Home » Recent acquisitions » Acorn ADFS disks » adfs_AcornUser_199312.adf » !StarInfo_StarInfo » Hudson/ReadMe

Hudson/ReadMe

This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.

Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.

Tape/disk: Home » Recent acquisitions » Acorn ADFS disks » adfs_AcornUser_199312.adf » !StarInfo_StarInfo
Filename: Hudson/ReadMe
Read OK:
File size: 0A41 bytes
Load address: 0000
Exec address: 0000
File contents
Riemann:

This particular Riemann sphere has every single complex number
on it. Beginning at 0 at the front, the real numbers go +ve to
the right and -ve to the left, stretching around the sphere. If
0 is at the front, then 1 is on the rightmost point and -1 on
the leftmost point. The numbers continue to rise sharply as you
continue around to the back; directly behind the 0 point on the
front is a +/- infinity point on the back. Going up and over the
sphere are the positive imaginary numbers, and down and under
the negative ones, with the +/- infinite imaginary numbers
joining up with the +/- infinite real numbers at the back. This
can be hard to visualise - see DRAW file.

Note about complex numbers:

These are numbers with a normal (or "real") part and an
imaginary part. The imaginary part doesn't really exist, and is
shown as a multiple of the square root of -1, called i.

For more advanced readers, the Riemann sphere in this case is
produced by mapping an Argand diagram through an arctangent, and
then wrapping around a sphere. Equal moduli form concentric
circles around the sphere, with the Great circle being modulus
of 1.

The Julia set is just an ordinary Julia set, and has been
explained in Acorn User/ BBC Acorn user in 1986, 1987, 1988,
1989, 1990, 1991, 1992 and 1993, along with 1983, so I won't go
into it again.

Here are some run-time statistics which show the speed
improvements made by my fast algorithm (although I don't want to
boast:)

Type of Julia set          Coords   Time      Time      % speed
                                   without    with     increase

lots of low iteration area  1,1     225.17    32.24     86
loads of detail, no blue    .3,.6   506.89    504.24    .5
About 50% blue area         .3,.5   1091.68   602.98    45
Mostly blue                 -.75,0  1612.39   273.94    83

(All the above sets were plotted head-on with la & lo =0) 
The times are in seconds. "Time without" represents the time
taken to plot the complete globe scanning every pixel on the
screen. "Time with" shows the time taken using my fast(er)
algorithm. All screens with lots of colour the same benefit
greaty from the algorithm. Even the Cantor dust at 0.3, 0.6 is
not worse than the original pixel by pixel plot.

The following times show how the speed of the plot vary with the
variable z%, which controls the scanning square size.

Square size               time (seconds)

