Home » Archimedes archive » Archimedes World » AW-1996-07.adf » !Ignotum_Ignotum » !Ignotum/Formulae/Quad

!Ignotum/Formulae/Quad

This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.

Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.

Tape/disk: Home » Archimedes archive » Archimedes World » AW-1996-07.adf » !Ignotum_Ignotum
Filename: !Ignotum/Formulae/Quad
Read OK:
File size: 0288 bytes
Load address: 0000
Exec address: 0000
File contents
# Maths > Quadratics
x=(-b�(b�-4ac)^�)/2a
This is called the quadratic formula where
ax�+bx+c=0. It can give two answers
(because of the �). If the curve 
y=ax�+bx+c was plotted then it would cross
the x-axis at these values of x.
y=(4ac-b�)/4a
Where:
y=y co-ordinate of the peak of the graph
(highest/lowest point on the curve)
a, b and c come from the general 
quadratic, y=ax�+bx+c
x=-b/2a
An equation for the line of symmetry of
the curve is formed where a, b and c are
from the general quadratic, y=ax�+bx+c.






































































































































00000000  23 20 4d 61 74 68 73 20  3e 20 51 75 61 64 72 61  |# Maths > Quadra|
00000010  74 69 63 73 0a 78 3d 28  2d 62 b1 28 62 b2 2d 34  |tics.x=(-b.(b.-4|
00000020  61 63 29 5e bd 29 2f 32  61 0a 54 68 69 73 20 69  |ac)^.)/2a.This i|
00000030  73 20 63 61 6c 6c 65 64  20 74 68 65 20 71 75 61  |s called the qua|
00000040  64 72 61 74 69 63 20 66  6f 72 6d 75 6c 61 20 77  |dratic formula w|
00000050  68 65 72 65 0a 61 78 b2  2b 62 78 2b 63 3d 30 2e  |here.ax.+bx+c=0.|
00000060  20 49 74 20 63 61 6e 20  67 69 76 65 20 74 77 6f  | It can give two|
00000070  20 61 6e 73 77 65 72 73  0a 28 62 65 63 61 75 73  | answers.(becaus|
00000080  65 20 6f 66 20 74 68 65  20 b1 29 2e 20 49 66 20  |e of the .). If |
00000090  74 68 65 20 63 75 72 76  65 20 0a 79 3d 61 78 b2  |the curve .y=ax.|
000000a0  2b 62 78 2b 63 20 77 61  73 20 70 6c 6f 74 74 65  |+bx+c was plotte|
000000b0  64 20 74 68 65 6e 20 69  74 20 77 6f 75 6c 64 20  |d then it would |
000000c0  63 72 6f 73 73 0a 74 68  65 20 78 2d 61 78 69 73  |cross.the x-axis|
000000d0  20 61 74 20 74 68 65 73  65 20 76 61 6c 75 65 73  | at these values|
000000e0  20 6f 66 20 78 2e 0a 79  3d 28 34 61 63 2d 62 b2  | of x..y=(4ac-b.|
000000f0  29 2f 34 61 0a 57 68 65  72 65 3a 0a 79 3d 79 20  |)/4a.Where:.y=y |
00000100  63 6f 2d 6f 72 64 69 6e  61 74 65 20 6f 66 20 74  |co-ordinate of t|
00000110  68 65 20 70 65 61 6b 20  6f 66 20 74 68 65 20 67  |he peak of the g|
00000120  72 61 70 68 0a 28 68 69  67 68 65 73 74 2f 6c 6f  |raph.(highest/lo|
00000130  77 65 73 74 20 70 6f 69  6e 74 20 6f 6e 20 74 68  |west point on th|
00000140  65 20 63 75 72 76 65 29  0a 61 2c 20 62 20 61 6e  |e curve).a, b an|
00000150  64 20 63 20 63 6f 6d 65  20 66 72 6f 6d 20 74 68  |d c come from th|
00000160  65 20 67 65 6e 65 72 61  6c 20 0a 71 75 61 64 72  |e general .quadr|
00000170  61 74 69 63 2c 20 79 3d  61 78 b2 2b 62 78 2b 63  |atic, y=ax.+bx+c|
00000180  0a 78 3d 2d 62 2f 32 61  0a 41 6e 20 65 71 75 61  |.x=-b/2a.An equa|
00000190  74 69 6f 6e 20 66 6f 72  20 74 68 65 20 6c 69 6e  |tion for the lin|
000001a0  65 20 6f 66 20 73 79 6d  6d 65 74 72 79 20 6f 66  |e of symmetry of|
000001b0  0a 74 68 65 20 63 75 72  76 65 20 69 73 20 66 6f  |.the curve is fo|
000001c0  72 6d 65 64 20 77 68 65  72 65 20 61 2c 20 62 20  |rmed where a, b |
000001d0  61 6e 64 20 63 20 61 72  65 0a 66 72 6f 6d 20 74  |and c are.from t|
000001e0  68 65 20 67 65 6e 65 72  61 6c 20 71 75 61 64 72  |he general quadr|
000001f0  61 74 69 63 2c 20 79 3d  61 78 b2 2b 62 78 2b 63  |atic, y=ax.+bx+c|
00000200  2e 0a 0a 0a 0a 0a 0a 0a  0a 0a 0a 0a 0a 0a 0a 0a  |................|
00000210  0a 0a 0a 0a 0a 0a 0a 0a  0a 0a 0a 0a 0a 0a 0a 0a  |................|
*
00000280  0a 0a 0a 0a 0a 0a 0a 0a                           |........|
00000288