Home » CEEFAX disks » telesoftware5.adl » 07-02-88/B\OSB13
07-02-88/B\OSB13
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » CEEFAX disks » telesoftware5.adl |
Filename: | 07-02-88/B\OSB13 |
Read OK: | ✔ |
File size: | 07B0 bytes |
Load address: | 0800 |
Exec address: | 8023 |
Duplicates
There is 1 duplicate copy of this file in the archive:
- CEEFAX disks » telesoftware5.adl » 07-02-88/B\OSB13
- CEEFAX disks » telesoftware5.adl » 17-02-88/B\OSB13
File contents
10REM OSbits Module B/osb13 20REM Multibyte multiplication 30REM Version 3.1 8.3.87 40 50*KEY1MO.3|M|NL.|M 60 70DIM code% 120 80 90FOR pass% = 0 TO 2 STEP 2 100P% = code% 110 120[OPT pass% 130 140.multi_byte_mult 150 160\ Assumes that numbers to be multiplied are put into 170\ multiplicand and multiplier. ppws is used for 180\ partial produce. Result is put into multiplier 190 200LDA #0 210STA ppws \ Clear partial product workspace 220STA ppws+1 230STA ppws+2 240STA ppws+3 250 260LDX #32 \ Carry out 32 times for 32 bit arithmetic 270 280LSR multiplier+3 \ Rotate multiplier right 290ROR multiplier+2 300ROR multiplier+1 310ROR multiplier 320 330.mbm_loop 340 350BCC no_add_mbm \ Is next bit of multiplier set? 360CLC 370LDA multiplicand \ Add multiplicand 380ADC ppws 390STA ppws 400LDA multiplicand+1 410ADC ppws+1 420STA ppws+1 430LDA multiplicand+2 440ADC ppws+2 450STA ppws+2 460LDA multiplicand+3 470ADC ppws+3 480STA ppws+3 490 500.no_add_mbm 510 520LSR ppws+3 \ Rotate (shift) ppws & multiplier right 530ROR ppws+2 540ROR ppws+1 550ROR ppws 560ROR multiplier+3 570ROR multiplier+2 580ROR multiplier+1 590ROR multiplier 600DEX \ Counting down from 32 to zero 610BNE mbm_loop 620 630RTS 640 650.multiplicand OPT FNEQUD(0) 660.ppws OPT FNEQUD(0) 670.multiplier OPT FNEQUD(0) 680 690] 700NEXT 710@%=&A0A 720REPEAT:INPUT "Enter numbers to be multiplied "A%,B% 730!multiplicand = A% 740!multiplier = B% 750PRINT ;A%;" multiplied by ";B%;" = ";A%*B%;" [BASIC]" 760CALL code% 770PRINT ;A%;" multiplied by ";B%;" = ";!multiplier;" [code]" 780PRINT "ppws contains &";~!ppws;" : multiplier contains &";~!multiplier 790IF A%*B%>2147483647 OR A%*B%<-2147483648 THEN PRINT"Product is bigger than 4 bytes" 800PRINT 810UNTIL0 890 900**** EQUate a Double word (4 bytes) **** 910DEF FNEQUD(N%) 920LOCAL X% 930!P%=N% 940FOR X%=0 TO 3 950IF (pass% AND 3) = 3 THEN PRINT ~P%?X%; 960NEXT 970IF (pass% AND 3) = 3 THEN PRINT 980P%=P%+4 990=pass%
