Home » CEEFAX disks » telesoftware2.adl » OS\BITS/B\OSB21
OS\BITS/B\OSB21
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » CEEFAX disks » telesoftware2.adl |
Filename: | OS\BITS/B\OSB21 |
Read OK: | ✔ |
File size: | 2472 bytes |
Load address: | 1900 |
Exec address: | 8023 |
Duplicates
There is 1 duplicate copy of this file in the archive:
- CEEFAX disks » telesoftware2.adl » OS\BITS/B\OSB21
- CEEFAX disks » telesoftware6.adl » 09-04-88/B\OSB21
File contents
10REM OSbits Module B/osb21 20REM Mandelbrot set by Fixed Point Arithmetic 30REM Version 1.4 26.4.87 40 50REM Use OSBYTE 234 to detect a second processor 60X%=0 70Y%=&FF 80A%=234 90R%=USR(&FFF4) AND &FF00 100IF R%>0 THEN DIM code% &300 ELSE code%=&1300 110IF R%=0 THEN MODE 7 ELSE *KEY0CALL code%|M 120IF R%=0 THEN *KEY0NEW|MCALL &1300|MOLD|M 130IF R%>0 THEN PRINT "Assembling in 2nd Processor" ELSE PRINT "Assembling in I/O processor" 140 150*KEY1MO.3|M|NL.|M 160 170oswrch = &FFEE 180 190mode = 2 200x_step = 8 210y_step = 4 220iterations = 32 230size_limit = 4 240 250REM Set zero page workspace for the multiplying routine 260 270multiplicand = &70 280ppws = &75 290multiplier= &7A 300fxp_res = &7C 310 320FOR pass% = 0 TO 2 STEP 2 330P% = code% 340 350[OPT pass% 360 370\ Code to set up the calculations 380 390LDA #22 \ Set screen mode 400JSR oswrch 410LDA #mode 420JSR oswrch 430 440LDA #5 \ VDU5 450JSR oswrch 460 470LDA #0 \ Clear x_coord 480STA x_coord 490STA x_coord+1 500 510.x_loop \ Loop to draw horizontally 520 530LDA #0 \ Clear y_coord 540STA y_coord 550STA y_coord+1 560 570.y_loop \ Loop to draw vertically 580 590JSR mandelbrot 600 610LDA #25 \ PLOT 69 equivalent - plot a point 620JSR oswrch 630LDA #69 640JSR oswrch 650LDA x_coord 660JSR oswrch 670LDA x_coord+1 680JSR oswrch 690LDA y_coord 700JSR oswrch 710LDA y_coord+1 720JSR oswrch 730 740LDA y_coord 750CLC 760ADC #y_step 770STA y_coord \ Add y_step to current y_coord 780LDA y_coord+1 790ADC #0 800STA y_coord+1 810CMP #4 \ Check if we have exceeded 1023 (&3FF) 820BNE y_loop 830 840LDA x_coord 850CLC 860ADC #x_step 870STA x_coord \ Add x_step to current x_coord 880LDA x_coord+1 890ADC #0 900STA x_coord+1 910CMP #4 \ Check if we have exceeded 1023 (&3FF) 920BNE x_loop 930 940RTS 950 960.mandelbrot 970 980\ For each screen point we compute how many iterations of 990\ z=z^2+c (where z and c are complex) it takes for |z| to 1000\ exceed 2 with a limit of 32 iterations in total 1010\ The Mandelbrot set exists within these bounds - 1020\ Real = -2.25 to 0.75 Imaginary = -1.5 to 1.5 1030\ Thus .... h_inc=v_inc=3/1024 which is &C0 in our fixed point 1040 1050\ First compute value of c_real (=real(low)+x_coord*h_inc) 1060 1070LDX #4 1080 1090.transfer_hinc_loop \ Move h_inc into multiplicand 1100 1110LDA h_inc-1, X \ Offset from address-1 so we can use BNE 1120STA multiplicand-1, X 1130DEX 1140BNE transfer_hinc_loop 1150 1160LDA x_coord \ Move x_coord into multiplier 1170STA multiplier+2 1180LDA x_coord+1 1190STA multiplier+3 1200JSR fixed_point_mult 1210 1220LDX #4 1230 1240.transfer_creal_loop 1250 1260LDA fxp_res-1, X 1270STA c_real-1, X 1280DEX 1290BNE transfer_creal_loop 1300 1310LDA #&C0 \ Add -2.25, = &FFFDC000 in fixed point 1320CLC 1330ADC c_real+1 1340STA c_real+1 1350LDA #&FD 1360ADC c_real+2 1370STA c_real+2 1380LDA #&FF 1390ADC c_real+3 1400STA c_real+3 1410 1420\ Then compute value of c_imag (=imag(low)+y_coord*v_inc) 1430 1440LDX #4 1450 1460.transfer_vinc_loop 1470 1480LDA v_inc-1, X 1490STA multiplicand-1, X 1500DEX 1510BNE transfer_vinc_loop 1520 1530LDA y_coord 1540STA multiplier+2 1550LDA y_coord+1 1560STA multiplier+3 1570JSR fixed_point_mult 1580 1590LDX #4 1600 1610.transfer_cimag_loop 1620 1630LDA fxp_res-1, X 1640STA c_imag-1, X 1650DEX 1660BNE transfer_cimag_loop 1670 1680LDA #&80 \ Add -1.5 = &FFFE800 in fixed point 1690CLC 1700ADC c_imag+1 1710STA c_imag+1 1720LDA #&FE 1730ADC c_imag+2 1740STA c_imag+2 1750LDA #&FF 1760ADC c_imag+3 1770STA c_imag+3 1780 1790LDA #iterations \ Initialise iterations counter 1800STA count 1810LDA #0 1820LDX #4 1830 1840.reset_xy_loop \ Clear x y work space 1850 1860STA x-1, X 1870STA y-1, X 1880DEX 1890BNE reset_xy_loop 1900 1910.mandelbrot_loop \ Main loop performs iterations 1920 1930\ Get squares of x and y by putting x into both multiplicand 1940\ and multiplier and calling the fixed point multiply 1950\ routine. Store in space labelled x_squared and repeat for y 1960 1970LDX #4 1980 1990.x_square_prepare_loop 2000 2010LDA x-1, X 2020STA multiplicand-1, X 2030STA multiplier-1, X 2040DEX 2050BNE x_square_prepare_loop 2060 2070JSR fixed_point_mult 2080 2090LDX #4 2100 2110.x_square_recover_loop 2120 2130LDA fxp_res-1, X 2140STA x_squared-1, X 2150DEX 2160BNE x_square_recover_loop 2170LDX #4 2180 2190.y_square_prepare_loop 2200 2210LDA y-1, X 2220STA multiplicand-1, X 2230STA multiplier-1, X 2240DEX 2250BNE y_square_prepare_loop 2260 2270JSR fixed_point_mult 2280 2290LDX #4 2300 2310.y_square_recover_loop 2320 2330LDA fxp_res-1, X 2340STA y_squared-1, X 2350DEX 2360BNE y_square_recover_loop 2370 2380\ Now calculate size (= x_squared+y_squared) 2390 2400CLC 2410LDA x_squared 2420ADC y_squared 2430STA size 2440LDA x_squared+1 2450ADC y_squared+1 2460STA size+1 2470LDA x_squared+2 2480ADC y_squared+2 2490STA size+2 2500LDA x_squared+3 2510ADC y_squared+3 2520STA size+3 2530 2540\ New y is 2*x*y+c_imag 2550 2560LDX #4 2570 2580.transfer_xy_for_mult 2590 2600LDA x-1, X 2610STA multiplier-1, X 2620LDA y-1, X 2630STA multiplicand-1, X 2640DEX 2650BNE transfer_xy_for_mult 2660 2670JSR fixed_point_mult 2680 2690LDX #4 2700 2710.transfer_xy_after_mult 2720 2730LDA fxp_res-1, X 2740STA y-1, X 2750DEX 2760BNE transfer_xy_after_mult 2770 2780\ Multiply by 2 (i.e. a shift left) 2790 2800ASL y 2810ROL y+1 2820ROL y+2 2830ROL y+3 2840 2850\ Trap for size by checking byte 2 of fixed point word 2860\ Done in odd place to optimise branch length 2870 2880LDA size+2 2890CMP #size_limit 2900BCS size_out 2910 2920\ Returning to y calculation - Add c_imag 2930 2940CLC 2950LDA y 2960ADC c_imag 2970STA y 2980LDA y+1 2990ADC c_imag+1 3000STA y+1 3010LDA y+2 3020ADC c_imag+2 3030STA y+2 3040LDA y+3 3050ADC c_imag+3 3060STA y+3 3070 3080\ New value of x is x_squared-y_squared+c_real 3090 3100SEC 3110LDA x_squared 3120SBC y_squared 3130STA x 3140LDA x_squared+1 3150SBC y_squared+1 3160STA x+1 3170LDA x_squared+2 3180SBC y_squared+2 3190STA x+2 3200LDA x_squared+3 3210SBC y_squared+3 3220STA x+3 3230 3240CLC 3250LDA x 3260ADC c_real 3270STA x 3280LDA x+1 3290ADC c_real+1 3300STA x+1 3310LDA x+2 3320ADC c_real+2 3330STA x+2 3340LDA x+3 3350ADC c_real+3 3360STA x+3 3370 3380\ Trap for maximum number of iterations allowed 3390 3400DEC count 3410BEQ count_out 3420 3430JMP mandelbrot_loop 3440 3450.size_out \ If size exceeds limit pixel is coloured 3460 3470LDA #18 3480JSR oswrch 3490LDA #0 3500JSR oswrch 3510LDA count 3520AND #7 \ Gives values from 0 to 7 3530JSR oswrch 3540RTS 3550 3560.count_out \ If we reach iterations limit then pixel is black 3570 3580LDA #18 \ GCOL 3590JSR oswrch 3600LDA #0 3610JSR oswrch 3620JSR oswrch 3630RTS 3640 3650.x_coord OPT FNEQUW(0) 3660.y_coord OPT FNEQUW(0) 3670.c_real OPT FNEQUD(0) 3680.c_imag OPT FNEQUD(0) 3690.count OPT FNEQUB(0) 3700.size OPT FNEQUD(0) 3710.x OPT FNEQUD(0) 3720.y OPT FNEQUD(0) 3730.x_squared OPT FNEQUD(0) 3740.y_squared OPT FNEQUD(0) 3750.h_inc OPT FNEQUD(&C0) 3760.v_inc OPT FNEQUD(&C0) 3770 3780.fixed_point_mult 3790 3800\ Assumes that numbers to be multiplied are put into 3810\ multiplicand and multiplier. ppws is used for 3820\ partial product. Result is put into multiplier but 3830\ read from 'multiplier +2' ('fxp_res') for fixed point 3840\ Workspace is in