8                         583
12                        499
16                        492
20                        515
24                        532
28                        559
32                        575
00000000  52 69 65 6d 61 6e 6e 3a  0a 0a 54 68 69 73 20 70  |Riemann:..This p|
00000010  61 72 74 69 63 75 6c 61  72 20 52 69 65 6d 61 6e  |articular Rieman|
00000020  6e 20 73 70 68 65 72 65  20 68 61 73 20 65 76 65  |n sphere has eve|
00000030  72 79 20 73 69 6e 67 6c  65 20 63 6f 6d 70 6c 65  |ry single comple|
00000040  78 20 6e 75 6d 62 65 72  0a 6f 6e 20 69 74 2e 20  |x number.on it. |
00000050  42 65 67 69 6e 6e 69 6e  67 20 61 74 20 30 20 61  |Beginning at 0 a|
00000060  74 20 74 68 65 20 66 72  6f 6e 74 2c 20 74 68 65  |t the front, the|
00000070  20 72 65 61 6c 20 6e 75  6d 62 65 72 73 20 67 6f  | real numbers go|
00000080  20 2b 76 65 20 74 6f 0a  74 68 65 20 72 69 67 68  | +ve to.the righ|
00000090  74 20 61 6e 64 20 2d 76  65 20 74 6f 20 74 68 65  |t and -ve to the|
000000a0  20 6c 65 66 74 2c 20 73  74 72 65 74 63 68 69 6e  | left, stretchin|
000000b0  67 20 61 72 6f 75 6e 64  20 74 68 65 20 73 70 68  |g around the sph|
000000c0  65 72 65 2e 20 49 66 0a  30 20 69 73 20 61 74 20  |ere. If.0 is at |
000000d0  74 68 65 20 66 72 6f 6e  74 2c 20 74 68 65 6e 20  |the front, then |
000000e0  31 20 69 73 20 6f 6e 20  74 68 65 20 72 69 67 68  |1 is on the righ|
000000f0  74 6d 6f 73 74 20 70 6f  69 6e 74 20 61 6e 64 20  |tmost point and |
00000100  2d 31 20 6f 6e 0a 74 68  65 20 6c 65 66 74 6d 6f  |-1 on.the leftmo|
00000110  73 74 20 70 6f 69 6e 74  2e 20 54 68 65 20 6e 75  |st point. The nu|
00000120  6d 62 65 72 73 20 63 6f  6e 74 69 6e 75 65 20 74  |mbers continue t|
00000130  6f 20 72 69 73 65 20 73  68 61 72 70 6c 79 20 61  |o rise sharply a|
00000140  73 20 79 6f 75 0a 63 6f  6e 74 69 6e 75 65 20 61  |s you.continue a|
00000150  72 6f 75 6e 64 20 74 6f  20 74 68 65 20 62 61 63  |round to the bac|
00000160  6b 3b 20 64 69 72 65 63  74 6c 79 20 62 65 68 69  |k; directly behi|
00000170  6e 64 20 74 68 65 20 30  20 70 6f 69 6e 74 20 6f  |nd the 0 point o|
00000180  6e 20 74 68 65 0a 66 72  6f 6e 74 20 69 73 20 61  |n the.front is a|
00000190  20 2b 2f 2d 20 69 6e 66  69 6e 69 74 79 20 70 6f  | +/- infinity po|
000001a0  69 6e 74 20 6f 6e 20 74  68 65 20 62 61 63 6b 2e  |int on the back.|
000001b0  20 47 6f 69 6e 67 20 75  70 20 61 6e 64 20 6f 76  | Going up and ov|
000001c0  65 72 20 74 68 65 0a 73  70 68 65 72 65 20 61 72  |er the.sphere ar|
000001d0  65 20 74 68 65 20 70 6f  73 69 74 69 76 65 20 69  |e the positive i|
000001e0  6d 61 67 69 6e 61 72 79  20 6e 75 6d 62 65 72 73  |maginary numbers|
000001f0  2c 20 61 6e 64 20 64 6f  77 6e 20 61 6e 64 20 75  |, and down and u|
00000200  6e 64 65 72 0a 74 68 65  20 6e 65 67 61 74 69 76  |nder.the negativ|
00000210  65 20 6f 6e 65 73 2c 20  77 69 74 68 20 74 68 65  |e ones, with the|
00000220  20 2b 2f 2d 20 69 6e 66  69 6e 69 74 65 20 69 6d  | +/- infinite im|
00000230  61 67 69 6e 61 72 79 20  6e 75 6d 62 65 72 73 0a  |aginary numbers.|
00000240  6a 6f 69 6e 69 6e 67 20  75 70 20 77 69 74 68 20  |joining up with |
00000250  74 68 65 20 2b 2f 2d 20  69 6e 66 69 6e 69 74 65  |the +/- infinite|
00000260  20 72 65 61 6c 20 6e 75  6d 62 65 72 73 20 61 74  | real numbers at|
