Home » CEEFAX disks » telesoftware2.adl » OS\BITS/B\OSB15

OS\BITS/B\OSB15

This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.

Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.

Tape/disk: Home » CEEFAX disks » telesoftware2.adl
Filename: OS\BITS/B\OSB15
Read OK:
File size: 0A0D bytes
Load address: 0800
Exec address: 8023
Duplicates

There is 1 duplicate copy of this file in the archive:

File contents
   10REM OSbits Module B/osb15
   20REM Multi-byte Division
   30REM Version 1.1 8.3.87
   40 
   50*KEY1MODE3|M|NLIST|M
   60 
   70DIM code% 200
   80 
   90FOR pass% = 0 TO 2 STEP 2
  100P% = code%
  110 
  120[OPT pass%
  130 
  140\  Dividend is in dividend, divisor is in divisor
  150\  On exit DIV is in dividend , X is destroyed.
  160\  pdws holds partial dividend and then MOD
  170\  diff_ws is temp ws to hold pdiv-div for testing
  180 
  190LDA divisor
  200ORA divisor+1
  210ORA divisor+2
  220ORA divisor+3
  230BEQ error_mbd_zero         \ Exit if divisor is zero
  240 
  250LDA #0                     \ Set partial dividend ws to zero
  260STA pdws
  270STA pdws+1
  280STA pdws+2
  290STA pdws+3
  300 
  310LDX #32                    \ 32 bit dividend
  320 
  330.mbd_loop
  340 
  350ASL dividend               \ Rotate dividend left into partial dividend
  360ROL dividend+1
  370ROL dividend+2
  380ROL dividend+3
  390ROL pdws
  400ROL pdws+1
  410ROL pdws+2
  420ROL pdws+3
  430 
  440SEC
  450LDA pdws                   \ Subtract divisor from partial dividend
  460SBC divisor
  470STA diff_ws
  480LDA pdws+1
  490SBC divisor+1
  500STA diff_ws+1
  510LDA pdws+2
  520SBC divisor+2
  530STA diff_ws+2
  540LDA pdws+3
  550SBC divisor+3
  560STA diff_ws+3
  570 
  580BCC no_subtract_mbd
  590 
  600INC dividend               \ Increase result if we can subtract
  610LDA diff_ws                \ and update partial dividend
  620STA pdws                   \ from difference workspace
  630LDA diff_ws+1
  640STA pdws+1
  650LDA diff_ws+2
  660STA pdws+2
  670LDA diff_ws+3
  680STA pdws+3
  690 
  700.no_subtract_mbd
  710 
  720DEX                        \ Next bit
  730BNE mbd_loop
  740 
  750RTS
  760 
  770.error_mbd_zero
  780 
  790BRK
  800OPT FNEQUB(18)
  810OPT FNEQUS("Divisor is Zero, program ended")
  820OPT FNEQUB(0)
  830 
  840.dividend       OPT FNEQUD(0)
  850.pdws           OPT FNEQUD(0)
  860.divisor        OPT FNEQUD(0)
  870.diff_ws        OPT FNEQUD(0)
  880 
  890]
  900NEXT
  910REPEAT
  920 
  930INPUT "Enter dividend then divisor "A%,B%
  940PRINT "From BASIC quotient is ";A%DIVB%;" and remainder is ";A%MODB%
  950!dividend=A%
  960!divisor=B%
  970CALL code%
  980PRINT "From Code quotient is ";!dividend;" and remainder is ";!pdws'
  990UNTIL0
 1000 
 1010**** EQUate a Byte ****
 1020DEF FNEQUB(N%)
 1030?P%=N% MOD 256
 1040IF (pass% AND 3) = 3 THEN PRINT ~?P%
 1050P%=P%+1
 1060=pass%
 1070 
 1080**** EQUate a Double word (4 bytes) ****
 1090DEF FNEQUD(N%)
 1100LOCAL X%
 1110!P%=N%
 1120FOR X%=0 TO 3
 1130IF (pass% AND 3) = 3 THEN PRINT ~P%?X%;
 1140NEXT
 1150IF (pass% AND 3) = 3 THEN PRINT
 1160P%=P%+4
 1170=pass%
 1180 
 1190**** EQUate a String ****
 1200DEF FNEQUS(N$)
 1210LOCAL N%
 1220WIDTH 40
 1230FOR N%=1 TO LEN(N$)
 1240K%=ASC(MID$(N$,N%,1))
 1250P%?(N%-1)=K%
 1260IF (pass% AND 3) = 3 THEN PRINT ~P%?(N%-1);
 1270NEXT
 1280IF (pass% AND 3) = 3 THEN PRINT
 1290P%=P%+LEN(N$)
 1300WIDTH 0
 1310=pass%

� OSbits Module B/osb15
� Multi-byte Division
� Version 1.1 8.3.87
( 
2*KEY1MODE3|M|NLIST|M
< 
F� code% 200
P 
Z� pass% = 0 � 2 � 2
dP% = code%
n 
x[OPT pass%
� 
�5\  Dividend is in dividend, divisor is in divisor
�1\  On exit � is in dividend , X is destroyed.