� OSbits Module B/osb13 � Multibyte multiplication � Version 3.1 8.3.87 ( 2*KEY1MO.3|M|NL.|M < F� code% 120 P Z� pass% = 0 � 2 � 2 dP% = code% n x[OPT pass% � �.multi_byte_mult � �9\ Assumes that numbers to be multiplied are put into �5\ multiplicand and multiplier. ppws is used for �5\ partial produce. Result is put into multiplier � � LDA #0 �;STA ppws \ Clear partial product workspace �STA ppws+1 �STA ppws+2 �STA ppws+3 � DLDX #32 \ Carry out 32 times for 32 bit arithmetic 3LSR multiplier+3 \ Rotate multiplier right "ROR multiplier+2 ,ROR multiplier+1 6ROR multiplier @ J .mbm_loop T ^:BCC no_add_mbm \ Is next bit of multiplier set? hCLC r,LDA multiplicand \ Add multiplicand |ADC ppws �STA ppws �LDA multiplicand+1 �ADC ppws+1 �STA ppws+1 �LDA multiplicand+2 �ADC ppws+2 �STA ppws+2 �LDA multiplicand+3 �ADC ppws+3 �STA ppws+3 � �.no_add_mbm � BLSR ppws+3 \ Rotate (shift) ppws & multiplier right ROR ppws+2 ROR ppws+1 &ROR ppws 0ROR multiplier+3 :ROR multiplier+2 DROR multiplier+1 NROR multiplier X9DEX \ Counting down from 32 to zero bBNE mbm_loop l vRTS � �".multiplicand OPT �EQUD(0) �".ppws OPT �EQUD(0) �".multiplier OPT �EQUD(0) � �] �� �@%=&A0A �.�:� "Enter numbers to be multiplied "A%,B% �!multiplicand = A% �!multiplier = B% �5� ;A%;" multiplied by ";B%;" = ";A%*B%;" [BASIC]" �� code% :� ;A%;" multiplied by ";B%;" = ";!multiplier;" [code]" F� "ppws contains &";~!ppws;" : multiplier contains &";~!multiplier N� A%*B%>2147483647 � A%*B%<-2147483648 � �"Product is bigger than 4 bytes" � *�0 z �,**** EQUate a Double word (4 bytes) **** �� �EQUD(N%) �� X% � !P%=N% �� X%=0 � 3 �!� (pass% � 3) = 3 � � ~P%?X%; �� �� (pass% � 3) = 3 � � �P%=P%+4 � =pass% �
00000000 0d 00 0a 1b f4 20 4f 53 62 69 74 73 20 4d 6f 64 |..... OSbits Mod| 00000010 75 6c 65 20 42 2f 6f 73 62 31 33 0d 00 14 1e f4 |ule B/osb13.....| 00000020 20 4d 75 6c 74 69 62 79 74 65 20 6d 75 6c 74 69 | Multibyte multi| 00000030 70 6c 69 63 61 74 69 6f 6e 0d 00 1e 18 f4 20 56 |plication..... V| 00000040 65 72 73 69 6f 6e 20 33 2e 31 20 38 2e 33 2e 38 |ersion 3.1 8.3.8| 00000050 37 0d 00 28 05 20 0d 00 32 15 2a 4b 45 59 31 4d |7..(. ..2.*KEY1M| 00000060 4f 2e 33 7c 4d 7c 4e 4c 2e 7c 4d 0d 00 3c 05 20 |O.3|M|NL.|M..<. | 00000070 0d 00 46 0f de 20 63 6f 64 65 25 20 31 32 30 0d |..F.. code% 120.| 00000080 00 50 05 20 0d 00 5a 17 e3 20 70 61 73 73 25 20 |.P. ..Z.. pass% | 00000090 3d 20 30 20 b8 20 32 20 88 20 32 0d 00 64 0e 50 |= 0 . 2 . 2..d.P| 000000a0 25 20 3d 20 63 6f 64 65 25 0d 00 6e 05 20 0d 00 |% = code%..n. ..| 000000b0 78 0e 5b 4f 50 54 20 70 61 73 73 25 0d 00 82 05 |x.[OPT pass%....