00000270  20 74 68 65 20 62 61 63  6b 2e 20 54 68 69 73 0a  | the back. This.|
00000280  63 61 6e 20 62 65 20 68  61 72 64 20 74 6f 20 76  |can be hard to v|
00000290  69 73 75 61 6c 69 73 65  20 2d 20 73 65 65 20 44  |isualise - see D|
000002a0  52 41 57 20 66 69 6c 65  2e 0a 0a 4e 6f 74 65 20  |RAW file...Note |
000002b0  61 62 6f 75 74 20 63 6f  6d 70 6c 65 78 20 6e 75  |about complex nu|
000002c0  6d 62 65 72 73 3a 0a 0a  54 68 65 73 65 20 61 72  |mbers:..These ar|
000002d0  65 20 6e 75 6d 62 65 72  73 20 77 69 74 68 20 61  |e numbers with a|
000002e0  20 6e 6f 72 6d 61 6c 20  28 6f 72 20 22 72 65 61  | normal (or "rea|
000002f0  6c 22 29 20 70 61 72 74  20 61 6e 64 20 61 6e 0a  |l") part and an.|
00000300  69 6d 61 67 69 6e 61 72  79 20 70 61 72 74 2e 20  |imaginary part. |
00000310  54 68 65 20 69 6d 61 67  69 6e 61 72 79 20 70 61  |The imaginary pa|
00000320  72 74 20 64 6f 65 73 6e  27 74 20 72 65 61 6c 6c  |rt doesn't reall|
00000330  79 20 65 78 69 73 74 2c  20 61 6e 64 20 69 73 0a  |y exist, and is.|
00000340  73 68 6f 77 6e 20 61 73  20 61 20 6d 75 6c 74 69  |shown as a multi|
00000350  70 6c 65 20 6f 66 20 74  68 65 20 73 71 75 61 72  |ple of the squar|
00000360  65 20 72 6f 6f 74 20 6f  66 20 2d 31 2c 20 63 61  |e root of -1, ca|
00000370  6c 6c 65 64 20 69 2e 0a  0a 46 6f 72 20 6d 6f 72  |lled i...For mor|
00000380  65 20 61 64 76 61 6e 63  65 64 20 72 65 61 64 65  |e advanced reade|
00000390  72 73 2c 20 74 68 65 20  52 69 65 6d 61 6e 6e 20  |rs, the Riemann |
000003a0  73 70 68 65 72 65 20 69  6e 20 74 68 69 73 20 63  |sphere in this c|
000003b0  61 73 65 20 69 73 0a 70  72 6f 64 75 63 65 64 20  |ase is.produced |
000003c0  62 79 20 6d 61 70 70 69  6e 67 20 61 6e 20 41 72  |by mapping an Ar|
000003d0  67 61 6e 64 20 64 69 61  67 72 61 6d 20 74 68 72  |gand diagram thr|
000003e0  6f 75 67 68 20 61 6e 20  61 72 63 74 61 6e 67 65  |ough an arctange|
000003f0  6e 74 2c 20 61 6e 64 0a  74 68 65 6e 20 77 72 61  |nt, and.then wra|
00000400  70 70 69 6e 67 20 61 72  6f 75 6e 64 20 61 20 73  |pping around a s|
00000410  70 68 65 72 65 2e 20 45  71 75 61 6c 20 6d 6f 64  |phere. Equal mod|
00000420  75 6c 69 20 66 6f 72 6d  20 63 6f 6e 63 65 6e 74  |uli form concent|
00000430  72 69 63 0a 63 69 72 63  6c 65 73 20 61 72 6f 75  |ric.circles arou|
00000440  6e 64 20 74 68 65 20 73  70 68 65 72 65 2c 20 77  |nd the sphere, w|
00000450  69 74 68 20 74 68 65 20  47 72 65 61 74 20 63 69  |ith the Great ci|
00000460  72 63 6c 65 20 62 65 69  6e 67 20 6d 6f 64 75 6c  |rcle being modul|
00000470  75 73 0a 6f 66 20 31 2e  0a 0a 54 68 65 20 4a 75  |us.of 1...The Ju|
00000480  6c 69 61 20 73 65 74 20  69 73 20 6a 75 73 74 20  |lia set is just |
00000490  61 6e 20 6f 72 64 69 6e  61 72 79 20 4a 75 6c 69  |an ordinary Juli|
000004a0  61 20 73 65 74 2c 20 61  6e 64 20 68 61 73 20 62  |a set, and has b|
000004b0  65 65 6e 0a 65 78 70 6c  61 69 6e 65 64 20 69 6e  |een.explained in|
000004c0  20 41 63 6f 72 6e 20 55  73 65 72 2f 20 42 42 43  | Acorn User/ BBC|
000004d0  20 41 63 6f 72 6e 20 75  73 65 72 20 69 6e 20 31  | Acorn user in 1|
000004e0  39 38 36 2c 20 31 39 38  37 2c 20 31 39 38 38 2c  |986, 1987, 1988,|
000004f0  0a 31 39 38 39 2c 20 31  39 39 30 2c 20 31 39 39  |.1989, 1990, 199|
00000500  31 2c 20 31 39 39 32 20  61 6e 64 20 31 39 39 33  |1, 1992 and 1993|