�-\  pdws holds partial dividend and then �
�6\  diff_ws is temp ws to hold pdiv-div for testing
� 
�LDA divisor
��A divisor+1
��A divisor+2
��A divisor+3
�8BEQ error_mbd_zero         \ Exit if divisor is zero
� 
�@LDA #0                     \ Set partial dividend ws to zero
STA pdws
STA pdws+1
STA pdws+2
"STA pdws+3
, 
60LDX #32                    \ 32 bit dividend
@ 
J
.mbd_loop
T 
^KASL dividend               \ Rotate dividend left into partial dividend
hROL dividend+1
rROL dividend+2
|ROL dividend+3
�ROL pdws
�ROL pdws+1
�ROL pdws+2
�ROL pdws+3
� 
�SEC
�GLDA pdws                   \ Subtract divisor from partial dividend
�SBC divisor
�STA diff_ws
�LDA pdws+1
�SBC divisor+1
�STA diff_ws+1
�LDA pdws+2
SBC divisor+2
STA diff_ws+2
LDA pdws+3
&SBC divisor+3
0STA diff_ws+3
: 
DBCC no_subtract_mbd
N 
XCINC dividend               \ Increase result if we can subtract
b<LDA diff_ws                \ and update partial dividend
l:STA pdws                   \ from difference workspace
vLDA diff_ws+1
�STA pdws+1
�LDA diff_ws+2
�STA pdws+2
�LDA diff_ws+3
�STA pdws+3
� 
�.no_subtract_mbd
� 
�)DEX                        \ Next bit
�BNE mbd_loop
� 
�RTS
� 
.error_mbd_zero
 
BRK
 OPT �EQUB(18)
*/OPT �EQUS("Divisor is Zero, program ended")
4OPT �EQUB(0)
> 
H .dividend       OPT �EQUD(0)
R .pdws           OPT �EQUD(0)
\ .divisor        OPT �EQUD(0)
f .diff_ws        OPT �EQUD(0)
p 
z]
��
��
� 
�)� "Enter dividend then divisor "A%,B%
�@� "From BASIC quotient is ";A%�B%;" and remainder is ";A%�B%
�!dividend=A%
�!divisor=B%
�� code%
�D� "From Code quotient is ";!dividend;" and remainder is ";!pdws'
��0
� 
�**** EQUate a Byte ****
�� �EQUB(N%)
?P%=N% � 256
� (pass% � 3) = 3 � � ~?P%
P%=P%+1
$
=pass%
. 
