Home » Archimedes archive » Acorn User » AU 1997-01 B.adf » Regulars » StarInfo/Allen/!Ignotum/Formulae/Formulae/Indi

StarInfo/Allen/!Ignotum/Formulae/Formulae/Indi

This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.

Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.

Tape/disk: Home » Archimedes archive » Acorn User » AU 1997-01 B.adf » Regulars
Filename: StarInfo/Allen/!Ignotum/Formulae/Formulae/Indi
Read OK:
File size: 03AB bytes
Load address: 0000
Exec address: 0000
File contents
# Maths > Indices

# New entries should take the form of:
#     Formula
#     Note 1
#     Note 2
#     Note 3
#     Note 4
#     Note 5
#     Formula
#     Note 1
#     And so on...
# To fit snugly into the window, each line should be no longer
# than 42 characters.
# There is a limit of 25 formulas per topic.

# Any notes should be made here, at the beginning and should
# be preceeded by a hash (#).

x^a � x^b=x^(a+b)
When multiplying, you add the indices
together.



x^a/x^b=x^(a-b)
When dividing, you subtract the indices.




(x^a)^b=x^(ab)
Remember you multiply a and b, not add
them: (x�)�=x� x� x�=x^6



1/x^a=x^-a





sqr(x)=x^�
This is used a great deal in this program
as the symbol for the square root is not
available.
Note also that it continues, so the cube
root=x^(1/3) and the nth root=x^(1/n).
























































































