zero page from &70 so the labels are 3850\ set using BASIC at the start of the assembler 3860 3870LDA #0 3880STA ppws \ Clear partial product workspace 3890STA ppws+1 3900STA ppws+2 3910STA ppws+3 3920STA ppws+4 3930STA multiplier+4 3940STA multiplicand+4 3950STA multiplier+5 3960 3970LDA multiplier+3 \ Test multiplier for negative 3980BPL multiplier_pos 3990DEC multiplier+4 \ Make top byte = &FF 4000 4010.multiplier_pos 4020 4030LDA multiplicand+3 \ Repeat for multiplicand 4040BPL multiplicand_pos 4050DEC multiplicand+4 4060 4070.multiplicand_pos 4080 4090LDX #40 \ Carry out 40 times for 40 bit arithmetic 4100 4110LSR multiplier+4 4120ROR multiplier+3 4130ROR multiplier+2 4140ROR multiplier+1 4150ROR multiplier 4160 4170.fxpm_loop 4180 4190BCC no_add_fxpm \ Is next bit of multiplier set? 4200CLC 4210LDA multiplicand \ Add multiplicand 4220ADC ppws 4230STA ppws 4240LDA multiplicand+1 4250ADC ppws+1 4260STA ppws+1 4270LDA multiplicand+2 4280ADC ppws+2 4290STA ppws+2 4300LDA multiplicand+3 4310ADC ppws+3 4320STA ppws+3 4330LDA multiplicand+4 4340ADC ppws+4 4350STA ppws+4 4360 4370.no_add_fxpm 4380 4390LSR ppws+4 \ Rotate (shift) ppws & multiplier right 4400ROR ppws+3 4410ROR ppws+2 4420ROR ppws+1 4430ROR ppws 4440ROR multiplier+4 4450ROR multiplier+3 4460ROR multiplier+2 4470ROR multiplier+1 4480ROR multiplier 4490DEX \ Counting down from 32 to zero 4500BNE fxpm_loop 4510 4520LDA multiplier+4 4530BPL res_pos 4540DEC multiplier+5 4550 4560.res_pos 4570 4580RTS 4590 4600] 4610NEXT 4620PRINT"Assembly complete, press f0 to execute." 4630END 4640 4650**** EQUate a Byte **** 4660DEF FNEQUB(N%) 4670?P%=N% MOD 256 4680IF (pass% AND 3) = 3 THEN PRINT ~?P% 4690P%=P%+1 4700=pass% 4710 4720**** EQUate a Word (2 bytes) **** 4730DEF FNEQUW(N%) 4740?P%=N% MOD 256 4750P%?1=N% DIV 256 4760IF (pass% AND 3) = 3 THEN PRINT ~?P%,~?(P%+1) 4770P%=P%+2 4780=pass% 4790 4800**** EQUate a Double word (4 bytes) **** 4810DEF FNEQUD(N%) 4820LOCAL X% 4830!P%=N% 4840FOR X%=0 TO 3 4850IF (pass% AND 3) = 3 THEN PRINT ~P%?X%; 4860NEXT 4870IF (pass% AND 3) = 3 THEN PRINT 4880P%=P%+4 4890=pass%
� OSbits Module B/osb21 .� Mandelbrot set by Fixed Point Arithmetic � Version 1.4 26.4.87 ( 22� Use OSBYTE 234 to detect a second processor <X%=0 F Y%=&FF P A%=234 ZR%=�(&FFF4) � &FF00 d'� R%>0 � � code% &300 � code%=&1300 n$� R%=0 � � 7 � *KEY0CALL code%|M x(� R%=0 � *KEY0NEW|MCALL &1300|MOLD|M �N� R%>0 � � "Assembling in 2nd Processor" � � "Assembling in I/O processor" � �*KEY1MO.3|M|NL.|M � �oswrch = &FFEE � �mode = 2 �x_step = 8 �y_step = 4 �iterations = 32 �size_limit = 4 � �:� Set zero page workspace for the multiplying routine multiplicand = &70 ppws = &75 "multiplier= &7A ,fxp_res = &7C 6 @� pass% = 0 � 2 � 2 JP% = code% T ^[OPT pass% h r&\ Code to set up the calculations | �+LDA #22 \ Set screen mode �JSR oswrch � LDA #mode �JSR oswrch � �LDA #5 \ �5 �JSR oswrch � �)LDA #0 \ Clear x_coord �STA x_coord �STA x_coord+1 � �5.x_loop \ Loop to draw horizontally )LDA #0 \ Clear y_coord STA y_coord &STA y_coord+1 0 :3.y_loop \ Loop to draw vertically D NJSR mandelbrot X b:LDA #25 \ � 69 equivalent - plot a point lJSR oswrch vLDA #69 �JSR oswrch �LDA x_coord �JSR oswrch �LDA x_coord+1 �JSR oswrch �LDA y_coord �JSR oswrch �LDA y_coord+1 �JSR oswrch � �LDA y_coord �CLC �ADC #y_step 9STA y_coord \ Add y_step to current y_coord LDA y_coord+1 ADC #0 STA y_coord+1 *ACMP #4 \ Check if we have exceeded 1023 (&3FF) 4BNE y_loop > HLDA x_coord RCLC \ADC #x_step f9STA x_coord \ Add x_step to current x_coord pLDA x_coord+1 z ADC #0 �STA x_coord+1 �ACMP #4 \ Check if we have exceeded 1023 (&3FF) �BNE x_loop � �RTS � �.mandelbrot � �>\ For each screen point we compute how many iterations of �>\ z=z^2+c (where z and c are complex) it takes for |z| to �6\ exceed 2 with a limit of 32 iterations in total �6\ The Mandelbrot set exists within these bounds - �4\ Real = -2.25 to 0.75 Imaginary = -1.5 to 1.5 C\ Thus .... h_inc=v_inc=3/1024 which is &C0 in our fixed point ?\ First compute value of c_real (=real(low)+x_coord*h_inc) $ . LDX #4 8 B8.transfer_hinc_loop \ Move h_inc into multiplicand L VCLDA h_inc-1, X \ Offset from address-1 so we can use BNE `STA multiplicand-1, X jDEX tBNE transfer_hinc_loop ~ �8LDA x_coord \ Move x_coord into multiplier �STA multiplier+2 �LDA x_coord+1 �STA multiplier+3 �JSR fixed_point_mult � � LDX #4 � �.transfer_creal_loop � �LDA fxp_res-1, X �STA c_real-1, X DEX BNE transfer_creal_loop ALDA #&C0 \ Add -2.25, = &FFFDC000 in fixed point (CLC 2ADC c_real+1 <STA c_real+1 FLDA #&FD PADC c_real+2 ZSTA c_real+2 dLDA #&FF nADC c_real+3 xSTA c_real+3 � �>\ Then compute value of c_imag (=imag(low)+y_coord*v_inc) � � LDX #4 � �.transfer_vinc_loop � �LDA v_inc-1, X �STA multiplicand-1, X �DEX �BNE transfer_vinc_loop � �LDA y_coord STA multiplier+2 LDA y_coord+1 STA multiplier+3 "JSR fixed_point_mult , 6 LDX #4 @ J.transfer_cimag_loop T ^LDA fxp_res-1, X hSTA c_imag-1, X rDEX |BNE transfer_cimag_loop � �>LDA #&80 \ Add -1.5 = &FFFE800 in fixed point �CLC �ADC c_imag+1 �STA c_imag+1 �LDA #&FE �ADC c_imag+2 �STA c_imag+2 �LDA #&FF �ADC c_imag+3 �STA c_imag+3 � �9LDA #iterations \ Initialise iterations counter STA count LDA #0 LDX #4 & 00.reset_xy_loop \ Clear x y work space : DSTA x-1, X NSTA y-1, X XDEX bBNE reset_xy_loop l v9.mandelbrot_loop \ Main loop performs iterations � �A\ Get squares of x and y by putting x into both multiplicand �:\ and multiplier and calling the fixed point multiply �C\ routine. Store in space labelled x_squared and repeat for y � � LDX #4 � �.x_square_prepare_loop � �LDA x-1, X �STA multiplicand-1, X �STA multiplier-1, X �DEX BNE x_square_prepare_loop JSR fixed_point_mult * LDX #4 4 >.x_square_recover_loop H RLDA fxp_res-1, X \STA x_squared-1, X fDEX pBNE x_square_recover_loop z LDX #4 � �.y_square_prepare_loop � �LDA y-1, X �STA multiplicand-1, X �STA multiplier-1, X �DEX �BNE y_square_prepare_loop � �JSR fixed_point_mult � � LDX #4 � .y_square_recover_loop LDA fxp_res-1, X $STA y_squared-1, X .DEX 8BNE y_square_recover_loop B L1\ Now calculate size (= x_squared+y_squared) V `CLC jLDA x_squared tADC y_squared ~STA size �LDA x_squared+1 �ADC y_squared+1 �STA size+1 �LDA x_squared+2 �ADC y_squared+2 �STA size+2 �LDA x_squared+3 �ADC y_squared+3 �STA size+3 � �\ New y is 2*x*y+c_imag � LDX #4 .transfer_xy_for_mult (LDA x-1, X 2STA multiplier-1, X <LDA y-1, X FSTA multiplicand-1, X PDEX ZBNE transfer_xy_for_mult d nJSR fixed_point_mult x � LDX #4 � �.transfer_xy_after_mult � �LDA fxp_res-1, X �STA y-1, X �DEX �BNE transfer_xy_after_mult � �(\ Multiply by 2 (i.e. a shift left) � � ASL y �ROL y+1 ROL y+2 ROL y+3 ";\ Trap for size by checking byte 2 of fixed point word ,2\ Done in odd place to optimise branch length 6 @LDA size+2 JCMP #size_limit TBCS size_out ^ h.