Home » CEEFAX disks » telesoftware5.adl » 26-02-88/B\OSB15
26-02-88/B\OSB15
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » CEEFAX disks » telesoftware5.adl |
Filename: | 26-02-88/B\OSB15 |
Read OK: | ✔ |
File size: | 0A0D bytes |
Load address: | 0800 |
Exec address: | 8023 |
Duplicates
There is 1 duplicate copy of this file in the archive:
- CEEFAX disks » telesoftware2.adl » OS\BITS/B\OSB15
- CEEFAX disks » telesoftware5.adl » 26-02-88/B\OSB15
File contents
10REM OSbits Module B/osb15 20REM Multi-byte Division 30REM Version 1.1 8.3.87 40 50*KEY1MODE3|M|NLIST|M 60 70DIM code% 200 80 90FOR pass% = 0 TO 2 STEP 2 100P% = code% 110 120[OPT pass% 130 140\ Dividend is in dividend, divisor is in divisor 150\ On exit DIV is in dividend , X is destroyed. 160\ pdws holds partial dividend and then MOD 170\ diff_ws is temp ws to hold pdiv-div for testing 180 190LDA divisor 200ORA divisor+1 210ORA divisor+2 220ORA divisor+3 230BEQ error_mbd_zero \ Exit if divisor is zero 240 250LDA #0 \ Set partial dividend ws to zero 260STA pdws 270STA pdws+1 280STA pdws+2 290STA pdws+3 300 310LDX #32 \ 32 bit dividend 320 330.mbd_loop 340 350ASL dividend \ Rotate dividend left into partial dividend 360ROL dividend+1 370ROL dividend+2 380ROL dividend+3 390ROL pdws 400ROL pdws+1 410ROL pdws+2 420ROL pdws+3 430 440SEC 450LDA pdws \ Subtract divisor from partial dividend 460SBC divisor 470STA diff_ws 480LDA pdws+1 490SBC divisor+1 500STA diff_ws+1 510LDA pdws+2 520SBC divisor+2 530STA diff_ws+2 540LDA pdws+3 550SBC divisor+3 560STA diff_ws+3 570 580BCC no_subtract_mbd 590 600INC dividend \ Increase result if we can subtract 610LDA diff_ws \ and update partial dividend 620STA pdws \ from difference workspace 630LDA diff_ws+1 640STA pdws+1 650LDA diff_ws+2 660STA pdws+2 670LDA diff_ws+3 680STA pdws+3 690 700.no_subtract_mbd 710 720DEX \ Next bit 730BNE mbd_loop 740 750RTS 760 770.error_mbd_zero 780 790BRK 800OPT FNEQUB(18) 810OPT FNEQUS("Divisor is Zero, program ended") 820OPT FNEQUB(0) 830 840.dividend OPT FNEQUD(0) 850.pdws OPT FNEQUD(0) 860.divisor OPT FNEQUD(0) 870.diff_ws OPT FNEQUD(0) 880 890] 900NEXT 910REPEAT 920 930INPUT "Enter dividend then divisor "A%,B% 940PRINT "From BASIC quotient is ";A%DIVB%;" and remainder is ";A%MODB% 950!dividend=A% 960!divisor=B% 970CALL code% 980PRINT "From Code quotient is ";!dividend;" and remainder is ";!pdws' 990UNTIL0 1000 1010**** EQUate a Byte **** 1020DEF FNEQUB(N%) 1030?P%=N% MOD 256 1040IF (pass% AND 3) = 3 THEN PRINT ~?P% 1050P%=P%+1 1060=pass% 1070 1080**** EQUate a Double word (4 bytes) **** 1090DEF FNEQUD(N%) 1100LOCAL X% 1110!P%=N% 1120FOR X%=0 TO 3 1130IF (pass% AND 3) = 3 THEN PRINT ~P%?X%; 1140NEXT 1150IF (pass% AND 3) = 3 THEN PRINT 1160P%=P%+4 1170=pass% 1180 1190**** EQUate a String **** 1200DEF FNEQUS(N$) 1210LOCAL N% 1220WIDTH 40 1230FOR N%=1 TO LEN(N$) 1240K%=ASC(MID$(N$,N%,1)) 1250P%?(N%-1)=K% 1260IF (pass% AND 3) = 3 THEN PRINT ~P%?(N%-1); 1270NEXT 1280IF (pass% AND 3) = 3 THEN PRINT 1290P%=P%+LEN(N$) 1300WIDTH 0 1310=pass%
� OSbits Module B/osb15 � Multi-byte Division � Version 1.1 8.3.87 ( 2*KEY1MODE3|M|NLIST|M < F� code% 200 P Z� pass% = 0 � 2 � 2 dP% = code% n x[OPT pass% � �5\ Dividend is in dividend, divisor is in divisor �1\ On exit � is in dividend , X is destroyed. �-\ pdws holds partial dividend and then � �6\ diff_ws is temp ws to hold pdiv-div for testing � �LDA divisor ��A divisor+1 ��A divisor+2 ��A divisor+3 �8BEQ error_mbd_zero \ Exit if divisor is zero � �@LDA #0 \ Set partial dividend ws to zero STA pdws STA pdws+1 STA pdws+2 "STA pdws+3 , 60LDX #32 \ 32 bit dividend @ J .mbd_loop T ^KASL dividend \ Rotate dividend left into partial dividend hROL dividend+1 rROL dividend+2 |ROL dividend+3 �ROL pdws �ROL pdws+1 �ROL pdws+2 �ROL pdws+3 � �SEC �GLDA pdws \ Subtract divisor from partial dividend �SBC divisor �STA diff_ws �LDA pdws+1 �SBC divisor+1 �STA diff_ws+1 �LDA pdws+2 SBC divisor+2 STA diff_ws+2 LDA pdws+3 &SBC divisor+3 0STA diff_ws+3 : DBCC no_subtract_mbd N XCINC dividend \ Increase result if we can subtract b<LDA diff_ws \ and update partial dividend l:STA pdws \ from difference workspace vLDA diff_ws+1 �STA pdws+1 �LDA diff_ws+2 �STA pdws+2 �LDA diff_ws+3 �STA pdws+3 � �.no_subtract_mbd � �)DEX \ Next bit �BNE mbd_loop � �RTS � .error_mbd_zero BRK OPT �EQUB(18) */OPT �EQUS("Divisor is Zero, program ended") 4OPT �EQUB(0) > H .dividend OPT �EQUD(0) R .pdws OPT �EQUD(0) \ .divisor OPT �EQUD(0) f .diff_ws OPT �EQUD(0) p z] �� �� � �)� "Enter dividend then divisor "A%,B% �@� "From BASIC quotient is ";A%�B%;" and remainder is ";A%�B% �!dividend=A% �!divisor=B% �� code% �D� "From Code quotient is ";!dividend;" and remainder is ";!pdws' ��0 � �**** EQUate a Byte **** �� �EQUB(N%) ?P%=N% � 256 � (pass% � 3) = 3 � � ~?P% P%=P%+1 $ =pass% . 8,**** EQUate a Double word (4 bytes) **** B� �EQUD(N%) L� X% V !P%=N% `� X%=0 � 3 j!� (pass% � 3) = 3 � � ~P%?X%; t� ~� (pass% � 3) = 3 � � �P%=P%+4 � =pass% � �**** EQUate a String **** �� �EQUS(N$) �� N% �� 40 �� N%=1 � �(N$) �K%=�(�N$,N%,1)) �P%?(N%-1)=K% �%� (pass% � 3) = 3 � � ~P%?(N%-1); �� � (pass% � 3) = 3 � � P%=P%+�(N$) � 0 =pass% �
00000000 0d 00 0a 1b f4 20 4f 53 62 69 74 73 20 4d 6f 64 |..... OSbits Mod| 00000010 75 6c 65 20 42 2f 6f 73 62 31 35 0d 00 14 19 f4 |ule B/osb15.....| 00000020 20 4d 75 6c 74 69 2d 62 79 74 65 20 44 69 76 69 | Multi-byte Divi| 00000030 73 69 6f 6e 0d 00 1e 18 f4 20 56 65 72 73 69 6f |sion..... Versio| 00000040 6e 20 31 2e 31 20 38 2e 33 2e 38 37 0d 00 28 05 |n 1.1 8.3.87..(.| 00000050 20 0d 00 32 18 2a 4b 45 59 31 4d 4f 44 45 33 7c | ..2.*KEY1MODE3|| 00000060 4d 7c 4e 4c 49 53 54 7c 4d 0d 00 3c 05 20 0d 00 |M|NLIST|M..<. ..| 00000070 46 0f de 20 63 6f 64 65 25 20 32 30 30 0d 00 50 |F.. code% 200..P| 00000080 05 20 0d 00 5a 17 e3 20 70 61 73 73 25 20 3d 20 |. ..Z.. pass% = | 00000090 30 20 b8 20 32 20 88 20 32 0d 00 64 0e 50 25 20 |0 . 2 . 2..d.P% | 000000a0 3d 20 63 6f 64 65 25 0d 00 6e 05 20 0d 00 78 0e |= code%..n. ..x.| 000000b0 5b 4f 50 54 20 70 61 73 73 25 0d 00 82 05 20 0d |[OPT pass%.... .| 000000c0 00 8c 35 5c 20 20 44 69 76 69 64 65 6e 64 20 69 |..5\ Dividend i| 000000d0 73 20 69 6e 20 64 69 76 69 64 65 6e 64 2c 20 64 |s in dividend, d| 000000e0 69 76 69 73 6f 72 20 69 73 20 69 6e 20 64 69 76 |ivisor is in div| 000000f0 69 73 6f 72 0d 00 96 31 5c 20 20 4f 6e 20 65 78 |isor...1\ On ex| 00000100 69 74 20 81 20 69 73 20 69 6e 20 64 69 76 69 64 |it . is in divid| 00000110 65 6e 64 20 2c 20 58 20 69 73 20 64 65 73 74 72 |end , X is destr| 00000120 6f 79 65 64 2e 0d 00 a0 2d 5c 20 20 70 64 77 73 |oyed....-\ pdws| 00000130 20 68 6f 6c 64 73 20 70 61 72 74 69 61 6c 20 64 | holds partial d| 00000140 69 76 69 64 65 6e 64 20 61 6e 64 20 74 68 65 6e |ividend and then| 00000150 20 83 0d 00 aa 36 5c 20 20 64 69 66 66 5f 77 73 | ....6\ diff_ws| 00000160 20 69 73 20 74 65 6d 70 20 77 73 20 74 6f 20 68 | is temp ws to h| 00000170 6f 6c 64 20 70 64 69 76 2d 64 69 76 20 66 6f 72 |old pdiv-div for| 00000180 20 74 65 73 74 69 6e 67 0d 00 b4 05 20 0d 00 be | testing.... ...| 00000190 0f 4c 44 41 20 64 69 76 69 73 6f 72 0d 00 c8 10 |.LDA divisor....| 000001a0 84 41 20 64 69 76 69 73 6f 72 2b 31 0d 00 d2 10 |.A divisor+1....| 000001b0 84 41 20 64 69 76 69 73 6f 72 2b 32 0d 00 dc 10 |.A divisor+2....