00000000  23 20 4d 61 74 68 73 20  3e 20 49 6e 64 69 63 65  |# Maths > Indice|
00000010  73 0a 0a 23 20 4e 65 77  20 65 6e 74 72 69 65 73  |s..# New entries|
00000020  20 73 68 6f 75 6c 64 20  74 61 6b 65 20 74 68 65  | should take the|
00000030  20 66 6f 72 6d 20 6f 66  3a 0a 23 20 20 20 20 20  | form of:.#     |
00000040  46 6f 72 6d 75 6c 61 0a  23 20 20 20 20 20 4e 6f  |Formula.#     No|
00000050  74 65 20 31 0a 23 20 20  20 20 20 4e 6f 74 65 20  |te 1.#     Note |
00000060  32 0a 23 20 20 20 20 20  4e 6f 74 65 20 33 0a 23  |2.#     Note 3.#|
00000070  20 20 20 20 20 4e 6f 74  65 20 34 0a 23 20 20 20  |     Note 4.#   |
00000080  20 20 4e 6f 74 65 20 35  0a 23 20 20 20 20 20 46  |  Note 5.#     F|
00000090  6f 72 6d 75 6c 61 0a 23  20 20 20 20 20 4e 6f 74  |ormula.#     Not|
000000a0  65 20 31 0a 23 20 20 20  20 20 41 6e 64 20 73 6f  |e 1.#     And so|
000000b0  20 6f 6e 2e 2e 2e 0a 23  20 54 6f 20 66 69 74 20  | on....# To fit |
000000c0  73 6e 75 67 6c 79 20 69  6e 74 6f 20 74 68 65 20  |snugly into the |
000000d0  77 69 6e 64 6f 77 2c 20  65 61 63 68 20 6c 69 6e  |window, each lin|
000000e0  65 20 73 68 6f 75 6c 64  20 62 65 20 6e 6f 20 6c  |e should be no l|
000000f0  6f 6e 67 65 72 0a 23 20  74 68 61 6e 20 34 32 20  |onger.# than 42 |
00000100  63 68 61 72 61 63 74 65  72 73 2e 0a 23 20 54 68  |characters..# Th|
00000110  65 72 65 20 69 73 20 61  20 6c 69 6d 69 74 20 6f  |ere is a limit o|
00000120  66 20 32 35 20 66 6f 72  6d 75 6c 61 73 20 70 65  |f 25 formulas pe|
00000130  72 20 74 6f 70 69 63 2e  0a 0a 23 20 41 6e 79 20  |r topic...# Any |
00000140  6e 6f 74 65 73 20 73 68  6f 75 6c 64 20 62 65 20  |notes should be |
00000150  6d 61 64 65 20 68 65 72  65 2c 20 61 74 20 74 68  |made here, at th|
00000160  65 20 62 65 67 69 6e 6e  69 6e 67 20 61 6e 64 20  |e beginning and |
00000170  73 68 6f 75 6c 64 0a 23  20 62 65 20 70 72 65 63  |should.# be prec|
00000180  65 65 64 65 64 20 62 79  20 61 20 68 61 73 68 20  |eeded by a hash |
00000190  28 23 29 2e 0a 0a 78 5e  61 20 d7 20 78 5e 62 3d  |(#)...x^a . x^b=|
000001a0  78 5e 28 61 2b 62 29 0a  57 68 65 6e 20 6d 75 6c  |x^(a+b).When mul|
000001b0  74 69 70 6c 79 69 6e 67  2c 20 79 6f 75 20 61 64  |tiplying, you ad|
000001c0  64 20 74 68 65 20 69 6e  64 69 63 65 73 0a 74 6f  |d the indices.to|
000001d0  67 65 74 68 65 72 2e 0a  0a 0a 0a 78 5e 61 2f 78  |gether.....x^a/x|
000001e0  5e 62 3d 78 5e 28 61 2d  62 29 0a 57 68 65 6e 20  |^b=x^(a-b).When |
000001f0  64 69 76 69 64 69 6e 67  2c 20 79 6f 75 20 73 75  |dividing, you su|
00000200  62 74 72 61 63 74 20 74  68 65 20 69 6e 64 69 63  |btract the indic|
00000210  65 73 2e 0a 0a 0a 0a 0a  28 78 5e 61 29 5e 62 3d  |es......(x^a)^b=|
00000220  78 5e 28 61 62 29 0a 52  65 6d 65 6d 62 65 72 20  |x^(ab).Remember |
00000230  79 6f 75 20 6d 75 6c 74  69 70 6c 79 20 61 20 61  |you multiply a a|
00000240  6e 64 20 62 2c 20 6e 6f  74 20 61 64 64 0a 74 68  |nd b, not add.th|
00000250  65 6d 3a 20 28 78 b2 29  b3 3d 78 b2 20 78 b2 20  |em: (x.).=x. x. |
00000260  78 b2 3d 78 5e 36 0a 0a  0a 0a 31 2f 78 5e 61 3d  |x.=x^6....1/x^a=|
00000270  78 5e 2d 61 0a 0a 0a 0a  0a 0a 73 71 72 28 78 29  |x^-a......sqr(x)|
00000280  3d 78 5e bd 0a 54 68 69  73 20 69 73 20 75 73 65  |=x^..This is use|
00000290  64 20 61 20 67 72 65 61  74 20 64 65 61 6c 20 69  |d a great deal i|
000002a0  6e 20 74 68 69 73 20 70  72 6f 67 72 61 6d 0a 61  |n this program.a|
000002b0  73 20 74 68 65 20 73 79  6d 62 6f 6c 20 66 6f 72  |s the symbol for|
000002c0  20 74 68 65 20 73 71 75  61 72 65 20 72 6f 6f 74  | the square root|
000002d0  20 69 73 20 6e 6f 74 0a  61 76 61 69 6c 61 62 6c  | is not.availabl|
000002e0  65 2e 0a 4e 6f 74 65 20  61 6c 73 6f 20 74 68 61  |e..Note also tha|
000002f0  74 20 69 74 20 63 6f 6e  74 69 6e 75 65 73 2c 20  |t it continues, |
00000300  73 6f 20 74 68 65 20 63  75 62 65 0a 72 6f 6f 74  |so the cube.root|
00000310  3d 78 5e 28 31 2f 33 29  20 61 6e 64 20 74 68 65  |=x^(1/3) and the|
00000320  20 6e 74 68 20 72 6f 6f  74 3d 78 5e 28 31 2f 6e  | nth root=x^(1/n|
00000330  29 2e 0a 0a 0a 0a 0a 0a  0a 0a 0a 0a 0a 0a 0a 0a  |)...............|
00000340  0a 0a 0a 0a 0a 0a 0a 0a  0a 0a 0a 0a 0a 0a 0a 0a  |................|
*
000003a0  0a 0a 0a 0a 0a 0a 0a 0a  0a 0a 0a                 |...........|
000003ab