\ Returning to y calculation - Add c_imag r |CLC � LDA y �ADC c_imag � STA y �LDA y+1 �ADC c_imag+1 �STA y+1 �LDA y+2 �ADC c_imag+2 �STA y+2 �LDA y+3 �ADC c_imag+3 �STA y+3 � 3\ New value of x is x_squared-y_squared+c_real SEC &LDA x_squared 0SBC y_squared : STA x DLDA x_squared+1 NSBC y_squared+1 XSTA x+1 bLDA x_squared+2 lSBC y_squared+2 vSTA x+2 �LDA x_squared+3 �SBC y_squared+3 �STA x+3 � �CLC � LDA x �ADC c_real � STA x �LDA x+1 �ADC c_real+1 �STA x+1 �LDA x+2 �ADC c_real+2 STA x+2 LDA x+3 ADC c_real+3 STA x+3 * 44\ Trap for maximum number of iterations allowed > H DEC count RBEQ count_out \ fJMP mandelbrot_loop p zC.size_out \ If size exceeds limit pixel is coloured � �LDA #18 �JSR oswrch � LDA #0 �JSR oswrch � LDA count �2� #7 \ Gives values from 0 to 7 �JSR oswrch �RTS � �L.count_out \ If we reach iterations limit then pixel is black � �LDA #18 \ � JSR oswrch LDA #0 JSR oswrch $JSR oswrch .RTS 8 B.x_coord OPT �EQUW(0) L.y_coord OPT �EQUW(0) V.c_real OPT �EQUD(0) `.c_imag OPT �EQUD(0) j.count OPT �EQUB(0) t.size OPT �EQUD(0) ~.x OPT �EQUD(0) �.y OPT �EQUD(0) �.x_squared OPT �EQUD(0) �.y_squared OPT �EQUD(0) �.h_inc OPT �EQUD(&C0) �.v_inc OPT �EQUD(&C0) � �.fixed_point_mult � �9\ Assumes that numbers to be multiplied are put into �5\ multiplicand and multiplier. ppws is used for �9\ partial product. Result is put into multiplier but �<\ read from 'multiplier +2' ('fxp_res') for fixed point ;\ Workspace is in zero page from &70 so the labels are 4\ set using BASIC at the start of the assembler LDA #0 (;STA ppws \ Clear partial product workspace 2STA ppws+1 <STA ppws+2 FSTA ppws+3 PSTA ppws+4 ZSTA multiplier+4 dSTA multiplicand+4 nSTA multiplier+5 x �8LDA multiplier+3 \ Test multiplier for negative �BPL multiplier_pos �/DEC multiplier+4 \ Make top byte = &FF � �.multiplier_pos � �3LDA multiplicand+3 \ Repeat for multiplicand �BPL multiplicand_pos �DEC multiplicand+4 � �.multiplicand_pos � �DLDX #40 \ Carry out 40 times for 40 bit arithmetic LSR multiplier+4 ROR multiplier+3 "ROR multiplier+2 ,ROR multiplier+1 6ROR multiplier @ J.fxpm_loop T ^:BCC no_add_fxpm \ Is next bit of multiplier set? hCLC r,LDA multiplicand \ Add multiplicand |ADC ppws �STA ppws �LDA multiplicand+1 �ADC ppws+1 �STA ppws+1 �LDA multiplicand+2 �ADC ppws+2 �STA ppws+2 �LDA multiplicand+3 �ADC ppws+3 �STA ppws+3 �LDA multiplicand+4 �ADC ppws+4 �STA ppws+4 .no_add_fxpm &BLSR ppws+4 \ Rotate (shift) ppws & multiplier right 0ROR ppws+3 :ROR ppws+2 DROR ppws+1 NROR ppws XROR multiplier+4 bROR multiplier+3 lROR multiplier+2 vROR multiplier+1 �ROR multiplier �9DEX \ Counting down from 32 to zero �BNE fxpm_loop � �LDA multiplier+4 �BPL res_pos �DEC multiplier+5 � �.res_pos � �RTS � �] � .�"Assembly complete, press f0 to execute." � ***** EQUate a Byte **** 4� �EQUB(N%) >?P%=N% � 256 H� (pass% � 3) = 3 � � ~?P% RP%=P%+1 \ =pass% f p%**** EQUate a Word (2 bytes) **** z� �EQUW(N%) �?P%=N% � 256 �P%?1=N% � 256 �'� (pass% � 3) = 3 � � ~?P%,~?(P%+1) �P%=P%+2 � =pass% � �,**** EQUate a Double word (4 bytes) **** �� �EQUD(N%) �� X% � !P%=N% �� X%=0 � 3 �!� (pass% � 3) = 3 � � ~P%?X%; �� � (pass% � 3) = 3 � � P%=P%+4 =pass% �
00000000 0d 00 0a 1b f4 20 4f 53 62 69 74 73 20 4d 6f 64 |..... OSbits Mod| 00000010 75 6c 65 20 42 2f 6f 73 62 32 31 0d 00 14 2e f4 |ule B/osb21.....| 00000020 20 4d 61 6e 64 65 6c 62 72 6f 74 20 73 65 74 20 | Mandelbrot set | 00000030 62 79 20 46 69 78 65 64 20 50 6f 69 6e 74 20 41 |by Fixed Point A| 00000040 72 69 74 68 6d 65 74 69 63 0d 00 1e 19 f4 20 56 |rithmetic..... V| 00000050 65 72 73 69 6f 6e 20 31 2e 34 20 32 36 2e 34 2e |ersion 1.4 26.4.| 00000060 38 37 0d 00 28 05 20 0d 00 32 32 f4 20 20 55 73 |87..(. ..22. Us| 00000070 65 20 4f 53 42 59 54 45 20 32 33 34 20 74 6f 20 |e OSBYTE 234 to | 00000080 64 65 74 65 63 74 20 61 20 73 65 63 6f 6e 64 20 |detect a second | 00000090 70 72 6f 63 65 73 73 6f 72 0d 00 3c 08 58 25 3d |processor..<.X%=| 000000a0 30 0d 00 46 0a 59 25 3d 26 46 46 0d 00 50 0a 41 |0..F.Y%=&FF..P.A| 000000b0 25 3d 32 33 34 0d 00 5a 17 52 25 3d ba 28 26 46 |%=234..Z.R%=.(&F| 000000c0 46 46 34 29 20 80 20 26 46 46 30 30 0d 00 64 27 |FF4) . &FF00..d'| 000000d0 e7 20 52 25 3e 30 20 8c 20 de 20 63 6f 64 65 25 |. R%>0 . . code%| 000000e0 20 26 33 30 30 20 8b 20 63 6f 64 65 25 3d 26 31 | &300 . code%=&1| 000000f0 33 30 30 0d 00 6e 24 e7 20 52 25 3d 30 20 8c 20 |300..n$. R%=0 . | 00000100 eb 20 37 20 8b 20 2a 4b 45 59 30 43 41 4c 4c 20 |. 7 . *KEY0CALL | 00000110 63 6f 64 65 25 7c 4d 0d 00 78 28 e7 20 52 25 3d |code%|M..x(. R%=| 00000120 30 20 8c 20 2a 4b 45 59 30 4e 45 57 7c 4d 43 41 |0 . *KEY0NEW|MCA| 00000130 4c 4c 20 26 31 33 30 30 7c 4d 4f 4c 44 7c 4d 0d |LL &1300|MOLD|M.| 00000140 00 82 4e e7 20 52 25 3e 30 20 8c 20 f1 20 22 41 |..N. R%>0 . . "A| 00000150 73 73 65 6d 62 6c 69 6e 67 20 69 6e 20 32 6e 64 |ssembling in 2nd| 00000160 20 50 72 6f 63 65 73 73 6f 72 22 20 8b 20 f1 20 | Processor" . . | 00000170 22 41 73 73 65 6d 62 6c 69 6e 67 20 69 6e 20 49 |"Assembling in I| 00000180 2f 4f 20 70 72 6f 63 65 73 73 6f 72 22 0d 00 8c |/O processor"...| 00000190 05 20 0d 00 96 15 2a 4b 45 59 31 4d 4f 2e 33 7c |. ....*KEY1MO.3|| 000001a0 4d 7c 4e 4c 2e 7c 4d 0d 00 a0 05 20 0d 00 aa 12 |M|NL.|M.... ....| 000001b0 6f 73 77 72 63 68 20 3d 20 26 46 46 45 45 0d 00 |oswrch = &FFEE..| 000001c0 b4 05 20 0d 00 be 0c 6d 6f 64 65 20 3d 20 32 0d |.. ....mode = 2.| 000001d0 00 c8 0e 78 5f 73 74 65 70 20 3d 20 38 0d 00 d2 |...x_step = 8...| 000001e0 0e 79 5f 73 74 65 70 20 3d 20 34 0d 00 dc 13 69 |.y_step = 4....i| 000001f0 74 65 72 61 74 69 6f 6e 73 20 3d 20 33 32 0d 00 |terations = 32..| 00000200 e6 12 73 69 7a 65 5f 6c 69 6d 69 74 20 3d 20 34 |..size_limit = 4| 00000210 0d 00 f0 05 20 0d 00 fa 3a f4 20 20 53 65 74 20 |.... ...:. Set | 00000220 7a 65 72 6f 20 70 61 67 65 20 77 6f 72 6b 73 70 |zero page worksp| 00000230 61 63 65 20 66 6f 72 20 74 68 65 20 6d 75 6c 74 |ace for the mult| 00000240 69 70 6c 79 69 6e 67 20 72 6f 75 74 69 6e 65 0d |iplying routine.| 00000250 01 04 05 20 0d 01 0e 16 6d 75 6c 74 69 70 6c 69 |... ....multipli| 00000260 63 61 6e 64 20 3d 20 26 37 30 0d 01 18 0e 70 70 |cand = &70....pp| 00000270 77 73 20 3d 20 26 37 35 0d 01 22 13 6d 75 6c 74 |ws = &75..".mult| 00000280 69 70 6c 69 65 72 3d 20 26 37 41 0d 01 2c 11 66 |iplier= &7A..,.f| 00000290 78 70 5f 72 65 73 20 3d 20 26 37 43 0d 01 36 05 |xp_res = &7C..6.| 000002a0 20 0d 01 40 17 e3 20 70 61 73 73 25 20 3d 20 30 | ..@.. pass% = 0| 000002b0 20 b8 20 32 20 88 20 32 0d 01 4a 0e 50 25 20 3d | . 2 . 2..J.P% =| 000002c0 20 63 6f 64 65 25 0d 01 54 05 20 0d 01 5e 0e 5b | code%..T. ..^.[| 000002d0 4f 50 54 20 70 61 73 73 25 0d 01 68 05 20 0d 01 |OPT pass%..h. ..| 000002e0 72 26 5c 20 20 43 6f 64 65 20 74 6f 20 73 65 74 |r&\ Code to set| 000002f0 20 75 70 20 74 68 65 20 63 61 6c 63 75 6c 61 74 | up the calculat| 00000300 69 6f 6e 73 0d 01 7c 05 20 0d 01 86 2b 4c 44 41 |ions..|. ...+LDA| 00000310 20 23 32 32 20 20 20 20 20 20 20 20 20 20 20 20 | #22 | 00000320 20 20 20 5c 20 53 65 74 20 73 63 72 65 65 6e 20 | \ Set screen | 00000330 6d 6f 64 65 0d 01 90 0e 4a 53 52 20 6f 73 77 72 |mode....JSR oswr| 00000340 63 68 0d 01 9a 0d 4c 44 41 20 23 6d 6f 64 65 0d |ch....LDA #mode.| 00000350 01 a4 0e 4a 53 52 20 6f 73 77 72 63 68 0d 01 ae |...JSR oswrch...| 00000360 05 20 0d 01 b8 1e 4c 44 41 20 23 35 20 20 20 20 |. ....LDA #5 | 00000370 20 20 20 20 20 20 20 20 20 20 20 20 5c 20 ef 35 | \ .5| 00000380 0d 01 c2 0e 4a 53 52 20 6f 73 77 72 63 68 0d 01 |....JSR oswrch..| 00000390 cc 05 20 0d 01 d6 29 4c 44 41 20 23 30 20 20 20 |.. ...)LDA #0 | 000003a0 20 20 20 20 20 20 20 20 20 20 20 20 20 5c 20 43 | \ C| 000003b0 6c 65 61 72 20 78 5f 63 6f 6f 72 64 0d 01 e0 0f |lear x_coord....| 000003c0 53 54 41 20 78 5f 63 6f 6f 72 64 0d 01 ea 11 53 |STA x_coord....S| 000003d0 54 41 20 78 5f 63 6f 6f 72 64 2b 31 0d 01 f4 05 |TA x_coord+1....| 000003e0 20 0d 01 fe 35 2e 78 5f 6c 6f 6f 70 20 20 20 20 | ...5.x_loop | 000003f0 20 20 20 20 20 20 20 20 20 20 20 5c 20 4c 6f 6f | \ Loo| 00000400 70 20 74 6f 20 64 72 61 77 20 68 6f 72 69 7a 6f |p to draw horizo| 00000410 6e 74 61 6c 6c 79 0d 02 08 05 20 0d 02 12 29 4c |ntally.... ...)L| 00000420 44 41 20 23 30 20 20 20 20 20 20 20 20 20 20 20 |DA #0 | 00000430 20 20 20 20 20 5c 20 43 6c 65 61 72 20 79 5f 63 | \ Clear y_c| 00000440 6f 6f 72 64 0d 02 1c 0f 53 54 41 20 79 5f 63 6f |oord....STA y_co| 00000450 6f 72 64 0d 02 26 11 53 54 41 20 79 5f 63 6f 6f |ord..&.STA y_coo| 00000460 72 64 2b 31 0d 02 30 05 20 0d 02 3a 33 2e 79 5f |rd+1..0. ..:3.y_| 00000470 6c 6f 6f 70 20 20 20 20 20 20 20 20 20 20 20 20 |loop | 00000480 20 20 20 5c 20 4c 6f 6f 70 20 74 6f 20 64 72 61 | \ Loop to dra| 00000490 77 20 76 65 72 74 69 63 61 6c 6c 79 0d 02 44 05 |w vertically..D.