|
00000d00  20 73 65 74 20 6f 66 20  70 6f 6c 79 67 6f 6e 73  | set of polygons|
00000d10  20 65 6e 63 6c 6f 73 69  6e 67 20 61 20 70 6f 72  | enclosing a por|
00000d20  74 69 6f 6e 20 6f 66 20  33 44 20 73 70 61 63 65  |tion of 3D space|
00000d30  0a 0a 50 72 69 73 6d 0a  20 20 20 61 20 70 6f 6c  |..Prism.   a pol|
00000d40  79 68 65 64 72 6f 6e 20  6d 61 64 65 20 77 69 74  |yhedron made wit|
00000d50  68 20 74 77 6f 20 6f 70  70 6f 73 69 74 65 20 66  |h two opposite f|
00000d60  61 63 65 73 20 69 64 65  6e 74 69 63 61 6c 20 72  |aces identical r|
00000d70  65 67 75 6c 61 72 20 70  6f 6c 79 67 6f 6e 73 2c  |egular polygons,|
00000d80  20 0a 20 20 20 77 69 74  68 20 6e 20 73 69 64 65  | .   with n side|
00000d90  73 20 61 6e 64 20 74 68  65 20 6f 74 68 65 72 20  |s and the other |
00000da0  66 61 63 65 73 20 20 6e  20 73 71 75 61 72 65 73  |faces  n squares|
00000db0  0a 0a 50 79 72 61 6d 69  64 0a 20 20 20 61 20 70  |..Pyramid.   a p|
00000dc0  6f 6c 79 68 65 64 72 6f  6e 20 77 69 74 68 20 61  |olyhedron with a|
00000dd0  20 62 61 73 65 20 61 6e  64 20 74 72 69 61 6e 67  | base and triang|
00000de0  75 6c 61 72 20 66 61 63  65 73 20 61 6c 6c 20 63  |ular faces all c|
00000df0  6f 6e 6e 65 63 74 69 6e  67 20 74 68 65 20 62 61  |onnecting the ba|
00000e00  73 65 0a 20 20 20 74 6f  20 61 20 73 69 6e 67 6c  |se.   to a singl|
00000e10  65 20 70 6f 69 6e 74 20  61 62 6f 76 65 20 69 74  |e point above it|
00000e20  2e 20 54 68 65 20 62 61  73 65 20 69 73 20 75 73  |. The base is us|
00000e30  75 61 6c 6c 79 20 61 20  72 65 67 75 6c 61 72 20  |ually a regular |
00000e40  70 6f 6c 79 67 6f 6e 2e  20 0a 0a 52 65 67 75 6c  |polygon. ..Regul|
00000e50  61 72 20 70 6f 6c 79 67  6f 6e 0a 20 20 6f 6e 65  |ar polygon.  one|
00000e60  20 77 69 74 68 20 61 6c  6c 20 73 69 64 65 73 20  | with all sides |
00000e70  74 68 65 20 73 61 6d 65  20 6c 65 6e 67 74 68 2c  |the same length,|
00000e80  20 61 6e 64 20 74 68 65  20 69 6e 74 65 72 6e 61  | and the interna|
00000e90  6c 20 61 6e 67 6c 65 73  20 62 65 74 77 65 65 6e  |l angles between|
00000ea0  20 61 6c 6c 0a 20 20 74  68 65 20 73 69 64 65 73  | all.  the sides|
00000eb0  20 65 71 75 61 6c 0a 0a  52 65 67 75 6c 61 72 20  | equal..Regular |
00000ec0  70 6f 6c 79 68 65 64 72  6f 6e 0a 20 20 41 73 20  |polyhedron.  As |
00000ed0  64 65 66 69 6e 65 64 20  62 79 20 50 6c 61 74 6f  |defined by Plato|
00000ee0  20 74 68 65 73 65 20 61  72 65 20 73 6f 6c 69 64  | these are solid|
00000ef0  73 20 6d 61 64 65 20 66  72 6f 6d 20 65 71 75 61  |s made from equa|
00000f00  6c 20 72 65 67 75 6c 61  72 20 70 6f 6c 79 67 6f  |l regular polygo|
00000f10  6e 73 2e 0a 20 20 54 68  69 73 20 69 73 20 6e 6f  |ns..  This is no|
00000f20  74 20 73 75 66 66 69 63  69 65 6e 74 20 66 6f 72  |t sufficient for|
00000f30  20 61 20 74 72 75 6c 79  20 72 65 67 75 6c 61 72  | a truly regular|
00000f40  20 73 6f 6c 69 64 20 62  65 63 61 75 73 65 20 61  | solid because a|
00000f50  6c 6c 20 74 68 65 20 64  65 6c 74 61 68 65 64 72  |ll the deltahedr|
00000f60  61 0a 20 20 28 6d 61 64  65 20 66 72 6f 6d 20 65  |a.  (made from e|
00000f70  71 75 69 6c 61 74 65 72  61 6c 20 74 72 69 61 6e  |quilateral trian|
00000f80  67 6c 65 73 29 20 73 61  74 69 73 66 79 20 74 68  |gles) satisfy th|
00000f90  65 20 63 6f 6e 64 69 74  69 6f 6e 2e 20 0a 20 20  |e condition. .  |