| 000001c0 84 41 20 64 69 76 69 73 6f 72 2b 33 0d 00 e6 38 |.A divisor+3...8| 000001d0 42 45 51 20 65 72 72 6f 72 5f 6d 62 64 5f 7a 65 |BEQ error_mbd_ze| 000001e0 72 6f 20 20 20 20 20 20 20 20 20 5c 20 45 78 69 |ro \ Exi| 000001f0 74 20 69 66 20 64 69 76 69 73 6f 72 20 69 73 20 |t if divisor is | 00000200 7a 65 72 6f 0d 00 f0 05 20 0d 00 fa 40 4c 44 41 |zero.... ...@LDA| 00000210 20 23 30 20 20 20 20 20 20 20 20 20 20 20 20 20 | #0 | 00000220 20 20 20 20 20 20 20 20 5c 20 53 65 74 20 70 61 | \ Set pa| 00000230 72 74 69 61 6c 20 64 69 76 69 64 65 6e 64 20 77 |rtial dividend w| 00000240 73 20 74 6f 20 7a 65 72 6f 0d 01 04 0c 53 54 41 |s to zero....STA| 00000250 20 70 64 77 73 0d 01 0e 0e 53 54 41 20 70 64 77 | pdws....STA pdw| 00000260 73 2b 31 0d 01 18 0e 53 54 41 20 70 64 77 73 2b |s+1....STA pdws+| 00000270 32 0d 01 22 0e 53 54 41 20 70 64 77 73 2b 33 0d |2..".STA pdws+3.| 00000280 01 2c 05 20 0d 01 36 30 4c 44 58 20 23 33 32 20 |.,. ..60LDX #32 | 00000290 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 000002a0 20 20 20 5c 20 33 32 20 62 69 74 20 64 69 76 69 | \ 32 bit divi| 000002b0 64 65 6e 64 0d 01 40 05 20 0d 01 4a 0d 2e 6d 62 |dend..@. ..J..mb| 000002c0 64 5f 6c 6f 6f 70 0d 01 54 05 20 0d 01 5e 4b 41 |d_loop..T. ..^KA| 000002d0 53 4c 20 64 69 76 69 64 65 6e 64 20 20 20 20 20 |SL dividend | 000002e0 20 20 20 20 20 20 20 20 20 20 5c 20 52 6f 74 61 | \ Rota| 000002f0 74 65 20 64 69 76 69 64 65 6e 64 20 6c 65 66 74 |te dividend left| 00000300 20 69 6e 74 6f 20 70 61 72 74 69 61 6c 20 64 69 | into partial di| 00000310 76 69 64 65 6e 64 0d 01 68 12 52 4f 4c 20 64 69 |vidend..h.ROL di| 00000320 76 69 64 65 6e 64 2b 31 0d 01 72 12 52 4f 4c 20 |vidend+1..r.ROL | 00000330 64 69 76 69 64 65 6e 64 2b 32 0d 01 7c 12 52 4f |dividend+2..|.RO| 00000340 4c 20 64 69 76 69 64 65 6e 64 2b 33 0d 01 86 0c |L dividend+3....| 00000350 52 4f 4c 20 70 64 77 73 0d 01 90 0e 52 4f 4c 20 |ROL pdws....ROL | 00000360 70 64 77 73 2b 31 0d 01 9a 0e 52 4f 4c 20 70 64 |pdws+1....ROL pd| 00000370 77 73 2b 32 0d 01 a4 0e 52 4f 4c 20 70 64 77 73 |ws+2....ROL pdws| 00000380 2b 33 0d 01 ae 05 20 0d 01 b8 07 53 45 43 0d 01 |+3.... ....SEC..| 00000390 c2 47 4c 44 41 20 70 64 77 73 20 20 20 20 20 20 |.GLDA pdws | 000003a0 20 20 20 20 20 20 20 20 20 20 20 20 20 5c 20 53 | \ S| 000003b0 75 62 74 72 61 63 74 20 64 69 76 69 73 6f 72 20 |ubtract divisor | 000003c0 66 72 6f 6d 20 70 61 72 74 69 61 6c 20 64 69 76 |from partial div| 000003d0 69 64 65 6e 64 0d 01 cc 0f 53 42 43 20 64 69 76 |idend....SBC div| 000003e0 69 73 6f 72 0d 01 d6 0f 53 54 41 20 64 69 66 66 |isor....STA diff| 000003f0 5f 77 73 0d 01 e0 0e 4c 44 41 20 70 64 77 73 2b |_ws....LDA pdws+| 00000400 31 0d 01 ea 11 53 42 43 20 64 69 76 69 73 6f 72 |1....SBC divisor| 00000410 2b 31 0d 01 f4 11 53 54 41 20 64 69 66 66 5f 77 |+1....STA diff_w| 00000420 73 2b 31 0d 01 fe 0e 4c 44 41 20 70 64 77 73 2b |s+1....LDA pdws+| 00000430 32 0d 02 08 11 53 42 43 20 64 69 76 69 73 6f 72 |2....SBC divisor| 00000440 2b 32 0d 02 12 11 53 54 41 20 64 69 66 66 5f 77 |+2....STA diff_w| 00000450 73 2b 32 0d 02 1c 0e 4c 44 41 20 70 64 77 73 2b |s+2....LDA pdws+| 00000460 33 0d 02 26 11 53 42 43 20 64 69 76 69 73 6f 72 |3..&.SBC divisor| 00000470 2b 33 0d 02 30 11 53 54 41 20 64 69 66 66 5f 77 |+3..0.STA diff_w| 00000480 73 2b 33 0d 02 3a 05 20 0d 02 44 17 42 43 43 20 |s+3..:. ..D.BCC | 00000490 6e 6f 5f 73 75 62 74 72 61 63 74 5f 6d 62 64 0d |no_subtract_mbd.| 000004a0 02 4e 05 20 0d 02 58 43 49 4e 43 20 64 69 76 69 |.N. ..XCINC divi| 000004b0 64 65 6e 64 20 20 20 20 20 20 20 20 20 20 20 20 |dend | 000004c0 20 20 20 5c 20 49 6e 63 72 65 61 73 65 20 72 65 | \ Increase re| 000004d0 73 75 6c 74 20 69 66 20 77 65 20 63 61 6e 20 73 |sult if we can s| 000004e0 75 62 74 72 61 63 74 0d 02 62 3c 4c 44 41 20 64 |ubtract..b<LDA d| 000004f0 69 66 66 5f 77 73 20 20 20 20 20 20 20 20 20 20 |iff_ws | 00000500 20 20 20 20 20 20 5c 20 61 6e 64 20 75 70 64 61 | \ and upda| 00000510 74 65 20 70 61 72 74 69 61 6c 20 64 69 76 69 64 |te partial divid| 00000520 65 6e 64 0d 02 6c 3a 53 54 41 20 70 64 77 73 20 |end..l:STA pdws | 00000530 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00000540 20 20 5c 20 66 72 6f 6d 20 64 69 66 66 65 72 65 | \ from differe| 00000550 6e 63 65 20 77 6f 72 6b 73 70 61 63 65 0d 02 76 |nce workspace..v| 00000560 11 4c 44 41 20 64 69 66 66 5f 77 73 2b 31 0d 02 |.LDA diff_ws+1..| 00000570 80 0e 53 54 41 20 70 64 77 73 2b 31 0d 02 8a 11 |..STA pdws+1....| 00000580 4c 44 41 20 64 69 66 66 5f 77 73 2b 32 0d 02 94 |LDA diff_ws+2...| 00000590 0e 53 54 41 20 70 64 77 73 2b 32 0d 02 9e 11 4c |.STA pdws+2....L| 000005a0 44 41 20 64 69 66 66 5f 77 73 2b 33 0d 02 a8 0e |DA diff_ws+3....| 000005b0 53 54 41 20 70 64 77 73 2b 33 0d 02 b2 05 20 0d |STA pdws+3.... .| 000005c0 02 bc 14 2e 6e 6f 5f 73 75 62 74 72 61 63 74 5f |....no_subtract_| 000005d0 6d 62 64 0d 02 c6 05 20 0d 02 d0 29 44 45 58 20 |mbd.... ...)DEX | 000005e0 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 000005f0 20 20 20 20 20 20 20 5c 20 4e 65 78 74 20 62 69 | \ Next bi| 00000600 74 0d 02 da 10 42 4e 45 20 6d 62 64 5f 6c 6f 6f |t....BNE mbd_loo| 00000610 70 0d 02 e4 05 20 0d 02 ee 07 52 54 53 0d 02 f8 |p.... ....RTS...