| 000004a0 20 0d 02 4e 12 4a 53 52 20 6d 61 6e 64 65 6c 62 | ..N.JSR mandelb| 000004b0 72 6f 74 0d 02 58 05 20 0d 02 62 3a 4c 44 41 20 |rot..X. ..b:LDA | 000004c0 23 32 35 20 20 20 20 20 20 20 20 20 20 20 20 20 |#25 | 000004d0 20 20 5c 20 f0 20 36 39 20 65 71 75 69 76 61 6c | \ . 69 equival| 000004e0 65 6e 74 20 2d 20 70 6c 6f 74 20 61 20 70 6f 69 |ent - plot a poi| 000004f0 6e 74 0d 02 6c 0e 4a 53 52 20 6f 73 77 72 63 68 |nt..l.JSR oswrch| 00000500 0d 02 76 0b 4c 44 41 20 23 36 39 0d 02 80 0e 4a |..v.LDA #69....J| 00000510 53 52 20 6f 73 77 72 63 68 0d 02 8a 0f 4c 44 41 |SR oswrch....LDA| 00000520 20 78 5f 63 6f 6f 72 64 0d 02 94 0e 4a 53 52 20 | x_coord....JSR | 00000530 6f 73 77 72 63 68 0d 02 9e 11 4c 44 41 20 78 5f |oswrch....LDA x_| 00000540 63 6f 6f 72 64 2b 31 0d 02 a8 0e 4a 53 52 20 6f |coord+1....JSR o| 00000550 73 77 72 63 68 0d 02 b2 0f 4c 44 41 20 79 5f 63 |swrch....LDA y_c| 00000560 6f 6f 72 64 0d 02 bc 0e 4a 53 52 20 6f 73 77 72 |oord....JSR oswr| 00000570 63 68 0d 02 c6 11 4c 44 41 20 79 5f 63 6f 6f 72 |ch....LDA y_coor| 00000580 64 2b 31 0d 02 d0 0e 4a 53 52 20 6f 73 77 72 63 |d+1....JSR oswrc| 00000590 68 0d 02 da 05 20 0d 02 e4 0f 4c 44 41 20 79 5f |h.... ....LDA y_| 000005a0 63 6f 6f 72 64 0d 02 ee 07 43 4c 43 0d 02 f8 0f |coord....CLC....| 000005b0 41 44 43 20 23 79 5f 73 74 65 70 0d 03 02 39 53 |ADC #y_step...9S| 000005c0 54 41 20 79 5f 63 6f 6f 72 64 20 20 20 20 20 20 |TA y_coord | 000005d0 20 20 20 20 20 5c 20 41 64 64 20 79 5f 73 74 65 | \ Add y_ste| 000005e0 70 20 74 6f 20 63 75 72 72 65 6e 74 20 79 5f 63 |p to current y_c| 000005f0 6f 6f 72 64 0d 03 0c 11 4c 44 41 20 79 5f 63 6f |oord....LDA y_co| 00000600 6f 72 64 2b 31 0d 03 16 0a 41 44 43 20 23 30 0d |ord+1....ADC #0.| 00000610 03 20 11 53 54 41 20 79 5f 63 6f 6f 72 64 2b 31 |. .STA y_coord+1| 00000620 0d 03 2a 41 43 4d 50 20 23 34 20 20 20 20 20 20 |..*ACMP #4 | 00000630 20 20 20 20 20 20 20 20 20 20 5c 20 43 68 65 63 | \ Chec| 00000640 6b 20 69 66 20 77 65 20 68 61 76 65 20 65 78 63 |k if we have exc| 00000650 65 65 64 65 64 20 31 30 32 33 20 28 26 33 46 46 |eeded 1023 (&3FF| 00000660 29 0d 03 34 0e 42 4e 45 20 79 5f 6c 6f 6f 70 0d |)..4.BNE y_loop.| 00000670 03 3e 05 20 0d 03 48 0f 4c 44 41 20 78 5f 63 6f |.>. ..H.LDA x_co| 00000680 6f 72 64 0d 03 52 07 43 4c 43 0d 03 5c 0f 41 44 |ord..R.CLC..\.AD| 00000690 43 20 23 78 5f 73 74 65 70 0d 03 66 39 53 54 41 |C #x_step..f9STA| 000006a0 20 78 5f 63 6f 6f 72 64 20 20 20 20 20 20 20 20 | x_coord | 000006b0 20 20 20 5c 20 41 64 64 20 78 5f 73 74 65 70 20 | \ Add x_step | 000006c0 74 6f 20 63 75 72 72 65 6e 74 20 78 5f 63 6f 6f |to current x_coo| 000006d0 72 64 0d 03 70 11 4c 44 41 20 78 5f 63 6f 6f 72 |rd..p.LDA x_coor| 000006e0 64 2b 31 0d 03 7a 0a 41 44 43 20 23 30 0d 03 84 |d+1..z.ADC #0...| 000006f0 11 53 54 41 20 78 5f 63 6f 6f 72 64 2b 31 0d 03 |.STA x_coord+1..| 00000700 8e 41 43 4d 50 20 23 34 20 20 20 20 20 20 20 20 |.ACMP #4 | 00000710 20 20 20 20 20 20 20 20 5c 20 43 68 65 63 6b 20 | \ Check | 00000720 69 66 20 77 65 20 68 61 76 65 20 65 78 63 65 65 |if we have excee| 00000730 64 65 64 20 31 30 32 33 20 28 26 33 46 46 29 0d |ded 1023 (&3FF).| 00000740 03 98 0e 42 4e 45 20 78 5f 6c 6f 6f 70 0d 03 a2 |...BNE x_loop...| 00000750 05 20 0d 03 ac 07 52 54 53 0d 03 b6 05 20 0d 03 |. ....RTS.... ..| 00000760 c0 0f 2e 6d 61 6e 64 65 6c 62 72 6f 74 0d 03 ca |...mandelbrot...| 00000770 05 20 0d 03 d4 3e 5c 20 20 46 6f 72 20 65 61 63 |. ...>\ For eac| 00000780 68 20 73 63 72 65 65 6e 20 70 6f 69 6e 74 20 77 |h screen point w| 00000790 65 20 63 6f 6d 70 75 74 65 20 68 6f 77 20 6d 61 |e compute how ma| 000007a0 6e 79 20 69 74 65 72 61 74 69 6f 6e 73 20 6f 66 |ny iterations of| 000007b0 0d 03 de 3e 5c 20 20 7a 3d 7a 5e 32 2b 63 20 28 |...>\ z=z^2+c (| 000007c0 77 68 65 72 65 20 7a 20 61 6e 64 20 63 20 61 72 |where z and c ar| 000007d0 65 20 63 6f 6d 70 6c 65 78 29 20 69 74 20 74 61 |e complex) it ta| 000007e0 6b 65 73 20 66 6f 72 20 7c 7a 7c 20 74 6f 0d 03 |kes for |z| to..| 000007f0 e8 36 5c 20 20 65 78 63 65 65 64 20 32 20 77 69 |.6\ exceed 2 wi| 00000800 74 68 20 61 20 6c 69 6d 69 74 20 6f 66 20 33 32 |th a limit of 32| 00000810 20 69 74 65 72 61 74 69 6f 6e 73 20 69 6e 20 74 | iterations in t| 00000820 6f 74 61 6c 0d 03 f2 36 5c 20 20 54 68 65 20 4d |otal...6\ The M| 00000830 61 6e 64 65 6c 62 72 6f 74 20 73 65 74 20 65 78 |andelbrot set ex| 00000840 69 73 74 73 20 77 69 74 68 69 6e 20 74 68 65 73 |ists within thes| 00000850 65 20 62 6f 75 6e 64 73 20 2d 0d 03 fc 34 5c 20 |e bounds -...4\ | 00000860 20 52 65 61 6c 20 3d 20 2d 32 2e 32 35 20 74 6f | Real = -2.25 to| 00000870 20 30 2e 37 35 20 20 49 6d 61 67 69 6e 61 72 79 | 0.75 Imaginary| 00000880 20 3d 20 2d 31 2e 35 20 74 6f 20 31 2e 35 0d 04 | = -1.5 to 1.5..| 00000890 06 43 5c 20 20 54 68 75 73 20 2e 2e 2e 2e 20 68 |.C\ Thus .... h| 000008a0 5f 69 6e 63 3d 76 5f 69 6e 63 3d 33 2f 31 30 32 |_inc=v_inc=3/102| 000008b0 34 20 77 68 69 63 68 20 69 73 20 26 43 30 20 69 |4 which is &C0 i| 000008c0 6e 20 6f 75 72 20 66 69 78 65 64 20 70 6f 69 6e |n our fixed poin| 000008d0 74 0d 04 10 05 20 0d 04 1a 3f 5c 20 20 46 69 72 |t.... ...?\ Fir| 000008e0 73 74 20 63 6f 6d 70 75 74 65 20 76 61 6c 75 65 |st compute value| 000008f0 20 6f 66 20 63 5f 72 65 61 6c 20 28 3d 72 65 61 | of c_real (=rea| 00000900 6c 28 6c 6f 77 29 2b 78 5f 63 6f 6f 72 64 2a 68 |l(low)+x_coord*h| 00000910 5f 69 6e 63 29 0d 04 24 05 20 0d 04 2e 0a 4c 44 |_inc)..$. ....LD| 00000920 58 20 23 34 0d 04 38 05 20 0d 04 42 38 2e 74 72 |X #4..8. ..B8.tr| 00000930 61 6e 73 66 65 72 5f 68 69 6e 63 5f 6c 6f 6f 70 |ansfer_hinc_loop| 00000940 20 20 20 5c 20 4d 6f 76 65 20 68 5f 69 6e 63 20 | \ Move h_inc | 00000950 69 6e 74 6f 20 6d 75 6c 74 69 70 6c 69 63 61 6e |into multiplican| 00000960 64 0d 04 4c 05 20 0d 04 56 43 4c 44 41 20 68 5f |d..L. ..VCLDA h_| 00000970 69 6e 63 2d 31 2c 20 58 20 20 20 20 20 20 20 20 |inc-1, X | 00000980 5c 20 4f 66 66 73 65 74 20 66 72 6f 6d 20 61 64 |\ Offset from ad| 00000990 64 72 65 73 73 2d 31 20 73 6f 20 77 65 20 63 61 |dress-1 so we ca| 000009a0 6e 20 75 73 65 20 42 4e 45 0d 04 60 19 53 54 41 |n use BNE..`.STA| 000009b0 20 6d 75 6c 74 69 70 6c 69 63 61 6e 64 2d 31 2c | multiplicand-1,| 000009c0 20 58 0d 04 6a 07 44 45 58 0d 04 74 1a 42 4e 45 | X..j.DEX..t.BNE| 000009d0 20 74 72 61 6e 73 66 65 72 5f 68 69 6e 63 5f 6c | transfer_hinc_l| 000009e0 6f 6f 70 0d 04 7e 05 20 0d 04 88 38 4c 44 41 20 |oop..~. ...8LDA | 000009f0 78 5f 63 6f 6f 72 64 20 20 20 20 20 20 20 20 20 |x_coord | 00000a00 20 20 5c 20 4d 6f 76 65 20 78 5f 63 6f 6f 72 64 | \ Move x_coord| 00000a10 20 69 6e 74 6f 20 6d 75 6c 74 69 70 6c 69 65 72 | into multiplier| 00000a20 0d 04 92 14 53 54 41 20 6d 75 6c 74 69 70 6c 69 |....STA multipli| 00000a30 65 72 2b 32 0d 04 9c 11 4c 44 41 20 78 5f 63 6f |er+2....LDA x_co| 00000a40 6f 72 64 2b 31 0d 04 a6 14 53 54 41 20 6d 75 6c |ord+1....STA mul| 00000a50 74 69 70 6c 69 65 72 2b 33 0d 04 b0 18 4a 53 52 |tiplier+3....JSR| 00000a60 20 66 69 78 65 64 5f 70 6f 69 6e 74 5f 6d 75 6c | fixed_point_mul| 00000a70 74 0d 04 ba 05 20 0d 04 c4 0a 4c 44 58 20 23 34 |t.... ....LDX #4| 00000a80 0d 04 ce 05 20 0d 04 d8 18 2e 74 72 61 6e 73 66 |.... .....transf| 00000a90 65 72 5f 63 72 65 61 6c 5f 6c 6f 6f 70 0d 04 e2 |er_creal_loop...| 00000aa0 05 20 0d 04 ec 14 4c 44 41 20 66 78 70 5f 72 65 |. ....LDA fxp_re| 00000ab0 73 2d 31 2c 20 58 0d 04 f6 13 53 54 41 20 63 5f |s-1, X....STA c_| 00000ac0 72 65 61 6c 2d 31 2c 20 58 0d 05 00 07 44 45 58 |real-1, X....DEX| 00000ad0 0d 05 0a 1b 42 4e 45 20 74 72 61 6e 73 66 65 72 |....BNE transfer| 00000ae0 5f 63 72 65 61 6c 5f 6c 6f 6f 70 0d 05 14 05 20 |_creal_loop.... | 00000af0 0d 05 1e 41 4c 44 41 20 23 26 43 30 20 20 20 20 |...ALDA #&C0 | 00000b00 20 20 20 20 20 20 20 20 20 20 5c 20 41 64 64 20 | \ Add | 00000b10 2d 32 2e 32 35 2c 20 3d 20 26 46 46 46 44 43 30 |-2.25, = &FFFDC0| 00000b20 30 30 20 69 6e 20 66 69 78 65 64 20 70 6f 69 6e |00 in fixed poin| 00000b30 74 0d 05 28 07 43 4c 43 0d 05 32 10 41 44 43 20 |t..