8,**** EQUate a Double word (4 bytes) ****
B� �EQUD(N%)
L� X%
V
!P%=N%
`� X%=0 � 3
j!� (pass% � 3) = 3 � � ~P%?X%;
t�
~� (pass% � 3) = 3 � �
�P%=P%+4
�
=pass%
� 
�**** EQUate a String ****
�� �EQUS(N$)
�� N%
�� 40
�� N%=1 � �(N$)
�K%=�(�N$,N%,1))
�P%?(N%-1)=K%
�%� (pass% � 3) = 3 � � ~P%?(N%-1);
��
� (pass% � 3) = 3 � �

P%=P%+�(N$)
� 0

=pass%
�
00000000  0d 00 0a 1b f4 20 4f 53  62 69 74 73 20 4d 6f 64  |..... OSbits Mod|
00000010  75 6c 65 20 42 2f 6f 73  62 31 35 0d 00 14 19 f4  |ule B/osb15.....|
00000020  20 4d 75 6c 74 69 2d 62  79 74 65 20 44 69 76 69  | Multi-byte Divi|
00000030  73 69 6f 6e 0d 00 1e 18  f4 20 56 65 72 73 69 6f  |sion..... Versio|
00000040  6e 20 31 2e 31 20 38 2e  33 2e 38 37 0d 00 28 05  |n 1.1 8.3.87..(.|
00000050  20 0d 00 32 18 2a 4b 45  59 31 4d 4f 44 45 33 7c  | ..2.*KEY1MODE3||
00000060  4d 7c 4e 4c 49 53 54 7c  4d 0d 00 3c 05 20 0d 00  |M|NLIST|M..<. ..|
00000070  46 0f de 20 63 6f 64 65  25 20 32 30 30 0d 00 50  |F.. code% 200..P|
00000080  05 20 0d 00 5a 17 e3 20  70 61 73 73 25 20 3d 20  |. ..Z.. pass% = |
00000090  30 20 b8 20 32 20 88 20  32 0d 00 64 0e 50 25 20  |0 . 2 . 2..d.P% |
000000a0  3d 20 63 6f 64 65 25 0d  00 6e 05 20 0d 00 78 0e  |= code%..n. ..x.|
000000b0  5b 4f 50 54 20 70 61 73  73 25 0d 00 82 05 20 0d  |[OPT pass%.... .|
000000c0  00 8c 35 5c 20 20 44 69  76 69 64 65 6e 64 20 69  |..5\  Dividend i|
000000d0  73 20 69 6e 20 64 69 76  69 64 65 6e 64 2c 20 64  |s in dividend, d|
000000e0  69 76 69 73 6f 72 20 69  73 20 69 6e 20 64 69 76  |ivisor is in div|
000000f0  69 73 6f 72 0d 00 96 31  5c 20 20 4f 6e 20 65 78  |isor...1\  On ex|
00000100  69 74 20 81 20 69 73 20  69 6e 20 64 69 76 69 64  |it . is in divid|
00000110  65 6e 64 20 2c 20 58 20  69 73 20 64 65 73 74 72  |end , X is destr|
00000120  6f 79 65 64 2e 0d 00 a0  2d 5c 20 20 70 64 77 73  |oyed....-\  pdws|
00000130  20 68 6f 6c 64 73 20 70  61 72 74 69 61 6c 20 64  | holds partial d|
00000140  69 76 69 64 65 6e 64 20  61 6e 64 20 74 68 65 6e  |ividend and then|
00000150  20 83 0d 00 aa 36 5c 20  20 64 69 66 66 5f 77 73  | ....6\  diff_ws|
00000160  20 69 73 20 74 65 6d 70  20 77 73 20 74 6f 20 68  | is temp ws to h|
00000170  6f 6c 64 20 70 64 69 76  2d 64 69 76 20 66 6f 72  |old pdiv-div for|
00000180  20 74 65 73 74 69 6e 67  0d 00 b4 05 20 0d 00 be  | testing.... ...|
00000190  0f 4c 44 41 20 64 69 76  69 73 6f 72 0d 00 c8 10  |.LDA divisor....|
000001a0  84 41 20 64 69 76 69 73  6f 72 2b 31 0d 00 d2 10  |.A divisor+1....|
000001b0  84 41 20 64 69 76 69 73  6f 72 2b 32 0d 00 dc 10  |.A divisor+2....|
000001c0  84 41 20 64 69 76 69 73  6f 72 2b 33 0d 00 e6 38  |.A divisor+3...8|