00000510  2c 20 61 6c 6f 6e 67 20  77 69 74 68 20 31 39 38  |, along with 198|
00000520  33 2c 20 73 6f 20 49 20  77 6f 6e 27 74 20 67 6f  |3, so I won't go|
00000530  0a 69 6e 74 6f 20 69 74  20 61 67 61 69 6e 2e 0a  |.into it again..|
00000540  0a 48 65 72 65 20 61 72  65 20 73 6f 6d 65 20 72  |.Here are some r|
00000550  75 6e 2d 74 69 6d 65 20  73 74 61 74 69 73 74 69  |un-time statisti|
00000560  63 73 20 77 68 69 63 68  20 73 68 6f 77 20 74 68  |cs which show th|
00000570  65 20 73 70 65 65 64 0a  69 6d 70 72 6f 76 65 6d  |e speed.improvem|
00000580  65 6e 74 73 20 6d 61 64  65 20 62 79 20 6d 79 20  |ents made by my |
00000590  66 61 73 74 20 61 6c 67  6f 72 69 74 68 6d 20 28  |fast algorithm (|
000005a0  61 6c 74 68 6f 75 67 68  20 49 20 64 6f 6e 27 74  |although I don't|
000005b0  20 77 61 6e 74 20 74 6f  0a 62 6f 61 73 74 3a 29  | want to.boast:)|
000005c0  0a 0a 54 79 70 65 20 6f  66 20 4a 75 6c 69 61 20  |..Type of Julia |
000005d0  73 65 74 20 20 20 20 20  20 20 20 20 20 43 6f 6f  |set          Coo|
000005e0  72 64 73 20 20 20 54 69  6d 65 20 20 20 20 20 20  |rds   Time      |
000005f0  54 69 6d 65 20 20 20 20  20 20 25 20 73 70 65 65  |Time      % spee|
00000600  64 0a 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |d.              |
00000610  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00000620  20 20 20 20 20 77 69 74  68 6f 75 74 20 20 20 20  |     without    |
00000630  77 69 74 68 20 20 20 20  20 69 6e 63 72 65 61 73  |with     increas|
00000640  65 0a 0a 6c 6f 74 73 20  6f 66 20 6c 6f 77 20 69  |e..lots of low i|
00000650  74 65 72 61 74 69 6f 6e  20 61 72 65 61 20 20 31  |teration area  1|
00000660  2c 31 20 20 20 20 20 32  32 35 2e 31 37 20 20 20  |,1     225.17   |
00000670  20 33 32 2e 32 34 20 20  20 20 20 38 36 0a 6c 6f  | 32.24     86.lo|
00000680  61 64 73 20 6f 66 20 64  65 74 61 69 6c 2c 20 6e  |ads of detail, n|
00000690  6f 20 62 6c 75 65 20 20  20 20 2e 33 2c 2e 36 20  |o blue    .3,.6 |
000006a0  20 20 35 30 36 2e 38 39  20 20 20 20 35 30 34 2e  |  506.89    504.|
000006b0  32 34 20 20 20 20 2e 35  0a 41 62 6f 75 74 20 35  |24    .5.About 5|
000006c0  30 25 20 62 6c 75 65 20  61 72 65 61 20 20 20 20  |0% blue area    |
000006d0  20 20 20 20 20 2e 33 2c  2e 35 20 20 20 31 30 39  |     .3,.5   109|
000006e0  31 2e 36 38 20 20 20 36  30 32 2e 39 38 20 20 20  |1.68   602.98   |
000006f0  20 34 35 0a 4d 6f 73 74  6c 79 20 62 6c 75 65 20  | 45.Mostly blue |
00000700  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00000710  2d 2e 37 35 2c 30 20 20  31 36 31 32 2e 33 39 20  |-.75,0  1612.39 |
00000720  20 20 32 37 33 2e 39 34  20 20 20 20 38 33 0a 0a  |  273.94    83..|
00000730  28 41 6c 6c 20 74 68 65  20 61 62 6f 76 65 20 73  |(All the above s|
00000740  65 74 73 20 77 65 72 65  20 70 6c 6f 74 74 65 64  |ets were plotted|
00000750  20 68 65 61 64 2d 6f 6e  20 77 69 74 68 20 6c 61  | head-on with la|
00000760  20 26 20 6c 6f 20 3d 30  29 20 0a 54 68 65 20 74  | & lo =0) .The t|
00000770  69 6d 65 73 20 61 72 65  20 69 6e 20 73 65 63 6f  |imes are in seco|
00000780  6e 64 73 2e 20 22 54 69  6d 65 20 77 69 74 68 6f  |nds. "Time witho|
00000790  75 74 22 20 72 65 70 72  65 73 65 6e 74 73 20 74  |ut" represents t|