| 00000620 05 20 0d 03 02 13 2e 65 72 72 6f 72 5f 6d 62 64 |. .....error_mbd| 00000630 5f 7a 65 72 6f 0d 03 0c 05 20 0d 03 16 07 42 52 |_zero.... ....BR| 00000640 4b 0d 03 20 11 4f 50 54 20 a4 45 51 55 42 28 31 |K.. .OPT .EQUB(1| 00000650 38 29 0d 03 2a 2f 4f 50 54 20 a4 45 51 55 53 28 |8)..*/OPT .EQUS(| 00000660 22 44 69 76 69 73 6f 72 20 69 73 20 5a 65 72 6f |"Divisor is Zero| 00000670 2c 20 70 72 6f 67 72 61 6d 20 65 6e 64 65 64 22 |, program ended"| 00000680 29 0d 03 34 10 4f 50 54 20 a4 45 51 55 42 28 30 |)..4.OPT .EQUB(0| 00000690 29 0d 03 3e 05 20 0d 03 48 20 2e 64 69 76 69 64 |)..>. ..H .divid| 000006a0 65 6e 64 20 20 20 20 20 20 20 4f 50 54 20 a4 45 |end OPT .E| 000006b0 51 55 44 28 30 29 0d 03 52 20 2e 70 64 77 73 20 |QUD(0)..R .pdws | 000006c0 20 20 20 20 20 20 20 20 20 20 4f 50 54 20 a4 45 | OPT .E| 000006d0 51 55 44 28 30 29 0d 03 5c 20 2e 64 69 76 69 73 |QUD(0)..\ .divis| 000006e0 6f 72 20 20 20 20 20 20 20 20 4f 50 54 20 a4 45 |or OPT .E| 000006f0 51 55 44 28 30 29 0d 03 66 20 2e 64 69 66 66 5f |QUD(0)..f .diff_| 00000700 77 73 20 20 20 20 20 20 20 20 4f 50 54 20 a4 45 |ws OPT .E| 00000710 51 55 44 28 30 29 0d 03 70 05 20 0d 03 7a 05 5d |QUD(0)..p. ..z.]| 00000720 0d 03 84 05 ed 0d 03 8e 05 f5 0d 03 98 05 20 0d |.............. .| 00000730 03 a2 29 e8 20 22 45 6e 74 65 72 20 64 69 76 69 |..). "Enter divi| 00000740 64 65 6e 64 20 74 68 65 6e 20 64 69 76 69 73 6f |dend then diviso| 00000750 72 20 22 41 25 2c 42 25 0d 03 ac 40 f1 20 22 46 |r "A%,B%...@. "F| 00000760 72 6f 6d 20 42 41 53 49 43 20 71 75 6f 74 69 65 |rom BASIC quotie| 00000770 6e 74 20 69 73 20 22 3b 41 25 81 42 25 3b 22 20 |nt is ";A%.B%;" | 00000780 61 6e 64 20 72 65 6d 61 69 6e 64 65 72 20 69 73 |and remainder is| 00000790 20 22 3b 41 25 83 42 25 0d 03 b6 10 21 64 69 76 | ";A%.B%....!div| 000007a0 69 64 65 6e 64 3d 41 25 0d 03 c0 0f 21 64 69 76 |idend=A%....!div| 000007b0 69 73 6f 72 3d 42 25 0d 03 ca 0b d6 20 63 6f 64 |isor=B%..... cod| 000007c0 65 25 0d 03 d4 44 f1 20 22 46 72 6f 6d 20 43 6f |e%...D. "From Co| 000007d0 64 65 20 71 75 6f 74 69 65 6e 74 20 69 73 20 22 |de quotient is "| 000007e0 3b 21 64 69 76 69 64 65 6e 64 3b 22 20 61 6e 64 |;!dividend;" and| 000007f0 20 72 65 6d 61 69 6e 64 65 72 20 69 73 20 22 3b | remainder is ";| 00000800 21 70 64 77 73 27 0d 03 de 06 fd 30 0d 03 e8 05 |!pdws'.....0....