000001d0  42 45 51 20 65 72 72 6f  72 5f 6d 62 64 5f 7a 65  |BEQ error_mbd_ze|
000001e0  72 6f 20 20 20 20 20 20  20 20 20 5c 20 45 78 69  |ro         \ Exi|
000001f0  74 20 69 66 20 64 69 76  69 73 6f 72 20 69 73 20  |t if divisor is |
00000200  7a 65 72 6f 0d 00 f0 05  20 0d 00 fa 40 4c 44 41  |zero.... ...@LDA|
00000210  20 23 30 20 20 20 20 20  20 20 20 20 20 20 20 20  | #0             |
00000220  20 20 20 20 20 20 20 20  5c 20 53 65 74 20 70 61  |        \ Set pa|
00000230  72 74 69 61 6c 20 64 69  76 69 64 65 6e 64 20 77  |rtial dividend w|
00000240  73 20 74 6f 20 7a 65 72  6f 0d 01 04 0c 53 54 41  |s to zero....STA|
00000250  20 70 64 77 73 0d 01 0e  0e 53 54 41 20 70 64 77  | pdws....STA pdw|
00000260  73 2b 31 0d 01 18 0e 53  54 41 20 70 64 77 73 2b  |s+1....STA pdws+|
00000270  32 0d 01 22 0e 53 54 41  20 70 64 77 73 2b 33 0d  |2..".STA pdws+3.|
00000280  01 2c 05 20 0d 01 36 30  4c 44 58 20 23 33 32 20  |.,. ..60LDX #32 |
00000290  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
000002a0  20 20 20 5c 20 33 32 20  62 69 74 20 64 69 76 69  |   \ 32 bit divi|
000002b0  64 65 6e 64 0d 01 40 05  20 0d 01 4a 0d 2e 6d 62  |dend..@. ..J..mb|
000002c0  64 5f 6c 6f 6f 70 0d 01  54 05 20 0d 01 5e 4b 41  |d_loop..T. ..^KA|
000002d0  53 4c 20 64 69 76 69 64  65 6e 64 20 20 20 20 20  |SL dividend     |
000002e0  20 20 20 20 20 20 20 20  20 20 5c 20 52 6f 74 61  |          \ Rota|
000002f0  74 65 20 64 69 76 69 64  65 6e 64 20 6c 65 66 74  |te dividend left|
00000300  20 69 6e 74 6f 20 70 61  72 74 69 61 6c 20 64 69  | into partial di|
00000310  76 69 64 65 6e 64 0d 01  68 12 52 4f 4c 20 64 69  |vidend..h.ROL di|
00000320  76 69 64 65 6e 64 2b 31  0d 01 72 12 52 4f 4c 20  |vidend+1..r.ROL |
00000330  64 69 76 69 64 65 6e 64  2b 32 0d 01 7c 12 52 4f  |dividend+2..|.RO|
00000340  4c 20 64 69 76 69 64 65  6e 64 2b 33 0d 01 86 0c  |L dividend+3....|
00000350  52 4f 4c 20 70 64 77 73  0d 01 90 0e 52 4f 4c 20  |ROL pdws....ROL |
00000360  70 64 77 73 2b 31 0d 01  9a 0e 52 4f 4c 20 70 64  |pdws+1....ROL pd|
00000370  77 73 2b 32 0d 01 a4 0e  52 4f 4c 20 70 64 77 73  |ws+2....ROL pdws|
00000380  2b 33 0d 01 ae 05 20 0d  01 b8 07 53 45 43 0d 01  |+3.... ....SEC..|
00000390  c2 47 4c 44 41 20 70 64  77 73 20 20 20 20 20 20  |.GLDA pdws      |
000003a0  20 20 20 20 20 20 20 20  20 20 20 20 20 5c 20 53  |             \ S|
000003b0  75 62 74 72 61 63 74 20  64 69 76 69 73 6f 72 20  |ubtract divisor |
000003c0  66 72 6f 6d 20 70 61 72  74 69 61 6c 20 64 69 76  |from partial div|
000003d0  69 64 65 6e 64 0d 01 cc  0f 53 42 43 20 64 69 76  |idend....SBC div|