(.CLC..2.ADC | 00000b40 63 5f 72 65 61 6c 2b 31 0d 05 3c 10 53 54 41 20 |c_real+1..<.STA | 00000b50 63 5f 72 65 61 6c 2b 31 0d 05 46 0c 4c 44 41 20 |c_real+1..F.LDA | 00000b60 23 26 46 44 0d 05 50 10 41 44 43 20 63 5f 72 65 |#&FD..P.ADC c_re| 00000b70 61 6c 2b 32 0d 05 5a 10 53 54 41 20 63 5f 72 65 |al+2..Z.STA c_re| 00000b80 61 6c 2b 32 0d 05 64 0c 4c 44 41 20 23 26 46 46 |al+2..d.LDA #&FF| 00000b90 0d 05 6e 10 41 44 43 20 63 5f 72 65 61 6c 2b 33 |..n.ADC c_real+3| 00000ba0 0d 05 78 10 53 54 41 20 63 5f 72 65 61 6c 2b 33 |..x.STA c_real+3| 00000bb0 0d 05 82 05 20 0d 05 8c 3e 5c 20 20 54 68 65 6e |.... ...>\ Then| 00000bc0 20 63 6f 6d 70 75 74 65 20 76 61 6c 75 65 20 6f | compute value o| 00000bd0 66 20 63 5f 69 6d 61 67 20 28 3d 69 6d 61 67 28 |f c_imag (=imag(| 00000be0 6c 6f 77 29 2b 79 5f 63 6f 6f 72 64 2a 76 5f 69 |low)+y_coord*v_i| 00000bf0 6e 63 29 0d 05 96 05 20 0d 05 a0 0a 4c 44 58 20 |nc).... ....LDX | 00000c00 23 34 0d 05 aa 05 20 0d 05 b4 17 2e 74 72 61 6e |#4.... .....tran| 00000c10 73 66 65 72 5f 76 69 6e 63 5f 6c 6f 6f 70 0d 05 |sfer_vinc_loop..| 00000c20 be 05 20 0d 05 c8 12 4c 44 41 20 76 5f 69 6e 63 |.. ....LDA v_inc| 00000c30 2d 31 2c 20 58 0d 05 d2 19 53 54 41 20 6d 75 6c |-1, X....STA mul| 00000c40 74 69 70 6c 69 63 61 6e 64 2d 31 2c 20 58 0d 05 |tiplicand-1, X..| 00000c50 dc 07 44 45 58 0d 05 e6 1a 42 4e 45 20 74 72 61 |..DEX....BNE tra| 00000c60 6e 73 66 65 72 5f 76 69 6e 63 5f 6c 6f 6f 70 0d |nsfer_vinc_loop.| 00000c70 05 f0 05 20 0d 05 fa 0f 4c 44 41 20 79 5f 63 6f |... ....LDA y_co| 00000c80 6f 72 64 0d 06 04 14 53 54 41 20 6d 75 6c 74 69 |ord....STA multi| 00000c90 70 6c 69 65 72 2b 32 0d 06 0e 11 4c 44 41 20 79 |plier+2....LDA y| 00000ca0 5f 63 6f 6f 72 64 2b 31 0d 06 18 14 53 54 41 20 |_coord+1....STA | 00000cb0 6d 75 6c 74 69 70 6c 69 65 72 2b 33 0d 06 22 18 |multiplier+3..".| 00000cc0 4a 53 52 20 66 69 78 65 64 5f 70 6f 69 6e 74 5f |JSR fixed_point_| 00000cd0 6d 75 6c 74 0d 06 2c 05 20 0d 06 36 0a 4c 44 58 |mult..,. ..6.LDX| 00000ce0 20 23 34 0d 06 40 05 20 0d 06 4a 18 2e 74 72 61 | #4..@. ..J..tra| 00000cf0 6e 73 66 65 72 5f 63 69 6d 61 67 5f 6c 6f 6f 70 |nsfer_cimag_loop| 00000d00 0d 06 54 05 20 0d 06 5e 14 4c 44 41 20 66 78 70 |..T. ..^.LDA fxp| 00000d10 5f 72 65 73 2d 31 2c 20 58 0d 06 68 13 53 54 41 |_res-1, X..h.STA| 00000d20 20 63 5f 69 6d 61 67 2d 31 2c 20 58 0d 06 72 07 | c_imag-1, X..r.| 00000d30 44 45 58 0d 06 7c 1b 42 4e 45 20 74 72 61 6e 73 |DEX..|.BNE trans| 00000d40 66 65 72 5f 63 69 6d 61 67 5f 6c 6f 6f 70 0d 06 |fer_cimag_loop..| 00000d50 86 05 20 0d 06 90 3e 4c 44 41 20 23 26 38 30 20 |.. ...>LDA #&80 | 00000d60 20 20 20 20 20 20 20 20 20 20 20 20 20 5c 20 41 | \ A| 00000d70 64 64 20 2d 31 2e 35 20 3d 20 26 46 46 46 45 38 |dd -1.5 = &FFFE8| 00000d80 30 30 20 69 6e 20 66 69 78 65 64 20 70 6f 69 6e |00 in fixed poin| 00000d90 74 0d 06 9a 07 43 4c 43 0d 06 a4 10 41 44 43 20 |t....CLC....ADC | 00000da0 63 5f 69 6d 61 67 2b 31 0d 06 ae 10 53 54 41 20 |c_imag+1....STA | 00000db0 63 5f 69 6d 61 67 2b 31 0d 06 b8 0c 4c 44 41 20 |c_imag+1....LDA | 00000dc0 23 26 46 45 0d 06 c2 10 41 44 43 20 63 5f 69 6d |#&FE....ADC c_im| 00000dd0 61 67 2b 32 0d 06 cc 10 53 54 41 20 63 5f 69 6d |ag+2....STA c_im| 00000de0 61 67 2b 32 0d 06 d6 0c 4c 44 41 20 23 26 46 46 |ag+2....LDA #&FF| 00000df0 0d 06 e0 10 41 44 43 20 63 5f 69 6d 61 67 2b 33 |....ADC c_imag+3| 00000e00 0d 06 ea 10 53 54 41 20 63 5f 69 6d 61 67 2b 33 |....STA c_imag+3| 00000e10 0d 06 f4 05 20 0d 06 fe 39 4c 44 41 20 23 69 74 |.... ...9LDA #it| 00000e20 65 72 61 74 69 6f 6e 73 20 20 20 20 20 20 20 5c |erations \| 00000e30 20 49 6e 69 74 69 61 6c 69 73 65 20 69 74 65 72 | Initialise iter| 00000e40 61 74 69 6f 6e 73 20 63 6f 75 6e 74 65 72 0d 07 |ations counter..| 00000e50 08 0d 53 54 41 20 63 6f 75 6e 74 0d 07 12 0a 4c |..STA count....L| 00000e60 44 41 20 23 30 0d 07 1c 0a 4c 44 58 20 23 34 0d |DA #0....LDX #4.| 00000e70 07 26 05 20 0d 07 30 30 2e 72 65 73 65 74 5f 78 |.&. ..00.reset_x| 00000e80 79 5f 6c 6f 6f 70 20 20 20 20 20 20 20 20 5c 20 |y_loop \ | 00000e90 43 6c 65 61 72 20 78 20 79 20 77 6f 72 6b 20 73 |Clear x y work s| 00000ea0 70 61 63 65 0d 07 3a 05 20 0d 07 44 0e 53 54 41 |pace..:. ..D.STA| 00000eb0 20 78 2d 31 2c 20 58 0d 07 4e 0e 53 54 41 20 79 | x-1, X..N.STA y| 00000ec0 2d 31 2c 20 58 0d 07 58 07 44 45 58 0d 07 62 15 |-1, X..X.DEX..b.| 00000ed0 42 4e 45 20 72 65 73 65 74 5f 78 79 5f 6c 6f 6f |BNE reset_xy_loo| 00000ee0 70 0d 07 6c 05 20 0d 07 76 39 2e 6d 61 6e 64 65 |p..l. ..v9.mande| 00000ef0 6c 62 72 6f 74 5f 6c 6f 6f 70 20 20 20 20 20 20 |lbrot_loop | 00000f00 5c 20 4d 61 69 6e 20 6c 6f 6f 70 20 70 65 72 66 |\ Main loop perf| 00000f10 6f 72 6d 73 20 69 74 65 72 61 74 69 6f 6e 73 0d |orms iterations.| 00000f20 07 80 05 20 0d 07 8a 41 5c 20 20 47 65 74 20 73 |... ...A\ Get s| 00000f30 71 75 61 72 65 73 20 6f 66 20 78 20 61 6e 64 20 |quares of x and | 00000f40 79 20 62 79 20 70 75 74 74 69 6e 67 20 78 20 69 |y by putting x i| 00000f50 6e 74 6f 20 62 6f 74 68 20 6d 75 6c 74 69 70 6c |nto both multipl| 00000f60 69 63 61 6e 64 0d 07 94 3a 5c 20 20 61 6e 64 20 |icand...:\ and | 00000f70 6d 75 6c 74 69 70 6c 69 65 72 20 61 6e 64 20 63 |multiplier and c| 00000f80 61 6c 6c 69 6e 67 20 74 68 65 20 66 69 78 65 64 |alling the fixed| 00000f90 20 70 6f 69 6e 74 20 6d 75 6c 74 69 70 6c 79 0d | point multiply.| 00000fa0 07 9e 43 5c 20 20 72 6f 75 74 69 6e 65 2e 20 20 |..C\ routine. | 00000fb0 53 74 6f 72 65 20 69 6e 20 73 70 61 63 65 20 6c |Store in space l| 00000fc0 61 62 65 6c 6c 65 64 20 78 5f 73 71 75 61 72 65 |abelled x_square| 00000fd0 64 20 61 6e 64 20 72 65 70 65 61 74 20 66 6f 72 |d and repeat for| 00000fe0 20 79 0d 07 a8 05 20 0d 07 b2 0a 4c 44 58 20 23 | y.... ....LDX #| 00000ff0 34 0d 07 bc 05 20 0d 07 c6 1a 2e 78 5f 73 71 75 |4.... .....x_squ| 00001000 61 72 65 5f 70 72 65 70 61 72 65 5f 6c 6f 6f 70 |are_prepare_loop| 00001010 0d 07 d0 05 20 0d 07 da 0e 4c 44 41 20 78 2d 31 |.... ....LDA x-1| 00001020 2c 20 58 0d 07 e4 19 53 54 41 20 6d 75 6c 74 69 |, X....STA multi| 00001030 70 6c 69 63 61 6e 64 2d 31 2c 20 58 0d 07 ee 17 |plicand-1, X....| 00001040 53 54 41 20 6d 75 6c 74 69 70 6c 69 65 72 2d 31 |STA multiplier-1| 00001050 2c 20 58 0d 07 f8 07 44 45 58 0d 08 02 1d 42 4e |, X....DEX....BN| 00001060 45 20 78 5f 73 71 75 61 72 65 5f 70 72 65 70 61 |E x_square_prepa| 00001070 72 65 5f 6c 6f 6f 70 0d 08 0c 05 20 0d 08 16 18 |re_loop.... ....| 00001080 4a 53 52 20 66 69 78 65 64 5f 70 6f 69 6e 74 5f |JSR fixed_point_| 00001090 6d 75 6c 74 0d 08 20 05 20 0d 08 2a 0a 4c 44 58 |mult.. . ..*.LDX| 000010a0 20 23 34 0d 08 34 05 20 0d 08 3e 1a 2e 78 5f 73 | #4..4. ..>..x_s| 000010b0 71 75 61 72 65 5f 72 65 63 6f 76 65 72 5f 6c 6f |quare_recover_lo| 000010c0 6f 70 0d 08 48 05 20 0d 08 52 14 4c 44 41 20 66 |op..H. ..R.LDA f| 000010d0 78 70 5f 72 65 73 2d 31 2c 20 58 0d 08 5c 16 53 |xp_res-1, X..\.S| 000010e0 54 41 20 78 5f 73 71 75 61 72 65 64 2d 31 2c 20 |TA x_squared-1, | 000010f0 58 0d 08 66 07 44 45 58 0d 08 70 1d 42 4e 45 20 |X..f.DEX..p.BNE | 00001100 78 5f 73 71 75 61 72 65 5f 72 65 63 6f 76 65 72 |x_square_recover| 00001110 5f 6c 6f 6f 70 0d 08 7a 0a 4c 44 58 20 23 34 0d |_loop..z.LDX #4.| 00001120 08 84 05 20 0d 08 8e 1a 2e 79 5f 73 71 75 61 72 |... .....y_squar| 00001130 65 5f 70 72 65 70 61 72 65 5f 6c 6f 6f 70 0d 08 |e_prepare_loop..