Home » Archimedes archive » Archimedes World » AW-1996-07.adf » !Ignotum_Ignotum » !Ignotum/Formulae/Indi
!Ignotum/Formulae/Indi
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » Archimedes archive » Archimedes World » AW-1996-07.adf » !Ignotum_Ignotum |
Filename: | !Ignotum/Formulae/Indi |
Read OK: | ✔ |
File size: | 0227 bytes |
Load address: | 0000 |
Exec address: | 0000 |
File contents
# Maths > Indices x^a � x^b=x^(a+b) When multiplying, you add the indices together. x^a/x^b=x^(a-b) When dividing, you subtract the indices. (x^a)^b=x^(ab) Remember you multiply a and b, not add them: (x�)�=x� x� x�=x^6 1/x^a=x^-a sqr(x)=x^� This is used a great deal in this program as the symbol for the square root is not available. Note also that it continues, so the cube root=x^(1/3) and the nth root=x^(1/n).
00000000 23 20 4d 61 74 68 73 20 3e 20 49 6e 64 69 63 65 |# Maths > Indice| 00000010 73 0a 78 5e 61 20 d7 20 78 5e 62 3d 78 5e 28 61 |s.x^a . x^b=x^(a| 00000020 2b 62 29 0a 57 68 65 6e 20 6d 75 6c 74 69 70 6c |+b).When multipl| 00000030 79 69 6e 67 2c 20 79 6f 75 20 61 64 64 20 74 68 |ying, you add th| 00000040 65 20 69 6e 64 69 63 65 73 0a 74 6f 67 65 74 68 |e indices.togeth| 00000050 65 72 2e 0a 0a 0a 0a 78 5e 61 2f 78 5e 62 3d 78 |er.....x^a/x^b=x| 00000060 5e 28 61 2d 62 29 0a 57 68 65 6e 20 64 69 76 69 |^(a-b).When divi| 00000070 64 69 6e 67 2c 20 79 6f 75 20 73 75 62 74 72 61 |ding, you subtra| 00000080 63 74 20 74 68 65 20 69 6e 64 69 63 65 73 2e 0a |ct the indices..| 00000090 0a 0a 0a 0a 28 78 5e 61 29 5e 62 3d 78 5e 28 61 |....(x^a)^b=x^(a| 000000a0 62 29 0a 52 65 6d 65 6d 62 65 72 20 79 6f 75 20 |b).Remember you | 000000b0 6d 75 6c 74 69 70 6c 79 20 61 20 61 6e 64 20 62 |multiply a and b| 000000c0 2c 20 6e 6f 74 20 61 64 64 0a 74 68 65 6d 3a 20 |, not add.them: | 000000d0 28 78 b2 29 b3 3d 78 b2 20 78 b2 20 78 b2 3d 78 |(x.).=x. x. x.=x| 000000e0 5e 36 0a 0a 0a 0a 31 2f 78 5e 61 3d 78 5e 2d 61 |^6....1/x^a=x^-a| 000000f0 0a 0a 0a 0a 0a 0a 73 71 72 28 78 29 3d 78 5e bd |......sqr(x)=x^.| 00000100 0a 54 68 69 73 20 69 73 20 75 73 65 64 20 61 20 |.This is used a | 00000110 67 72 65 61 74 20 64 65 61 6c 20 69 6e 20 74 68 |great deal in th| 00000120 69 73 20 70 72 6f 67 72 61 6d 0a 61 73 20 74 68 |is program.as th| 00000130 65 20 73 79 6d 62 6f 6c 20 66 6f 72 20 74 68 65 |e symbol for the| 00000140 20 73 71 75 61 72 65 20 72 6f 6f 74 20 69 73 20 | square root is | 00000150 6e 6f 74 0a 61 76 61 69 6c 61 62 6c 65 2e 0a 4e |not.available..N| 00000160 6f 74 65 20 61 6c 73 6f 20 74 68 61 74 20 69 74 |ote also that it| 00000170 20 63 6f 6e 74 69 6e 75 65 73 2c 20 73 6f 20 74 | continues, so t| 00000180 68 65 20 63 75 62 65 0a 72 6f 6f 74 3d 78 5e 28 |he cube.root=x^(| 00000190 31 2f 33 29 20 61 6e 64 20 74 68 65 20 6e 74 68 |1/3) and the nth| 000001a0 20 72 6f 6f 74 3d 78 5e 28 31 2f 6e 29 2e 0a 0a | root=x^(1/n)...| 000001b0 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a |................| * 00000220 0a 0a 0a 0a 0a 0a 0a |.......| 00000227