| 000000c0 20 0d 00 8c 14 2e 6d 75 6c 74 69 5f 62 79 74 65 | .....multi_byte| 000000d0 5f 6d 75 6c 74 0d 00 96 05 20 0d 00 a0 39 5c 20 |_mult.... ...9\ | 000000e0 20 41 73 73 75 6d 65 73 20 74 68 61 74 20 6e 75 | Assumes that nu| 000000f0 6d 62 65 72 73 20 74 6f 20 62 65 20 6d 75 6c 74 |mbers to be mult| 00000100 69 70 6c 69 65 64 20 61 72 65 20 70 75 74 20 69 |iplied are put i| 00000110 6e 74 6f 0d 00 aa 35 5c 20 20 6d 75 6c 74 69 70 |nto...5\ multip| 00000120 6c 69 63 61 6e 64 20 61 6e 64 20 6d 75 6c 74 69 |licand and multi| 00000130 70 6c 69 65 72 2e 20 20 70 70 77 73 20 69 73 20 |plier. ppws is | 00000140 75 73 65 64 20 66 6f 72 0d 00 b4 35 5c 20 20 70 |used for...5\ p| 00000150 61 72 74 69 61 6c 20 70 72 6f 64 75 63 65 2e 20 |artial produce. | 00000160 52 65 73 75 6c 74 20 69 73 20 70 75 74 20 69 6e |Result is put in| 00000170 74 6f 20 6d 75 6c 74 69 70 6c 69 65 72 0d 00 be |to multiplier...| 00000180 05 20 0d 00 c8 0a 4c 44 41 20 23 30 0d 00 d2 3b |. ....LDA #0...;| 00000190 53 54 41 20 70 70 77 73 20 20 20 20 20 20 20 20 |STA ppws | 000001a0 20 20 20 20 20 20 5c 20 43 6c 65 61 72 20 70 61 | \ Clear pa| 000001b0 72 74 69 61 6c 20 70 72 6f 64 75 63 74 20 77 6f |rtial product wo| 000001c0 72 6b 73 70 61 63 65 0d 00 dc 0e 53 54 41 20 70 |rkspace....STA p| 000001d0 70 77 73 2b 31 0d 00 e6 0e 53 54 41 20 70 70 77 |pws+1....STA ppw| 000001e0 73 2b 32 0d 00 f0 0e 53 54 41 20 70 70 77 73 2b |s+2....STA ppws+| 000001f0 33 0d 00 fa 05 20 0d 01 04 44 4c 44 58 20 23 33 |3.... ...DLDX #3| 00000200 32 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 |2 | 00000210 5c 20 43 61 72 72 79 20 6f 75 74 20 33 32 20 74 |\ Carry out 32 t| 00000220 69 6d 65 73 20 66 6f 72 20 33 32 20 62 69 74 20 |imes for 32 bit | 00000230 61 72 69 74 68 6d 65 74 69 63 0d 01 0e 05 20 0d |arithmetic.... .| 00000240 01 18 33 4c 53 52 20 6d 75 6c 74 69 70 6c 69 65 |..3LSR multiplie| 00000250 72 2b 33 20 20 20 20 20 20 5c 20 52 6f 74 61 74 |r+3 \ Rotat| 00000260 65 20 6d 75 6c 74 69 70 6c 69 65 72 20 72 69 67 |e multiplier rig| 00000270 68 74 0d 01 22 14 52 4f 52 20 6d 75 6c 74 69 70 |ht..".ROR multip| 00000280 6c 69 65 72 2b 32 0d 01 2c 14 52 4f 52 20 6d 75 |lier+2..,.ROR mu| 00000290 6c 74 69 70 6c 69 65 72 2b 31 0d 01 36 12 52 4f |ltiplier+1..6.RO| 000002a0 52 20 6d 75 6c 74 69 70 6c 69 65 72 0d 01 40 05 |R multiplier..@.| 000002b0 20 0d 01 4a 0d 2e 6d 62 6d 5f 6c 6f 6f 70 0d 01 | ..J..mbm_loop..| 000002c0 54 05 20 0d 01 5e 3a 42 43 43 20 6e 6f 5f 61 64 |T. ..^:BCC no_ad| 000002d0 64 5f 6d 62 6d 20 20 20 20 20 20 20 20 5c 20 49 |d_mbm \ I| 000002e0 73 20 6e 65 78 74 20 62 69 74 20 6f 66 20 6d 75 |s next bit of mu| 000002f0 6c 74 69 70 6c 69 65 72 20 73 65 74 3f 0d 01 68 |ltiplier set?..h| 00000300 07 43 4c 43 0d 01 72 2c 4c 44 41 20 6d 75 6c 74 |.CLC..r,LDA mult| 00000310 69 70 6c 69 63 61 6e 64 20 20 20 20 20 20 5c 20 |iplicand \ | 00000320 41 64 64 20 6d 75 6c 74 69 70 6c 69 63 61 6e 64 |Add multiplicand| 00000330 0d 01 7c 0c 41 44 43 20 70 70 77 73 0d 01 86 0c |..|.ADC ppws....