| 00000810 20 0d 03 f2 1b 2a 2a 2a 2a 20 45 51 55 61 74 65 | ....**** EQUate| 00000820 20 61 20 42 79 74 65 20 2a 2a 2a 2a 0d 03 fc 0f | a Byte ****....| 00000830 dd 20 a4 45 51 55 42 28 4e 25 29 0d 04 06 10 3f |. .EQUB(N%)....?| 00000840 50 25 3d 4e 25 20 83 20 32 35 36 0d 04 10 1e e7 |P%=N% . 256.....| 00000850 20 28 70 61 73 73 25 20 80 20 33 29 20 3d 20 33 | (pass% . 3) = 3| 00000860 20 8c 20 f1 20 7e 3f 50 25 0d 04 1a 0b 50 25 3d | . . ~?P%....P%=| 00000870 50 25 2b 31 0d 04 24 0a 3d 70 61 73 73 25 0d 04 |P%+1..$.=pass%..| 00000880 2e 05 20 0d 04 38 2c 2a 2a 2a 2a 20 45 51 55 61 |.. ..8,**** EQUa| 00000890 74 65 20 61 20 44 6f 75 62 6c 65 20 77 6f 72 64 |te a Double word| 000008a0 20 28 34 20 62 79 74 65 73 29 20 2a 2a 2a 2a 0d | (4 bytes) ****.| 000008b0 04 42 0f dd 20 a4 45 51 55 44 28 4e 25 29 0d 04 |.B.. .EQUD(N%)..| 000008c0 4c 08 ea 20 58 25 0d 04 56 0a 21 50 25 3d 4e 25 |L.. X%..V.!P%=N%| 000008d0 0d 04 60 0e e3 20 58 25 3d 30 20 b8 20 33 0d 04 |..`.. X%=0 . 3..| 000008e0 6a 21 e7 20 28 70 61 73 73 25 20 80 20 33 29 20 |j!. (pass% . 3) | 000008f0 3d 20 33 20 8c 20 f1 20 7e 50 25 3f 58 25 3b 0d |= 3 . . ~P%?X%;.| 00000900 04 74 05 ed 0d 04 7e 19 e7 20 28 70 61 73 73 25 |.t....~.. (pass%| 00000910 20 80 20 33 29 20 3d 20 33 20 8c 20 f1 0d 04 88 | . 3) = 3 . ....| 00000920 0b 50 25 3d 50 25 2b 34 0d 04 92 0a 3d 70 61 73 |.P%=P%+4....=pas| 00000930 73 25 0d 04 9c 05 20 0d 04 a6 1d 2a 2a 2a 2a 20 |s%.... ....**** | 00000940 45 51 55 61 74 65 20 61 20 53 74 72 69 6e 67 20 |EQUate a String | 00000950 2a 2a 2a 2a 0d 04 b0 0f dd 20 a4 45 51 55 53 28 |****..... .EQUS(| 00000960 4e 24 29 0d 04 ba 08 ea 20 4e 25 0d 04 c4 08 fe |N$)..... N%.....| 00000970 20 34 30 0d 04 ce 12 e3 20 4e 25 3d 31 20 b8 20 | 40..... N%=1 . | 00000980 a9 28 4e 24 29 0d 04 d8 13 4b 25 3d 97 28 c1 4e |.(N$)....K%=.(.N| 00000990 24 2c 4e 25 2c 31 29 29 0d 04 e2 10 50 25 3f 28 |$,N%,1))....P%?(| 000009a0 4e 25 2d 31 29 3d 4b 25 0d 04 ec 25 e7 20 28 70 |N%-1)=K%...%. (p| 000009b0 61 73 73 25 20 80 20 33 29 20 3d 20 33 20 8c 20 |ass% . 3) = 3 . | 000009c0 f1 20 7e 50 25 3f 28 4e 25 2d 31 29 3b 0d 04 f6 |. ~P%?(N%-1);...| 000009d0 05 ed 0d 05 00 19 e7 20 28 70 61 73 73 25 20 80 |....... (pass% .| 000009e0 20 33 29 20 3d 20 33 20 8c 20 f1 0d 05 0a 0f 50 | 3) = 3 . .....P| 000009f0 25 3d 50 25 2b a9 28 4e 24 29 0d 05 14 07 fe 20 |%=P%+.(N$)..... | 00000a00 30 0d 05 1e 0a 3d 70 61 73 73 25 0d ff |0....=pass%..| 00000a0d