00000fa0  49 6e 20 61 64 64 69 74  69 6f 6e 20 77 65 20 6d  |In addition we m|
00000fb0  75 73 74 20 72 65 71 75  69 72 65 20 61 6c 6c 20  |ust require all |
00000fc0  74 68 65 20 76 65 72 74  69 63 65 73 20 74 6f 20  |the vertices to |
00000fd0  62 65 20 69 64 65 6e 74  69 63 61 6c 2e 0a 20 0a  |be identical.. .|
00000fe0  53 74 61 72 20 70 6f 6c  79 67 6f 6e 0a 20 20 6f  |Star polygon.  o|
00000ff0  6e 65 20 77 69 74 68 20  65 71 75 61 6c 20 6c 65  |ne with equal le|
00001000  6e 67 74 68 20 73 69 64  65 73 2c 20 62 75 74 20  |ngth sides, but |
00001010  73 6f 6d 65 20 61 6e 67  6c 65 73 20 61 74 20 74  |some angles at t|
00001020  68 65 69 72 20 76 65 72  74 69 63 65 73 20 61 72  |heir vertices ar|
00001030  65 20 0a 20 20 20 67 72  65 61 74 65 72 20 74 68  |e .   greater th|
00001040  61 6e 20 31 38 30 20 64  65 67 72 65 65 73 2c 20  |an 180 degrees, |
00001050  73 6f 20 74 68 65 79 20  61 72 65 20 6e 6f 74 20  |so they are not |
00001060  63 6f 6e 76 65 78 0a 0a  53 74 65 6c 6c 61 74 69  |convex..Stellati|
00001070  6f 6e 0a 20 20 61 20 70  72 6f 63 65 73 73 20 6f  |on.  a process o|
00001080  66 20 65 78 74 65 6e 64  69 6e 67 20 73 69 64 65  |f extending side|
00001090  73 20 6f 66 20 70 6f 6c  79 67 6f 6e 73 2c 20 28  |s of polygons, (|
000010a0  6f 72 20 70 6c 61 6e 65  73 20 6f 66 20 70 6f 6c  |or planes of pol|
000010b0  79 68 65 64 72 61 29 0a  20 20 75 6e 74 69 6c 20  |yhedra).  until |
000010c0  74 68 65 79 20 69 6e 74  65 72 73 65 63 74 20 74  |they intersect t|
000010d0  6f 20 66 6f 72 6d 20 61  6e 6f 74 68 65 72 20 70  |o form another p|
000010e0  6f 6c 79 68 65 64 72 6f  6e 20 0a 0a 55 6e 69 66  |olyhedron ..Unif|
000010f0  6f 72 6d 20 70 6f 6c 79  68 65 64 72 6f 6e 0a 20  |orm polyhedron. |
00001100  6f 6e 65 20 77 69 74 68  20 61 6c 6c 20 74 68 65  |one with all the|
00001110  20 66 61 63 65 73 20 72  65 67 75 6c 61 72 20 70  | faces regular p|
00001120  6f 6c 79 67 6f 6e 73 2c  20 61 6e 64 20 61 6c 6c  |olygons, and all|
00001130  20 74 68 65 20 76 65 72  74 69 63 65 73 20 69 64  | the vertices id|
00001140  65 6e 74 69 63 61 6c 2c  0a 20 74 68 61 74 20 69  |entical,. that i|
00001150  73 2c 20 65 61 63 68 20  76 65 72 74 65 78 20 68  |s, each vertex h|
00001160  61 73 20 73 61 6d 65 20  6e 75 6d 62 65 72 20 6f  |as same number o|
00001170  66 20 66 61 63 65 73 20  6f 66 20 74 68 65 20 73  |f faces of the s|
00001180  61 6d 65 20 6b 69 6e 64  20 61 72 72 61 6e 67 65  |ame kind arrange|
00001190  64 0a 20 69 6e 20 74 68  65 20 73 61 6d 65 20 6f  |d. in the same o|
000011a0  72 64 65 72 2e 0a 0a 56  65 72 74 65 78 20 2d 20  |rder...Vertex - |
000011b0  70 6f 69 6e 74 20 6f 6e  20 61 20 70 6f 6c 79 68  |point on a polyh|
000011c0  65 64 72 6f 6e 20 77 68  65 72 65 20 61 74 20 6c  |edron where at l|
000011d0  65 61 73 74 20 33 20 65  64 67 65 73 20 6d 65 65  |east 3 edges mee|
000011e0  74 0a 20 20 0a 57 65 6e  6e 69 6e 67 65 72 0a 20  |t.  .Wenninger. |
000011f0  20 41 20 70 6f 6c 79 68  65 64 72 6f 6e 20 64 65  | A polyhedron de|
00001200  73 63 72 69 62 65 64 20  69 6e 20 74 68 65 20 62  |scribed in the b|
00001210  6f 6f 6b 20 27 50 6f 6c  79 68 65 64 72 6f 6e 20  |ook 'Polyhedron |
00001220  4d 6f 64 65 6c 73 27 20  62 79 20 4d 2e 4a 2e 57  |Models' by M.J.W|
00001230  65 6e 6e 69 6e 67 65 72  20 0a                    |enninger .|
0000123a