000003e0  69 73 6f 72 0d 01 d6 0f  53 54 41 20 64 69 66 66  |isor....STA diff|
000003f0  5f 77 73 0d 01 e0 0e 4c  44 41 20 70 64 77 73 2b  |_ws....LDA pdws+|
00000400  31 0d 01 ea 11 53 42 43  20 64 69 76 69 73 6f 72  |1....SBC divisor|
00000410  2b 31 0d 01 f4 11 53 54  41 20 64 69 66 66 5f 77  |+1....STA diff_w|
00000420  73 2b 31 0d 01 fe 0e 4c  44 41 20 70 64 77 73 2b  |s+1....LDA pdws+|
00000430  32 0d 02 08 11 53 42 43  20 64 69 76 69 73 6f 72  |2....SBC divisor|
00000440  2b 32 0d 02 12 11 53 54  41 20 64 69 66 66 5f 77  |+2....STA diff_w|
00000450  73 2b 32 0d 02 1c 0e 4c  44 41 20 70 64 77 73 2b  |s+2....LDA pdws+|
00000460  33 0d 02 26 11 53 42 43  20 64 69 76 69 73 6f 72  |3..&.SBC divisor|
00000470  2b 33 0d 02 30 11 53 54  41 20 64 69 66 66 5f 77  |+3..0.STA diff_w|
00000480  73 2b 33 0d 02 3a 05 20  0d 02 44 17 42 43 43 20  |s+3..:. ..D.BCC |
00000490  6e 6f 5f 73 75 62 74 72  61 63 74 5f 6d 62 64 0d  |no_subtract_mbd.|
000004a0  02 4e 05 20 0d 02 58 43  49 4e 43 20 64 69 76 69  |.N. ..XCINC divi|
000004b0  64 65 6e 64 20 20 20 20  20 20 20 20 20 20 20 20  |dend            |
000004c0  20 20 20 5c 20 49 6e 63  72 65 61 73 65 20 72 65  |   \ Increase re|
000004d0  73 75 6c 74 20 69 66 20  77 65 20 63 61 6e 20 73  |sult if we can s|
000004e0  75 62 74 72 61 63 74 0d  02 62 3c 4c 44 41 20 64  |ubtract..b<LDA d|
000004f0  69 66 66 5f 77 73 20 20  20 20 20 20 20 20 20 20  |iff_ws          |
00000500  20 20 20 20 20 20 5c 20  61 6e 64 20 75 70 64 61  |      \ and upda|
00000510  74 65 20 70 61 72 74 69  61 6c 20 64 69 76 69 64  |te partial divid|
00000520  65 6e 64 0d 02 6c 3a 53  54 41 20 70 64 77 73 20  |end..l:STA pdws |
00000530  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00000540  20 20 5c 20 66 72 6f 6d  20 64 69 66 66 65 72 65  |  \ from differe|
00000550  6e 63 65 20 77 6f 72 6b  73 70 61 63 65 0d 02 76  |nce workspace..v|
00000560  11 4c 44 41 20 64 69 66  66 5f 77 73 2b 31 0d 02  |.LDA diff_ws+1..|
00000570  80 0e 53 54 41 20 70 64  77 73 2b 31 0d 02 8a 11  |..STA pdws+1....|
00000580  4c 44 41 20 64 69 66 66  5f 77 73 2b 32 0d 02 94  |LDA diff_ws+2...|
00000590  0e 53 54 41 20 70 64 77  73 2b 32 0d 02 9e 11 4c  |.STA pdws+2....L|
000005a0  44 41 20 64 69 66 66 5f  77 73 2b 33 0d 02 a8 0e  |DA diff_ws+3....|
000005b0  53 54 41 20 70 64 77 73  2b 33 0d 02 b2 05 20 0d  |STA pdws+3.... .|
000005c0  02 bc 14 2e 6e 6f 5f 73  75 62 74 72 61 63 74 5f  |....no_subtract_|
000005d0  6d 62 64 0d 02 c6 05 20  0d 02 d0 29 44 45 58 20  |mbd.... ...)DEX |
000005e0  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
000005f0  20 20 20 20 20 20 20 5c  20 4e 65 78 74 20 62 69  |       \ Next bi|