000007a0  68 65 20 74 69 6d 65 0a  74 61 6b 65 6e 20 74 6f  |he time.taken to|
000007b0  20 70 6c 6f 74 20 74 68  65 20 63 6f 6d 70 6c 65  | plot the comple|
000007c0  74 65 20 67 6c 6f 62 65  20 73 63 61 6e 6e 69 6e  |te globe scannin|
000007d0  67 20 65 76 65 72 79 20  70 69 78 65 6c 20 6f 6e  |g every pixel on|
000007e0  20 74 68 65 0a 73 63 72  65 65 6e 2e 20 22 54 69  | the.screen. "Ti|
000007f0  6d 65 20 77 69 74 68 22  20 73 68 6f 77 73 20 74  |me with" shows t|
00000800  68 65 20 74 69 6d 65 20  74 61 6b 65 6e 20 75 73  |he time taken us|
00000810  69 6e 67 20 6d 79 20 66  61 73 74 28 65 72 29 0a  |ing my fast(er).|
00000820  61 6c 67 6f 72 69 74 68  6d 2e 20 41 6c 6c 20 73  |algorithm. All s|
00000830  63 72 65 65 6e 73 20 77  69 74 68 20 6c 6f 74 73  |creens with lots|
00000840  20 6f 66 20 63 6f 6c 6f  75 72 20 74 68 65 20 73  | of colour the s|
00000850  61 6d 65 20 62 65 6e 65  66 69 74 0a 67 72 65 61  |ame benefit.grea|
00000860  74 79 20 66 72 6f 6d 20  74 68 65 20 61 6c 67 6f  |ty from the algo|
00000870  72 69 74 68 6d 2e 20 45  76 65 6e 20 74 68 65 20  |rithm. Even the |
00000880  43 61 6e 74 6f 72 20 64  75 73 74 20 61 74 20 30  |Cantor dust at 0|
00000890  2e 33 2c 20 30 2e 36 20  69 73 0a 6e 6f 74 20 77  |.3, 0.6 is.not w|
000008a0  6f 72 73 65 20 74 68 61  6e 20 74 68 65 20 6f 72  |orse than the or|
000008b0  69 67 69 6e 61 6c 20 70  69 78 65 6c 20 62 79 20  |iginal pixel by |
000008c0  70 69 78 65 6c 20 70 6c  6f 74 2e 0a 0a 54 68 65  |pixel plot...The|
000008d0  20 66 6f 6c 6c 6f 77 69  6e 67 20 74 69 6d 65 73  | following times|
000008e0  20 73 68 6f 77 20 68 6f  77 20 74 68 65 20 73 70  | show how the sp|
000008f0  65 65 64 20 6f 66 20 74  68 65 20 70 6c 6f 74 20  |eed of the plot |
00000900  76 61 72 79 20 77 69 74  68 20 74 68 65 0a 76 61  |vary with the.va|
00000910  72 69 61 62 6c 65 20 7a  25 2c 20 77 68 69 63 68  |riable z%, which|
00000920  20 63 6f 6e 74 72 6f 6c  73 20 74 68 65 20 73 63  | controls the sc|
00000930  61 6e 6e 69 6e 67 20 73  71 75 61 72 65 20 73 69  |anning square si|
00000940  7a 65 2e 0a 0a 53 71 75  61 72 65 20 73 69 7a 65  |ze...Square size|
00000950  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 74  |               t|
00000960  69 6d 65 20 28 73 65 63  6f 6e 64 73 29 0a 0a 38  |ime (seconds)..8|
00000970  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00000980  20 20 20 20 20 20 20 20  20 35 38 33 0a 31 32 20  |         583.12 |
00000990  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
000009a0  20 20 20 20 20 20 20 34  39 39 0a 31 36 20 20 20  |       499.16   |
000009b0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
000009c0  20 20 20 20 20 34 39 32  0a 32 30 20 20 20 20 20  |     492.20     |
000009d0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
000009e0  20 20 20 35 31 35 0a 32  34 20 20 20 20 20 20 20  |   515.24       |
000009f0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00000a00  20 35 33 32 0a 32 38 20  20 20 20 20 20 20 20 20  | 532.28         |
00000a10  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 35  |               5|
00000a20  35 39 0a 33 32 20 20 20  20 20 20 20 20 20 20 20  |59.32           |
00000a30  20 20 20 20 20 20 20 20  20 20 20 20 20 35 37 35  |             575|
00000a40  0a                                                |.|
00000a41