| 00000340 53 54 41 20 70 70 77 73 0d 01 90 16 4c 44 41 20 |STA ppws....LDA | 00000350 6d 75 6c 74 69 70 6c 69 63 61 6e 64 2b 31 0d 01 |multiplicand+1..| 00000360 9a 0e 41 44 43 20 70 70 77 73 2b 31 0d 01 a4 0e |..ADC ppws+1....| 00000370 53 54 41 20 70 70 77 73 2b 31 0d 01 ae 16 4c 44 |STA ppws+1....LD| 00000380 41 20 6d 75 6c 74 69 70 6c 69 63 61 6e 64 2b 32 |A multiplicand+2| 00000390 0d 01 b8 0e 41 44 43 20 70 70 77 73 2b 32 0d 01 |....ADC ppws+2..| 000003a0 c2 0e 53 54 41 20 70 70 77 73 2b 32 0d 01 cc 16 |..STA ppws+2....| 000003b0 4c 44 41 20 6d 75 6c 74 69 70 6c 69 63 61 6e 64 |LDA multiplicand| 000003c0 2b 33 0d 01 d6 0e 41 44 43 20 70 70 77 73 2b 33 |+3....ADC ppws+3| 000003d0 0d 01 e0 0e 53 54 41 20 70 70 77 73 2b 33 0d 01 |....STA ppws+3..| 000003e0 ea 05 20 0d 01 f4 0f 2e 6e 6f 5f 61 64 64 5f 6d |.. .....no_add_m| 000003f0 62 6d 0d 01 fe 05 20 0d 02 08 42 4c 53 52 20 70 |bm.... ...BLSR p| 00000400 70 77 73 2b 33 20 20 20 20 20 20 20 20 20 20 20 |pws+3 | 00000410 20 5c 20 52 6f 74 61 74 65 20 28 73 68 69 66 74 | \ Rotate (shift| 00000420 29 20 70 70 77 73 20 26 20 6d 75 6c 74 69 70 6c |) ppws & multipl| 00000430 69 65 72 20 72 69 67 68 74 0d 02 12 0e 52 4f 52 |ier right....ROR| 00000440 20 70 70 77 73 2b 32 0d 02 1c 0e 52 4f 52 20 70 | ppws+2....ROR p| 00000450 70 77 73 2b 31 0d 02 26 0c 52 4f 52 20 70 70 77 |pws+1..&.ROR ppw| 00000460 73 0d 02 30 14 52 4f 52 20 6d 75 6c 74 69 70 6c |s..0.ROR multipl| 00000470 69 65 72 2b 33 0d 02 3a 14 52 4f 52 20 6d 75 6c |ier+3..:.ROR mul| 00000480 74 69 70 6c 69 65 72 2b 32 0d 02 44 14 52 4f 52 |tiplier+2..D.ROR| 00000490 20 6d 75 6c 74 69 70 6c 69 65 72 2b 31 0d 02 4e | multiplier+1..N| 000004a0 12 52 4f 52 20 6d 75 6c 74 69 70 6c 69 65 72 0d |.ROR multiplier.| 000004b0 02 58 39 44 45 58 20 20 20 20 20 20 20 20 20 20 |.X9DEX | 000004c0 20 20 20 20 20 20 20 20 20 5c 20 43 6f 75 6e 74 | \ Count| 000004d0 69 6e 67 20 64 6f 77 6e 20 66 72 6f 6d 20 33 32 |ing down from 32| 000004e0 20 74 6f 20 7a 65 72 6f 0d 02 62 10 42 4e 45 20 | to zero..b.BNE | 000004f0 6d 62 6d 5f 6c 6f 6f 70 0d 02 6c 05 20 0d 02 76 |mbm_loop..l. ..v| 00000500 07 52 54 53 0d 02 80 05 20 0d 02 8a 22 2e 6d 75 |.RTS.... ...".mu| 00000510 6c 74 69 70 6c 69 63 61 6e 64 20 20 4f 50 54 20 |ltiplicand OPT | 00000520 20 20 20 a4 45 51 55 44 28 30 29 0d 02 94 22 2e | .EQUD(0)...".| 00000530 70 70 77 73 20 20 20 20 20 20 20 20 20 20 4f 50 |ppws OP| 00000540 54 20 20 20 20 a4 45 51 55 44 28 30 29 0d 02 9e |T .EQUD(0)...| 00000550 22 2e 6d 75 6c 74 69 70 6c 69 65 72 20 20 20 20 |".multiplier | 00000560 4f 50 54 20 20 20 20 a4 45 51 55 44 28 30 29 0d |OPT .EQUD(0).| 00000570 02 a8 05 20 0d 02 b2 05 5d 0d 02 bc 05 ed 0d 02 |... ....].......