00000600  74 0d 02 da 10 42 4e 45  20 6d 62 64 5f 6c 6f 6f  |t....BNE mbd_loo|
00000610  70 0d 02 e4 05 20 0d 02  ee 07 52 54 53 0d 02 f8  |p.... ....RTS...|
00000620  05 20 0d 03 02 13 2e 65  72 72 6f 72 5f 6d 62 64  |. .....error_mbd|
00000630  5f 7a 65 72 6f 0d 03 0c  05 20 0d 03 16 07 42 52  |_zero.... ....BR|
00000640  4b 0d 03 20 11 4f 50 54  20 a4 45 51 55 42 28 31  |K.. .OPT .EQUB(1|
00000650  38 29 0d 03 2a 2f 4f 50  54 20 a4 45 51 55 53 28  |8)..*/OPT .EQUS(|
00000660  22 44 69 76 69 73 6f 72  20 69 73 20 5a 65 72 6f  |"Divisor is Zero|
00000670  2c 20 70 72 6f 67 72 61  6d 20 65 6e 64 65 64 22  |, program ended"|
00000680  29 0d 03 34 10 4f 50 54  20 a4 45 51 55 42 28 30  |)..4.OPT .EQUB(0|
00000690  29 0d 03 3e 05 20 0d 03  48 20 2e 64 69 76 69 64  |)..>. ..H .divid|
000006a0  65 6e 64 20 20 20 20 20  20 20 4f 50 54 20 a4 45  |end       OPT .E|
000006b0  51 55 44 28 30 29 0d 03  52 20 2e 70 64 77 73 20  |QUD(0)..R .pdws |
000006c0  20 20 20 20 20 20 20 20  20 20 4f 50 54 20 a4 45  |          OPT .E|
000006d0  51 55 44 28 30 29 0d 03  5c 20 2e 64 69 76 69 73  |QUD(0)..\ .divis|
000006e0  6f 72 20 20 20 20 20 20  20 20 4f 50 54 20 a4 45  |or        OPT .E|
000006f0  51 55 44 28 30 29 0d 03  66 20 2e 64 69 66 66 5f  |QUD(0)..f .diff_|
00000700  77 73 20 20 20 20 20 20  20 20 4f 50 54 20 a4 45  |ws        OPT .E|
00000710  51 55 44 28 30 29 0d 03  70 05 20 0d 03 7a 05 5d  |QUD(0)..p. ..z.]|
00000720  0d 03 84 05 ed 0d 03 8e  05 f5 0d 03 98 05 20 0d  |.............. .|
00000730  03 a2 29 e8 20 22 45 6e  74 65 72 20 64 69 76 69  |..). "Enter divi|
00000740  64 65 6e 64 20 74 68 65  6e 20 64 69 76 69 73 6f  |dend then diviso|
00000750  72 20 22 41 25 2c 42 25  0d 03 ac 40 f1 20 22 46  |r "A%,B%...@. "F|
00000760  72 6f 6d 20 42 41 53 49  43 20 71 75 6f 74 69 65  |rom BASIC quotie|
00000770  6e 74 20 69 73 20 22 3b  41 25 81 42 25 3b 22 20  |nt is ";A%.B%;" |
00000780  61 6e 64 20 72 65 6d 61  69 6e 64 65 72 20 69 73  |and remainder is|
00000790  20 22 3b 41 25 83 42 25  0d 03 b6 10 21 64 69 76  | ";A%.B%....!div|
000007a0  69 64 65 6e 64 3d 41 25  0d 03 c0 0f 21 64 69 76  |idend=A%....!div|
000007b0  69 73 6f 72 3d 42 25 0d  03 ca 0b d6 20 63 6f 64  |isor=B%..... cod|
000007c0  65 25 0d 03 d4 44 f1 20  22 46 72 6f 6d 20 43 6f  |e%...D. "From Co|
000007d0  64 65 20 71 75 6f 74 69  65 6e 74 20 69 73 20 22  |de quotient is "|
000007e0  3b 21 64 69 76 69 64 65  6e 64 3b 22 20 61 6e 64  |;!dividend;" and|
000007f0  20 72 65 6d 61 69 6e 64  65 72 20 69 73 20 22 3b  | remainder is ";|
00000800  21 70 64 77 73 27 0d 03  de 06 fd 30 0d 03 e8 05  |!pdws'.....0....|