| 00001140 98 05 20 0d 08 a2 0e 4c 44 41 20 79 2d 31 2c 20 |.. ....LDA y-1, | 00001150 58 0d 08 ac 19 53 54 41 20 6d 75 6c 74 69 70 6c |X....STA multipl| 00001160 69 63 61 6e 64 2d 31 2c 20 58 0d 08 b6 17 53 54 |icand-1, X....ST| 00001170 41 20 6d 75 6c 74 69 70 6c 69 65 72 2d 31 2c 20 |A multiplier-1, | 00001180 58 0d 08 c0 07 44 45 58 0d 08 ca 1d 42 4e 45 20 |X....DEX....BNE | 00001190 79 5f 73 71 75 61 72 65 5f 70 72 65 70 61 72 65 |y_square_prepare| 000011a0 5f 6c 6f 6f 70 0d 08 d4 05 20 0d 08 de 18 4a 53 |_loop.... ....JS| 000011b0 52 20 66 69 78 65 64 5f 70 6f 69 6e 74 5f 6d 75 |R fixed_point_mu| 000011c0 6c 74 0d 08 e8 05 20 0d 08 f2 0a 4c 44 58 20 23 |lt.... ....LDX #| 000011d0 34 0d 08 fc 05 20 0d 09 06 1a 2e 79 5f 73 71 75 |4.... .....y_squ| 000011e0 61 72 65 5f 72 65 63 6f 76 65 72 5f 6c 6f 6f 70 |are_recover_loop| 000011f0 0d 09 10 05 20 0d 09 1a 14 4c 44 41 20 66 78 70 |.... ....LDA fxp| 00001200 5f 72 65 73 2d 31 2c 20 58 0d 09 24 16 53 54 41 |_res-1, X..$.STA| 00001210 20 79 5f 73 71 75 61 72 65 64 2d 31 2c 20 58 0d | y_squared-1, X.| 00001220 09 2e 07 44 45 58 0d 09 38 1d 42 4e 45 20 79 5f |...DEX..8.BNE y_| 00001230 73 71 75 61 72 65 5f 72 65 63 6f 76 65 72 5f 6c |square_recover_l| 00001240 6f 6f 70 0d 09 42 05 20 0d 09 4c 31 5c 20 20 4e |oop..B. ..L1\ N| 00001250 6f 77 20 63 61 6c 63 75 6c 61 74 65 20 73 69 7a |ow calculate siz| 00001260 65 20 28 3d 20 78 5f 73 71 75 61 72 65 64 2b 79 |e (= x_squared+y| 00001270 5f 73 71 75 61 72 65 64 29 0d 09 56 05 20 0d 09 |_squared)..V. ..| 00001280 60 07 43 4c 43 0d 09 6a 11 4c 44 41 20 78 5f 73 |`.CLC..j.LDA x_s| 00001290 71 75 61 72 65 64 0d 09 74 11 41 44 43 20 79 5f |quared..t.ADC y_| 000012a0 73 71 75 61 72 65 64 0d 09 7e 0c 53 54 41 20 73 |squared..~.STA s| 000012b0 69 7a 65 0d 09 88 13 4c 44 41 20 78 5f 73 71 75 |ize....LDA x_squ| 000012c0 61 72 65 64 2b 31 0d 09 92 13 41 44 43 20 79 5f |ared+1....ADC y_| 000012d0 73 71 75 61 72 65 64 2b 31 0d 09 9c 0e 53 54 41 |squared+1....STA| 000012e0 20 73 69 7a 65 2b 31 0d 09 a6 13 4c 44 41 20 78 | size+1....LDA x| 000012f0 5f 73 71 75 61 72 65 64 2b 32 0d 09 b0 13 41 44 |_squared+2....AD| 00001300 43 20 79 5f 73 71 75 61 72 65 64 2b 32 0d 09 ba |C y_squared+2...| 00001310 0e 53 54 41 20 73 69 7a 65 2b 32 0d 09 c4 13 4c |.STA size+2....L| 00001320 44 41 20 78 5f 73 71 75 61 72 65 64 2b 33 0d 09 |DA x_squared+3..| 00001330 ce 13 41 44 43 20 79 5f 73 71 75 61 72 65 64 2b |..ADC y_squared+| 00001340 33 0d 09 d8 0e 53 54 41 20 73 69 7a 65 2b 33 0d |3....STA size+3.| 00001350 09 e2 05 20 0d 09 ec 1c 5c 20 20 4e 65 77 20 79 |... ....\ New y| 00001360 20 69 73 20 32 2a 78 2a 79 2b 63 5f 69 6d 61 67 | is 2*x*y+c_imag| 00001370 0d 09 f6 05 20 0d 0a 00 0a 4c 44 58 20 23 34 0d |.... ....LDX #4.| 00001380 0a 0a 05 20 0d 0a 14 19 2e 74 72 61 6e 73 66 65 |... .....transfe| 00001390 72 5f 78 79 5f 66 6f 72 5f 6d 75 6c 74 0d 0a 1e |r_xy_for_mult...| 000013a0 05 20 0d 0a 28 0e 4c 44 41 20 78 2d 31 2c 20 58 |. ..(.LDA x-1, X| 000013b0 0d 0a 32 17 53 54 41 20 6d 75 6c 74 69 70 6c 69 |..2.STA multipli| 000013c0 65 72 2d 31 2c 20 58 0d 0a 3c 0e 4c 44 41 20 79 |er-1, X..<.LDA y| 000013d0 2d 31 2c 20 58 0d 0a 46 19 53 54 41 20 6d 75 6c |-1, X..F.STA mul| 000013e0 74 69 70 6c 69 63 61 6e 64 2d 31 2c 20 58 0d 0a |tiplicand-1, X..| 000013f0 50 07 44 45 58 0d 0a 5a 1c 42 4e 45 20 74 72 61 |P.DEX..Z.BNE tra| 00001400 6e 73 66 65 72 5f 78 79 5f 66 6f 72 5f 6d 75 6c |nsfer_xy_for_mul| 00001410 74 0d 0a 64 05 20 0d 0a 6e 18 4a 53 52 20 66 69 |t..d. ..n.JSR fi| 00001420 78 65 64 5f 70 6f 69 6e 74 5f 6d 75 6c 74 0d 0a |xed_point_mult..| 00001430 78 05 20 0d 0a 82 0a 4c 44 58 20 23 34 0d 0a 8c |x. ....LDX #4...| 00001440 05 20 0d 0a 96 1b 2e 74 72 61 6e 73 66 65 72 5f |. .....transfer_| 00001450 78 79 5f 61 66 74 65 72 5f 6d 75 6c 74 0d 0a a0 |xy_after_mult...| 00001460 05 20 0d 0a aa 14 4c 44 41 20 66 78 70 5f 72 65 |. ....LDA fxp_re| 00001470 73 2d 31 2c 20 58 0d 0a b4 0e 53 54 41 20 79 2d |s-1, X....STA y-| 00001480 31 2c 20 58 0d 0a be 07 44 45 58 0d 0a c8 1e 42 |1, X....DEX....B| 00001490 4e 45 20 74 72 61 6e 73 66 65 72 5f 78 79 5f 61 |NE transfer_xy_a| 000014a0 66 74 65 72 5f 6d 75 6c 74 0d 0a d2 05 20 0d 0a |fter_mult.... ..| 000014b0 dc 28 5c 20 20 4d 75 6c 74 69 70 6c 79 20 62 79 |.(\ Multiply by| 000014c0 20 32 20 28 69 2e 65 2e 20 61 20 73 68 69 66 74 | 2 (i.e. a shift| 000014d0 20 6c 65 66 74 29 0d 0a e6 05 20 0d 0a f0 09 41 | left).... ....A| 000014e0 53 4c 20 79 0d 0a fa 0b 52 4f 4c 20 79 2b 31 0d |SL y....ROL y+1.| 000014f0 0b 04 0b 52 4f 4c 20 79 2b 32 0d 0b 0e 0b 52 4f |...ROL y+2....RO| 00001500 4c 20 79 2b 33 0d 0b 18 05 20 0d 0b 22 3b 5c 20 |L y+3.... ..";\ | 00001510 20 54 72 61 70 20 66 6f 72 20 73 69 7a 65 20 62 | Trap for size b| 00001520 79 20 63 68 65 63 6b 69 6e 67 20 62 79 74 65 20 |y checking byte | 00001530 32 20 6f 66 20 66 69 78 65 64 20 70 6f 69 6e 74 |2 of fixed point| 00001540 20 77 6f 72 64 0d 0b 2c 32 5c 20 20 44 6f 6e 65 | word..,2\ Done| 00001550 20 69 6e 20 6f 64 64 20 70 6c 61 63 65 20 74 6f | in odd place to| 00001560 20 6f 70 74 69 6d 69 73 65 20 62 72 61 6e 63 68 | optimise branch| 00001570 20 6c 65 6e 67 74 68 0d 0b 36 05 20 0d 0b 40 0e | length..6. ..@.| 00001580 4c 44 41 20 73 69 7a 65 2b 32 0d 0b 4a 13 43 4d |LDA size+2..J.CM| 00001590 50 20 23 73 69 7a 65 5f 6c 69 6d 69 74 0d 0b 54 |P #size_limit..T| 000015a0 10 42 43 53 20 73 69 7a 65 5f 6f 75 74 0d 0b 5e |.BCS size_out..^| 000015b0 05 20 0d 0b 68 2e 5c 20 20 52 65 74 75 72 6e 69 |. ..h.\ Returni| 000015c0 6e 67 20 74 6f 20 79 20 63 61 6c 63 75 6c 61 74 |ng to y calculat| 000015d0 69 6f 6e 20 2d 20 41 64 64 20 63 5f 69 6d 61 67 |ion - Add c_imag| 000015e0 0d 0b 72 05 20 0d 0b 7c 07 43 4c 43 0d 0b 86 09 |..r. ..|.CLC....| 000015f0 4c 44 41 20 79 0d 0b 90 0e 41 44 43 20 63 5f 69 |LDA y....ADC c_i| 00001600 6d 61 67 0d 0b 9a 09 53 54 41 20 79 0d 0b a4 0b |mag....STA y....| 00001610 4c 44 41 20 79 2b 31 0d 0b ae 10 41 44 43 20 63 |LDA y+1....ADC c| 00001620 5f 69 6d 61 67 2b 31 0d 0b b8 0b 53 54 41 20 79 |_imag+1....STA y| 00001630 2b 31 0d 0b c2 0b 4c 44 41 20 79 2b 32 0d 0b cc |+1....LDA y+2...| 00001640 10 41 44 43 20 63 5f 69 6d 61 67 2b 32 0d 0b d6 |.ADC c_imag+2...| 00001650 0b 53 54 41 20 79 2b 32 0d 0b e0 0b 4c 44 41 20 |.STA y+2....LDA | 00001660 79 2b 33 0d 0b ea 10 41 44 43 20 63 5f 69 6d 61 |y+3....ADC c_ima| 00001670 67 2b 33 0d 0b f4 0b 53 54 41 20 79 2b 33 0d 0b |g+3....STA y+3..| 00001680 fe 05 20 0d 0c 08 33 5c 20 20 4e 65 77 20 76 61 |.. ...3\ New va| 00001690 6c 75 65 20 6f 66 20 78 20 69 73 20 78 5f 73 71 |lue of x is x_sq| 000016a0 75 61 72 65 64 2d 79 5f 73 71 75 61 72 65 64 2b |uared-y_squared+| 000016b0 63 5f 72 65 61 6c 0d 0c 12 05 20 0d 0c 1c 07 53 |c_real.... ....S| 000016c0 45 43 0d 0c 26 11 4c 44 41 20 78 5f 73 71 75 61 |EC..&.LDA x_squa| 000016d0 72 65 64 0d 0c 30 11 53 42 43 20 79 5f 73 71 75 |red..0.SBC y_squ| 000016e0 61 72 65 64 0d 0c 3a 09 53 54 41 20 78 0d 0c 44 |ared..:.STA x..D| 000016f0 13 4c 44 41 20 78 5f 73 71 75 61 72 65 64 2b 31 |.LDA x_squared+1| 00001700 0d 0c 4e 13 53 42 43 20 79 5f 73 71 75 61 72 65 |..N.SBC y_square| 00001710 64 2b 31 0d 0c 58 0b 53 54 41 20 78 2b 31 0d 0c |d+1..X.STA x+1..| 00001720 62 13 4c 44 41 20 78 5f 73 71 75 61 72 65 64 2b |b.LDA x_squared+| 00001730 32 0d 0c 6c 13 53 42 43 20 79 5f 73 71 75 61 72 |2..l.SBC y_squar| 00001740 65 64 2b 32 0d 0c 76 0b 53 54 41 20 78 2b 32 0d |ed+2..v.STA x+2.| 00001750 0c 80 13 4c 44 41 20 78 5f 73 71 75 61 72 65 64 |...LDA x_squared| 00001760 2b 33 0d 0c 8a 13 53 42 43 20 79 5f 73 71 75 61 |+3....SBC y_squa| 00001770 72 65 64 2b 33 0d 0c 94 0b 53 54 41 20 78 2b 33 |red+3....STA x+3| 00001780 0d 0c 9e 05 20 0d 0c a8 07 43 4c 43 0d 0c b2 09 |.... ....CLC....| 00001790 4c 44 41 20 78 0d 0c bc 0e 41 44 43 20 63 5f 72 |LDA x....ADC c_r| 000017a0 65 61 6c 0d 0c c6 09 53 54 41 20 78 0d 0c d0 0b |eal....STA x....