| 00000580 c6 0b 40 25 3d 26 41 30 41 0d 02 d0 2e f5 3a e8 |..@%=&A0A.....:.| 00000590 20 22 45 6e 74 65 72 20 6e 75 6d 62 65 72 73 20 | "Enter numbers | 000005a0 74 6f 20 62 65 20 6d 75 6c 74 69 70 6c 69 65 64 |to be multiplied| 000005b0 20 22 41 25 2c 42 25 0d 02 da 16 21 6d 75 6c 74 | "A%,B%....!mult| 000005c0 69 70 6c 69 63 61 6e 64 20 3d 20 41 25 0d 02 e4 |iplicand = A%...| 000005d0 14 21 6d 75 6c 74 69 70 6c 69 65 72 20 3d 20 42 |.!multiplier = B| 000005e0 25 0d 02 ee 35 f1 20 3b 41 25 3b 22 20 6d 75 6c |%...5. ;A%;" mul| 000005f0 74 69 70 6c 69 65 64 20 62 79 20 22 3b 42 25 3b |tiplied by ";B%;| 00000600 22 20 3d 20 22 3b 41 25 2a 42 25 3b 22 20 5b 42 |" = ";A%*B%;" [B| 00000610 41 53 49 43 5d 22 0d 02 f8 0b d6 20 63 6f 64 65 |ASIC]"..... code| 00000620 25 0d 03 02 3a f1 20 3b 41 25 3b 22 20 6d 75 6c |%...:. ;A%;" mul| 00000630 74 69 70 6c 69 65 64 20 62 79 20 22 3b 42 25 3b |tiplied by ";B%;| 00000640 22 20 3d 20 22 3b 21 6d 75 6c 74 69 70 6c 69 65 |" = ";!multiplie| 00000650 72 3b 22 20 5b 63 6f 64 65 5d 22 0d 03 0c 46 f1 |r;" [code]"...F.| 00000660 20 22 70 70 77 73 20 63 6f 6e 74 61 69 6e 73 20 | "ppws contains | 00000670 26 22 3b 7e 21 70 70 77 73 3b 22 20 3a 20 6d 75 |&";~!ppws;" : mu| 00000680 6c 74 69 70 6c 69 65 72 20 63 6f 6e 74 61 69 6e |ltiplier contain| 00000690 73 20 26 22 3b 7e 21 6d 75 6c 74 69 70 6c 69 65 |s &";~!multiplie| 000006a0 72 0d 03 16 4e e7 20 41 25 2a 42 25 3e 32 31 34 |r...N. A%*B%>214| 000006b0 37 34 38 33 36 34 37 20 84 20 41 25 2a 42 25 3c |7483647 . A%*B%<| 000006c0 2d 32 31 34 37 34 38 33 36 34 38 20 8c 20 f1 22 |-2147483648 . ."| 000006d0 50 72 6f 64 75 63 74 20 69 73 20 62 69 67 67 65 |Product is bigge| 000006e0 72 20 74 68 61 6e 20 34 20 62 79 74 65 73 22 0d |r than 4 bytes".| 000006f0 03 20 05 f1 0d 03 2a 06 fd 30 0d 03 7a 05 20 0d |. ....*..0..z. .| 00000700 03 84 2c 2a 2a 2a 2a 20 45 51 55 61 74 65 20 61 |..,**** EQUate a| 00000710 20 44 6f 75 62 6c 65 20 77 6f 72 64 20 28 34 20 | Double word (4 | 00000720 62 79 74 65 73 29 20 2a 2a 2a 2a 0d 03 8e 0f dd |bytes) ****.....| 00000730 20 a4 45 51 55 44 28 4e 25 29 0d 03 98 08 ea 20 | .EQUD(N%)..... | 00000740 58 25 0d 03 a2 0a 21 50 25 3d 4e 25 0d 03 ac 0e |X%....!P%=N%....| 00000750 e3 20 58 25 3d 30 20 b8 20 33 0d 03 b6 21 e7 20 |. X%=0 . 3...!. | 00000760 28 70 61 73 73 25 20 80 20 33 29 20 3d 20 33 20 |(pass% . 3) = 3 | 00000770 8c 20 f1 20 7e 50 25 3f 58 25 3b 0d 03 c0 05 ed |. . ~P%?X%;.....| 00000780 0d 03 ca 19 e7 20 28 70 61 73 73 25 20 80 20 33 |..... (pass% . 3| 00000790 29 20 3d 20 33 20 8c 20 f1 0d 03 d4 0b 50 25 3d |) = 3 . .....P%=| 000007a0 50 25 2b 34 0d 03 de 0a 3d 70 61 73 73 25 0d ff |P%+4....=pass%..| 000007b0