00000810  20 0d 03 f2 1b 2a 2a 2a  2a 20 45 51 55 61 74 65  | ....**** EQUate|
00000820  20 61 20 42 79 74 65 20  2a 2a 2a 2a 0d 03 fc 0f  | a Byte ****....|
00000830  dd 20 a4 45 51 55 42 28  4e 25 29 0d 04 06 10 3f  |. .EQUB(N%)....?|
00000840  50 25 3d 4e 25 20 83 20  32 35 36 0d 04 10 1e e7  |P%=N% . 256.....|
00000850  20 28 70 61 73 73 25 20  80 20 33 29 20 3d 20 33  | (pass% . 3) = 3|
00000860  20 8c 20 f1 20 7e 3f 50  25 0d 04 1a 0b 50 25 3d  | . . ~?P%....P%=|
00000870  50 25 2b 31 0d 04 24 0a  3d 70 61 73 73 25 0d 04  |P%+1..$.=pass%..|
00000880  2e 05 20 0d 04 38 2c 2a  2a 2a 2a 20 45 51 55 61  |.. ..8,**** EQUa|
00000890  74 65 20 61 20 44 6f 75  62 6c 65 20 77 6f 72 64  |te a Double word|
000008a0  20 28 34 20 62 79 74 65  73 29 20 2a 2a 2a 2a 0d  | (4 bytes) ****.|
000008b0  04 42 0f dd 20 a4 45 51  55 44 28 4e 25 29 0d 04  |.B.. .EQUD(N%)..|
000008c0  4c 08 ea 20 58 25 0d 04  56 0a 21 50 25 3d 4e 25  |L.. X%..V.!P%=N%|
000008d0  0d 04 60 0e e3 20 58 25  3d 30 20 b8 20 33 0d 04  |..`.. X%=0 . 3..|
000008e0  6a 21 e7 20 28 70 61 73  73 25 20 80 20 33 29 20  |j!. (pass% . 3) |
000008f0  3d 20 33 20 8c 20 f1 20  7e 50 25 3f 58 25 3b 0d  |= 3 . . ~P%?X%;.|
00000900  04 74 05 ed 0d 04 7e 19  e7 20 28 70 61 73 73 25  |.t....~.. (pass%|
00000910  20 80 20 33 29 20 3d 20  33 20 8c 20 f1 0d 04 88  | . 3) = 3 . ....|
00000920  0b 50 25 3d 50 25 2b 34  0d 04 92 0a 3d 70 61 73  |.P%=P%+4....=pas|
00000930  73 25 0d 04 9c 05 20 0d  04 a6 1d 2a 2a 2a 2a 20  |s%.... ....**** |
00000940  45 51 55 61 74 65 20 61  20 53 74 72 69 6e 67 20  |EQUate a String |
00000950  2a 2a 2a 2a 0d 04 b0 0f  dd 20 a4 45 51 55 53 28  |****..... .EQUS(|
00000960  4e 24 29 0d 04 ba 08 ea  20 4e 25 0d 04 c4 08 fe  |N$)..... N%.....|
00000970  20 34 30 0d 04 ce 12 e3  20 4e 25 3d 31 20 b8 20  | 40..... N%=1 . |
00000980  a9 28 4e 24 29 0d 04 d8  13 4b 25 3d 97 28 c1 4e  |.(N$)....K%=.(.N|
00000990  24 2c 4e 25 2c 31 29 29  0d 04 e2 10 50 25 3f 28  |$,N%,1))....P%?(|
000009a0  4e 25 2d 31 29 3d 4b 25  0d 04 ec 25 e7 20 28 70  |N%-1)=K%...%. (p|
000009b0  61 73 73 25 20 80 20 33  29 20 3d 20 33 20 8c 20  |ass% . 3) = 3 . |
000009c0  f1 20 7e 50 25 3f 28 4e  25 2d 31 29 3b 0d 04 f6  |. ~P%?(N%-1);...|
000009d0  05 ed 0d 05 00 19 e7 20  28 70 61 73 73 25 20 80  |....... (pass% .|
000009e0  20 33 29 20 3d 20 33 20  8c 20 f1 0d 05 0a 0f 50  | 3) = 3 . .....P|
000009f0  25 3d 50 25 2b a9 28 4e  24 29 0d 05 14 07 fe 20  |%=P%+.(N$)..... |
00000a00  30 0d 05 1e 0a 3d 70 61  73 73 25 0d ff           |0....=pass%..|
00000a0d
OS\BITS/B\OSB15.m0
OS\BITS/B\OSB15.m1
OS\BITS/B\OSB15.m2
OS\BITS/B\OSB15.m4
OS\BITS/B\OSB15.m5