| 000017b0 4c 44 41 20 78 2b 31 0d 0c da 10 41 44 43 20 63 |LDA x+1....ADC c| 000017c0 5f 72 65 61 6c 2b 31 0d 0c e4 0b 53 54 41 20 78 |_real+1....STA x| 000017d0 2b 31 0d 0c ee 0b 4c 44 41 20 78 2b 32 0d 0c f8 |+1....LDA x+2...| 000017e0 10 41 44 43 20 63 5f 72 65 61 6c 2b 32 0d 0d 02 |.ADC c_real+2...| 000017f0 0b 53 54 41 20 78 2b 32 0d 0d 0c 0b 4c 44 41 20 |.STA x+2....LDA | 00001800 78 2b 33 0d 0d 16 10 41 44 43 20 63 5f 72 65 61 |x+3....ADC c_rea| 00001810 6c 2b 33 0d 0d 20 0b 53 54 41 20 78 2b 33 0d 0d |l+3.. .STA x+3..| 00001820 2a 05 20 0d 0d 34 34 5c 20 20 54 72 61 70 20 66 |*. ..44\ Trap f| 00001830 6f 72 20 6d 61 78 69 6d 75 6d 20 6e 75 6d 62 65 |or maximum numbe| 00001840 72 20 6f 66 20 69 74 65 72 61 74 69 6f 6e 73 20 |r of iterations | 00001850 61 6c 6c 6f 77 65 64 0d 0d 3e 05 20 0d 0d 48 0d |allowed..>. ..H.| 00001860 44 45 43 20 63 6f 75 6e 74 0d 0d 52 11 42 45 51 |DEC count..R.BEQ| 00001870 20 63 6f 75 6e 74 5f 6f 75 74 0d 0d 5c 05 20 0d | count_out..\. .| 00001880 0d 66 17 4a 4d 50 20 6d 61 6e 64 65 6c 62 72 6f |.f.JMP mandelbro| 00001890 74 5f 6c 6f 6f 70 0d 0d 70 05 20 0d 0d 7a 43 2e |t_loop..p. ..zC.| 000018a0 73 69 7a 65 5f 6f 75 74 20 20 20 20 20 20 20 20 |size_out | 000018b0 20 20 20 20 20 5c 20 49 66 20 73 69 7a 65 20 65 | \ If size e| 000018c0 78 63 65 65 64 73 20 6c 69 6d 69 74 20 70 69 78 |xceeds limit pix| 000018d0 65 6c 20 69 73 20 63 6f 6c 6f 75 72 65 64 0d 0d |el is coloured..| 000018e0 84 05 20 0d 0d 8e 0b 4c 44 41 20 23 31 38 0d 0d |.. ....LDA #18..| 000018f0 98 0e 4a 53 52 20 6f 73 77 72 63 68 0d 0d a2 0a |..JSR oswrch....| 00001900 4c 44 41 20 23 30 0d 0d ac 0e 4a 53 52 20 6f 73 |LDA #0....JSR os| 00001910 77 72 63 68 0d 0d b6 0d 4c 44 41 20 63 6f 75 6e |wrch....LDA coun| 00001920 74 0d 0d c0 32 80 20 23 37 20 20 20 20 20 20 20 |t...2. #7 | 00001930 20 20 20 20 20 20 20 20 20 5c 20 47 69 76 65 73 | \ Gives| 00001940 20 76 61 6c 75 65 73 20 66 72 6f 6d 20 30 20 74 | values from 0 t| 00001950 6f 20 37 0d 0d ca 0e 4a 53 52 20 6f 73 77 72 63 |o 7....JSR oswrc| 00001960 68 0d 0d d4 07 52 54 53 0d 0d de 05 20 0d 0d e8 |h....RTS.... ...| 00001970 4c 2e 63 6f 75 6e 74 5f 6f 75 74 20 20 20 20 20 |L.count_out | 00001980 20 20 20 20 20 20 20 5c 20 49 66 20 77 65 20 72 | \ If we r| 00001990 65 61 63 68 20 69 74 65 72 61 74 69 6f 6e 73 20 |each iterations | 000019a0 6c 69 6d 69 74 20 74 68 65 6e 20 70 69 78 65 6c |limit then pixel| 000019b0 20 69 73 20 62 6c 61 63 6b 0d 0d f2 05 20 0d 0d | is black.... ..| 000019c0 fc 1d 4c 44 41 20 23 31 38 20 20 20 20 20 20 20 |..LDA #18 | 000019d0 20 20 20 20 20 20 20 20 5c 20 e6 0d 0e 06 0e 4a | \ .....J| 000019e0 53 52 20 6f 73 77 72 63 68 0d 0e 10 0a 4c 44 41 |SR oswrch....LDA| 000019f0 20 23 30 0d 0e 1a 0e 4a 53 52 20 6f 73 77 72 63 | #0....JSR oswrc| 00001a00 68 0d 0e 24 0e 4a 53 52 20 6f 73 77 72 63 68 0d |h..$.JSR oswrch.| 00001a10 0e 2e 07 52 54 53 0d 0e 38 05 20 0d 0e 42 1d 2e |...RTS..8. ..B..| 00001a20 78 5f 63 6f 6f 72 64 20 20 20 4f 50 54 20 20 20 |x_coord OPT | 00001a30 a4 45 51 55 57 28 30 29 0d 0e 4c 1d 2e 79 5f 63 |.EQUW(0)..L..y_c| 00001a40 6f 6f 72 64 20 20 20 4f 50 54 20 20 20 a4 45 51 |oord OPT .EQ| 00001a50 55 57 28 30 29 0d 0e 56 1d 2e 63 5f 72 65 61 6c |UW(0)..V..c_real| 00001a60 20 20 20 20 4f 50 54 20 20 20 a4 45 51 55 44 28 | OPT .EQUD(| 00001a70 30 29 0d 0e 60 1d 2e 63 5f 69 6d 61 67 20 20 20 |0)..`..c_imag | 00001a80 20 4f 50 54 20 20 20 a4 45 51 55 44 28 30 29 0d | OPT .EQUD(0).| 00001a90 0e 6a 1d 2e 63 6f 75 6e 74 20 20 20 20 20 4f 50 |.j..count OP| 00001aa0 54 20 20 20 a4 45 51 55 42 28 30 29 0d 0e 74 1d |T .EQUB(0)..t.| 00001ab0 2e 73 69 7a 65 20 20 20 20 20 20 4f 50 54 20 20 |.size OPT | 00001ac0 20 a4 45 51 55 44 28 30 29 0d 0e 7e 1d 2e 78 20 | .EQUD(0)..~..x | 00001ad0 20 20 20 20 20 20 20 20 4f 50 54 20 20 20 a4 45 | OPT .E| 00001ae0 51 55 44 28 30 29 0d 0e 88 1d 2e 79 20 20 20 20 |QUD(0).....y | 00001af0 20 20 20 20 20 4f 50 54 20 20 20 a4 45 51 55 44 | OPT .EQUD| 00001b00 28 30 29 0d 0e 92 1d 2e 78 5f 73 71 75 61 72 65 |(0).....x_square| 00001b10 64 20 4f 50 54 20 20 20 a4 45 51 55 44 28 30 29 |d OPT .EQUD(0)| 00001b20 0d 0e 9c 1d 2e 79 5f 73 71 75 61 72 65 64 20 4f |.....y_squared O| 00001b30 50 54 20 20 20 a4 45 51 55 44 28 30 29 0d 0e a6 |PT .EQUD(0)...| 00001b40 1f 2e 68 5f 69 6e 63 20 20 20 20 20 4f 50 54 20 |..h_inc OPT | 00001b50 20 20 a4 45 51 55 44 28 26 43 30 29 0d 0e b0 1f | .EQUD(&C0)....| 00001b60 2e 76 5f 69 6e 63 20 20 20 20 20 4f 50 54 20 20 |.v_inc OPT | 00001b70 20 a4 45 51 55 44 28 26 43 30 29 0d 0e ba 05 20 | .EQUD(&C0).... | 00001b80 0d 0e c4 15 2e 66 69 78 65 64 5f 70 6f 69 6e 74 |.....fixed_point| 00001b90 5f 6d 75 6c 74 0d 0e ce 05 20 0d 0e d8 39 5c 20 |_mult.... ...9\ | 00001ba0 20 41 73 73 75 6d 65 73 20 74 68 61 74 20 6e 75 | Assumes that nu| 00001bb0 6d 62 65 72 73 20 74 6f 20 62 65 20 6d 75 6c 74 |mbers to be mult| 00001bc0 69 70 6c 69 65 64 20 61 72 65 20 70 75 74 20 69 |iplied are put i| 00001bd0 6e 74 6f 0d 0e e2 35 5c 20 20 6d 75 6c 74 69 70 |nto...5\ multip| 00001be0 6c 69 63 61 6e 64 20 61 6e 64 20 6d 75 6c 74 69 |licand and multi| 00001bf0 70 6c 69 65 72 2e 20 20 70 70 77 73 20 69 73 20 |plier. ppws is | 00001c00 75 73 65 64 20 66 6f 72 0d 0e ec 39 5c 20 20 70 |used for...9\ p| 00001c10 61 72 74 69 61 6c 20 70 72 6f 64 75 63 74 2e 20 |artial product. | 00001c20 52 65 73 75 6c 74 20 69 73 20 70 75 74 20 69 6e |Result is put in| 00001c30 74 6f 20 6d 75 6c 74 69 70 6c 69 65 72 20 62 75 |to multiplier bu| 00001c40 74 0d 0e f6 3c 5c 20 20 72 65 61 64 20 66 72 6f |t...<\ read fro| 00001c50 6d 20 27 6d 75 6c 74 69 70 6c 69 65 72 20 2b 32 |m 'multiplier +2| 00001c60 27 20 28 27 66 78 70 5f 72 65 73 27 29 20 66 6f |' ('fxp_res') fo| 00001c70 72 20 66 69 78 65 64 20 70 6f 69 6e 74 0d 0f 00 |r fixed point...| 00001c80 3b 5c 20 20 57 6f 72 6b 73 70 61 63 65 20 69 73 |;\ Workspace is| 00001c90 20 69 6e 20 7a 65 72 6f 20 70 61 67 65 20 66 72 | in zero page fr| 00001ca0 6f 6d 20 26 37 30 20 73 6f 20 74 68 65 20 6c 61 |om &70 so the la| 00001cb0 62 65 6c 73 20 61 72 65 0d 0f 0a 34 5c 20 20 73 |bels are...4\ s| 00001cc0 65 74 20 75 73 69 6e 67 20 42 41 53 49 43 20 61 |et using BASIC a| 00001cd0 74 20 74 68 65 20 73 74 61 72 74 20 6f 66 20 74 |t the start of t| 00001ce0 68 65 20 61 73 73 65 6d 62 6c 65 72 0d 0f 14 05 |he assembler....| 00001cf0 20 0d 0f 1e 0a 4c 44 41 20 23 30 0d 0f 28 3b 53 | ....LDA #0..(;S| 00001d00 54 41 20 70 70 77 73 20 20 20 20 20 20 20 20 20 |TA ppws | 00001d10 20 20 20 20 20 5c 20 43 6c 65 61 72 20 70 61 72 | \ Clear par| 00001d20 74 69 61 6c 20 70 72 6f 64 75 63 74 20 77 6f 72 |tial product wor| 00001d30 6b 73 70 61 63 65 0d 0f 32 0e 53 54 41 20 70 70 |kspace..2.STA pp| 00001d40 77 73 2b 31 0d 0f 3c 0e 53 54 41 20 70 70 77 73 |ws+1..<.STA ppws| 00001d50 2b 32 0d 0f 46 0e 53 54 41 20 70 70 77 73 2b 33 |+2..F.STA ppws+3| 00001d60 0d 0f 50 0e 53 54 41 20 70 70 77 73 2b 34 0d 0f |..P.STA ppws+4..| 00001d70 5a 14 53 54 41 20 6d 75 6c 74 69 70 6c 69 65 72 |Z.STA multiplier| 00001d80 2b 34 0d 0f 64 16 53 54 41 20 6d 75 6c 74 69 70 |+4..d.STA multip| 00001d90 6c 69 63 61 6e 64 2b 34 0d 0f 6e 14 53 54 41 20 |licand+4..n.STA | 00001da0 6d 75 6c 74 69 70 6c 69 65 72 2b 35 0d 0f 78 05 |multiplier+5..x.| 00001db0 20 0d 0f 82 38 4c 44 41 20 6d 75 6c 74 69 70 6c | ...8LDA multipl| 00001dc0 69 65 72 2b 33 20 20 20 20 20 20 5c 20 54 65 73 |ier+3 \ Tes| 00001dd0 74 20 6d 75 6c 74 69 70 6c 69 65 72 20 66 6f 72 |t multiplier for| 00001de0 20 6e 65 67 61 74 69 76 65 0d 0f 8c 16 42 50 4c | negative....BPL| 00001df0 20 6d 75 6c 74 69 70 6c 69 65 72 5f 70 6f 73 0d | multiplier_pos.| 00001e00 0f 96 2f 44 45 43 20 6d 75 6c 74 69 70 6c 69 65 |../DEC multiplie| 00001e10 72 2b 34 20 20 20 20 20 20 5c 20 4d 61 6b 65 20 |r+4 \ Make | 00001e20 74 6f 70 20 62 79 74 65 20 3d 20 26 46 46 0d 0f |top byte = &FF..| 00001e30 a0 05 20 0d 0f aa 13 2e 6d 75 6c 74 69 70 6c 69 |.. .....multipli| 00001e40 65 72 5f 70 6f 73 0d 0f b4 05 20 0d 0f be 33 4c |er_pos.... ...3L| 00001e50 44 41 20 6d 75 6c 74 69 70 6c 69 63 61 6e 64 2b |DA multiplicand+| 00001e60 33 20 20 20 20 5c 20 52 65 70 65 61 74 20 66 6f |3 \ Repeat fo| 00001e70 72 20 6d 75 6c 74 69 70 6c 69 63 61 6e 64 0d 0f |r multiplicand..| 00001e80 c8 18 42 50 4c 20 6d 75 6c 74 69 70 6c 69 63 61 |..BPL multiplica| 00001e90 6e 64 5f 70 6f 73 0d 0f d2 16 44 45 43 20 6d 75 |nd_pos....DEC mu| 00001ea0 6c 74 69 70 6c 69 63 61 6e 64 2b 34 0d 0f dc 05 |ltiplicand+4....| 00001eb0 20 0d 0f e6 15 2e 6d 75 6c 74 69 70 6c 69 63 61 | .....multiplica| 00001ec0 6e 64 5f 70 6f 73 0d 0f f0 05 20 0d 0f fa 44 4c |nd_pos.... ...DL| 00001ed0 44 58 20 23 34 30 20 20 20 20 20 20 20 20 20 20 |DX #40 | 00001ee0 20 20 20 20 20 5c 20 43 61 72 72 79 20 6f 75 74 | \ Carry out| 00001ef0 20 34 30 20 74 69 6d 65 73 20 66 6f 72 20 34 30 | 40 times for 40| 00001f00 20 62 69 74 20 61 72 69 74 68 6d 65 74 69 63 0d | bit arithmetic.| 00001f10 10 04 05 20 0d 10 0e 14 4c 53 52 20 6d 75 6c 74 |... ....LSR mult| 00001f20 69 70 6c 69 65 72 2b 34 0d 10 18 14 52 4f 52 20 |iplier+4....ROR | 00001f30 6d 75 6c 74 69 70 6c 69 65 72 2b 33 0d 10 22 14 |multiplier+3..".| 00001f40 52 4f 52 20 6d 75 6c 74 69 70 6c 69 65 72 2b 32 |ROR multiplier+2| 00001f50 0d 10 2c 14 52 4f 52 20 6d 75 6c 74 69 70 6c 69 |..,.ROR multipli| 00001f60 65 72 2b 31 0d 10 36 12 52 4f 52 20 6d 75 6c 74 |er+1..6.ROR mult| 00001f70 69 70 6c 69 65 72 0d 10 40 05 20 0d 10 4a 0e 2e |iplier..@. ..J..| 00001f80 66 78 70 6d 5f 6c 6f 6f 70 0d 10 54 05 20 0d 10 |fxpm_loop..T. ..| 00001f90 5e 3a 42 43 43 20 6e 6f 5f 61 64 64 5f 66 78 70 |^:BCC no_add_fxp| 00001fa0 6d 20 20 20 20 20 20 20 5c 20 49 73 20 6e 65 78 |m \ Is nex| 00001fb0 74 20 62 69 74 20 6f 66 20 6d 75 6c 74 69 70 6c |t bit of multipl| 00001fc0 69 65 72 20 73 65 74 3f 0d 10 68 07 43 4c 43 0d |ier set?..h.CLC.| 00001fd0 10 72 2c 4c 44 41 20 6d 75 6c 74 69 70 6c 69 63 |.r,LDA multiplic| 00001fe0 61 6e 64 20 20 20 20 20 20 5c 20 41 64 64 20 6d |and \ Add m| 00001ff0 75 6c 74 69 70 6c 69 63 61 6e 64 0d 10 7c 0c 41 |ultiplicand..|.A| 00002000 44 43 20 70 70 77 73 0d 10 86 0c 53 54 41 20 70 |DC ppws....STA p| 00002010 70 77 73 0d 10 90 16 4c 44 41 20 6d 75 6c 74 69 |pws....LDA multi| 00002020 70 6c 69 63 61 6e 64 2b 31 0d 10 9a 0e 41 44 43 |plicand+1....ADC| 00002030 20 70 70 77 73 2b 31 0d 10 a4 0e 53 54 41 20 70 | ppws+1....STA p| 00002040 70 77 73 2b 31 0d 10 ae 16 4c 44 41 20 6d 75 6c |pws+1....LDA mul| 00002050 74 69 70 6c 69 63 61 6e 64 2b 32 0d 10 b8 0e 41 |tiplicand+2....A| 00002060 44 43 20 70 70 77 73 2b 32 0d 10 c2 0e 53 54 41 |DC ppws+2....STA| 00002070 20 70 70 77 73 2b 32 0d 10 cc 16 4c 44 41 20 6d | ppws+2....LDA m| 00002080 75 6c 74 69 70 6c 69 63 61 6e 64 2b 33 0d 10 d6 |ultiplicand+3...| 00002090 0e 41 44 43 20 70 70 77 73 2b 33 0d 10 e0 0e 53 |.ADC ppws+3....S| 000020a0 54 41 20 70 70 77 73 2b 33 0d 10 ea 16 4c 44 41 |TA ppws+3....LDA| 000020b0 20 6d 75 6c 74 69 70 6c 69 63 61 6e 64 2b 34 0d | multiplicand+4.| 000020c0 10 f4 0e 41 44 43 20 70 70 77 73 2b 34 0d 10 fe |...ADC ppws+4...| 000020d0 0e 53 54 41 20 70 70 77 73 2b 34 0d 11 08 05 20 |.STA ppws+4.... | 000020e0 0d 11 12 10 2e 6e 6f 5f 61 64 64 5f 66 78 70 6d |.....no_add_fxpm| 000020f0 0d 11 1c 05 20 0d 11 26 42 4c 53 52 20 70 70 77 |.... ..&BLSR ppw| 00002100 73 2b 34 20 20 20 20 20 20 20 20 20 20 20 20 5c |s+4 \| 00002110 20 52 6f 74 61 74 65 20 28 73 68 69 66 74 29 20 | Rotate (shift) | 00002120 70 70 77 73 20 26 20 6d 75 6c 74 69 70 6c 69 65 |ppws & multiplie| 00002130 72 20 72 69 67 68 74 0d 11 30 0e 52 4f 52 20 70 |r right..0.ROR p| 00002140 70 77 73 2b 33 0d 11 3a 0e 52 4f 52 20 70 70 77 |pws+3..:.ROR ppw| 00002150 73 2b 32 0d 11 44 0e 52 4f 52 20 70 70 77 73 2b |s+2..D.ROR ppws+| 00002160 31 0d 11 4e 0c 52 4f 52 20 70 70 77 73 0d 11 58 |1..N.ROR ppws..X| 00002170 14 52 4f 52 20 6d 75 6c 74 69 70 6c 69 65 72 2b |.ROR multiplier+| 00002180 34 0d 11 62 14 52 4f 52 20 6d 75 6c 74 69 70 6c |4..b.ROR multipl| 00002190 69 65 72 2b 33 0d 11 6c 14 52 4f 52 20 6d 75 6c |ier+3..l.ROR mul| 000021a0 74 69 70 6c 69 65 72 2b 32 0d 11 76 14 52 4f 52 |tiplier+2..v.ROR| 000021b0 20 6d 75 6c 74 69 70 6c 69 65 72 2b 31 0d 11 80 | multiplier+1...| 000021c0 12 52 4f 52 20 6d 75 6c 74 69 70 6c 69 65 72 0d |.ROR multiplier.| 000021d0 11 8a 39 44 45 58 20 20 20 20 20 20 20 20 20 20 |..9DEX | 000021e0 20 20 20 20 20 20 20 20 20 5c 20 43 6f 75 6e 74 | \ Count| 000021f0 69 6e 67 20 64 6f 77 6e 20 66 72 6f 6d 20 33 32 |ing down from 32| 00002200 20 74 6f 20 7a 65 72 6f 0d 11 94 11 42 4e 45 20 | to zero....BNE | 00002210 66 78 70 6d 5f 6c 6f 6f 70 0d 11 9e 05 20 0d 11 |fxpm_loop.... ..| 00002220 a8 14 4c 44 41 20 6d 75 6c 74 69 70 6c 69 65 72 |..LDA multiplier| 00002230 2b 34 0d 11 b2 0f 42 50 4c 20 72 65 73 5f 70 6f |+4....BPL res_po| 00002240 73 0d 11 bc 14 44 45 43 20 6d 75 6c 74 69 70 6c |s....DEC multipl| 00002250 69 65 72 2b 35 0d 11 c6 05 20 0d 11 d0 0c 2e 72 |ier+5.... .....r| 00002260 65 73 5f 70 6f 73 0d 11 da 05 20 0d 11 e4 07 52 |es_pos.... ....R| 00002270 54 53 0d 11 ee 05 20 0d 11 f8 05 5d 0d 12 02 05 |TS.... ....]....| 00002280 ed 0d 12 0c 2e f1 22 41 73 73 65 6d 62 6c 79 20 |......"Assembly | 00002290 63 6f 6d 70 6c 65 74 65 2c 20 70 72 65 73 73 20 |complete, press | 000022a0 66 30 20 74 6f 20 65 78 65 63 75 74 65 2e 22 0d |f0 to execute.".| 000022b0 12 16 05 e0 0d 12 20 05 20 0d 12 2a 1b 2a 2a 2a |...... . ..*.***| 000022c0 2a 20 45 51 55 61 74 65 20 61 20 42 79 74 65 20 |* EQUate a Byte | 000022d0 2a 2a 2a 2a 0d 12 34 0f dd 20 a4 45 51 55 42 28 |****..4.. .EQUB(| 000022e0 4e 25 29 0d 12 3e 10 3f 50 25 3d 4e 25 20 83 20 |N%)..>.?P%=N% . | 000022f0 32 35 36 0d 12 48 1e e7 20 28 70 61 73 73 25 20 |256..H.. (pass% | 00002300 80 20 33 29 20 3d 20 33 20 8c 20 f1 20 7e 3f 50 |. 3) = 3 . . ~?P| 00002310 25 0d 12 52 0b 50 25 3d 50 25 2b 31 0d 12 5c 0a |%..R.P%=P%+1..\.| 00002320 3d 70 61 73 73 25 0d 12 66 05 20 0d 12 70 25 2a |=pass%..f. ..p%*| 00002330 2a 2a 2a 20 45 51 55 61 74 65 20 61 20 57 6f 72 |*** EQUate a Wor| 00002340 64 20 28 32 20 62 79 74 65 73 29 20 2a 2a 2a 2a |d (2 bytes) ****| 00002350 0d 12 7a 0f dd 20 a4 45 51 55 57 28 4e 25 29 0d |..z.. .EQUW(N%).| 00002360 12 84 10 3f 50 25 3d 4e 25 20 83 20 32 35 36 0d |...?P%=N% . 256.| 00002370 12 8e 11 50 25 3f 31 3d 4e 25 20 81 20 32 35 36 |...P%?1=N% . 256| 00002380 0d 12 98 27 e7 20 28 70 61 73 73 25 20 80 20 33 |...'. (pass% . 3| 00002390 29 20 3d 20 33 20 8c 20 f1 20 7e 3f 50 25 2c 7e |) = 3 . . ~?P%,~| 000023a0 3f 28 50 25 2b 31 29 0d 12 a2 0b 50 25 3d 50 25 |?(P%+1)....P%=P%| 000023b0 2b 32 0d 12 ac 0a 3d 70 61 73 73 25 0d 12 b6 05 |+2....=pass%....| 000023c0 20 0d 12 c0 2c 2a 2a 2a 2a 20 45 51 55 61 74 65 | ...,**** EQUate| 000023d0 20 61 20 44 6f 75 62 6c 65 20 77 6f 72 64 20 28 | a Double word (| 000023e0 34 20 62 79 74 65 73 29 20 2a 2a 2a 2a 0d 12 ca |4 bytes) ****...| 000023f0 0f dd 20 a4 45 51 55 44 28 4e 25 29 0d 12 d4 08 |.. .EQUD(N%)....| 00002400 ea 20 58 25 0d 12 de 0a 21 50 25 3d 4e 25 0d 12 |. X%....!P%=N%..| 00002410 e8 0e e3 20 58 25 3d 30 20 b8 20 33 0d 12 f2 21 |... X%=0 . 3...!| 00002420 e7 20 28 70 61 73 73 25 20 80 20 33 29 20 3d 20 |. (pass% . 3) = | 00002430 33 20 8c 20 f1 20 7e 50 25 3f 58 25 3b 0d 12 fc |3 . . ~P%?X%;...| 00002440 05 ed 0d 13 06 19 e7 20 28 70 61 73 73 25 20 80 |....... (pass% .| 00002450 20 33 29 20 3d 20 33 20 8c 20 f1 0d 13 10 0b 50 | 3) = 3 . .....P| 00002460 25 3d 50 25 2b 34 0d 13 1a 0a 3d 70 61 73 73 25 |%=P%+4....=pass%| 00002470 0d ff |..| 00002472