Home » Archimedes archive » Archimedes World » archimedes_world_volume_15_issue_5_scp.adf » AcornAns/c/main
AcornAns/c/main
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » Archimedes archive » Archimedes World » archimedes_world_volume_15_issue_5_scp.adf |
Filename: | AcornAns/c/main |
Read OK: | ✔ |
File size: | 3A2F bytes |
Load address: | FFFFFF48 |
Exec address: | 285E9F9E |
File contents
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <time.h> #include <math.h> #include <stdarg.h> #include "werr.h" #include "os.h" #include "kernel.h" #include "akbd.h" #include "bbc.h" #include "pointer.h" #include "visdelay.h" #include "swis.h" #define lone 16 #define one (1<<lone) #define fptod(i) ( (int)(0.5+i/6.5536)/10000.0 ) #define dtofp(i) ( (int)(0.5+i*one) ) #define abs(a) ((a)<0 ? -(a) : (a)) typedef enum {multi, nonmulti} monitor; #define werrterm 0 /*principal quantities unbracketed, derived quantities bracketed:*/ typedef struct { int x, y, r, r2; /*position, radius (& radius squared)*/ } pillar_data; typedef struct bds { int x, y, xn, yn; /*position (& new position)*/ int vx, vy, mv; /*velocity (& speed)*/ int dm, im; /*distance squared to nearest boid & index of that boid*/ int ax, ay, avx, avy, ac; /*accumulated relative-positions/velocities of boids in locale & number of such*/ struct bds *previous, *next; /*for doubly linked list representation*/ } boid_data; typedef struct node { struct node *next; } gnode; extern int rbbcinc(int r, int k); extern int div_frac16(int number, int divisor); extern int mul_frac16(int x, int a); extern int mul_frac16c(int x, int a); extern int sqrt_frac16(unsigned int x); extern int gauss16(void); extern void sgauss16(int seed); extern int rand16(void); extern int randu16(void); extern void srand16(int seed); extern int cos16(int a); extern int sin16(int a); extern int exp16(int a); extern int ln16(int a); extern int pow16(int a, int b); extern int acs16(int a); extern int asn16(int a); extern int sig16(int a); extern int square1610(int x); extern void n2fastloop(void); /*multiplies two 16 bit fixed point numbers, returning a 10 bit fixed point number, hence can represent numbers upto 1448*1448 eg result of mul1610(1448*one,1448*one); useful for arithmetic with squares of positions or velocities*/ #define mul1610(a,b) (mul_frac16((a)/8,(b)/8)) /*returns 16 bfp square root of 10 bfp argument*/ #define sqrt1016(a) (8*sqrt_frac16((a))) BOOL vga; int mode; int bank; BOOL single_step; int tn2, ttotal; int n, g; int rc, rm, rl, rc2, rl2; int pn, mc; pillar_data *pillar=0; boid_data *boid=0, *h; boid_data zlow, zhigh; gnode **grid=0; gnode *boidgnode=0; int maxgx, maxgy, gsize, lgsize, grl; BOOL *gmask=0; #define xtogi(v) ( (640*one+(v)) >> (lone+lgsize) ) #define ytogi(v) ( (512*one+(v)) >> (lone+lgsize) ) monitor read_monitor_type(void) { int r2; os_swi3r(6, 161,133,0, 0,0,&r2); if ((r2/4 & 3) == 1) return multi; else return nonmulti; } void tidy(void) { os_swi2(OS_Byte, 112, 1); os_swi2(OS_Byte, 113, 1); } void swap_banks(void) { os_swi2(OS_Byte, 113, bank); os_swi2(OS_Byte, 112, bank=3-bank); } void prepare_screen(void) { bank=1; os_swi2(OS_Byte, 112, bank); os_swi2(OS_Byte, 113, 3-bank); } void press(int i) { for (;bbc_inkey(i)!=-1;); return; } void release(int i) { for (;bbc_inkey(i)!=0;); return; } BOOL kbhit(void) { return bbc_inkey(-99)==-1; } void step(void) { if (bbc_inkey(-82)) single_step=TRUE; if (single_step) for (; single_step;) { if (bbc_inkey(-82)) { release(-82); break; } if (bbc_inkey(-83)) single_step=FALSE; } } void seed_rand16(void) { int v=clock() & 0xff; v|=v<<8; srand16(v | v<<16); } /*returns 16bfp magnitude of vector with 16bfp components x & y*/ int magnitude(int x, int y) { int f = sqrt1016(mul1610(x,x)+mul1610(y,y)); if (f<abs(x)) f=abs(x); /*compensate for some nasty underflow problems*/ if (f<abs(y)) f=abs(y); /*with above fixed point arithmetic*/ return f<one/256 ? one/256 : f; } int nearests_sqrt(int i) { int f = sqrt1016(boid[i].dm); if (f<abs(boid[boid[i].im].x-boid[i].x)) f=abs(boid[boid[i].im].x-boid[i].x); if (f<abs(boid[boid[i].im].y-boid[i].y)) f=abs(boid[boid[i].im].y-boid[i].y); return f<one/256 ? one/256 : f; } /*'bounce' velocity via approach vector, nb x,y,vx,vy 16bfp, while m=x*x+y*y 10bfp*/ void bounce(int x, int y, int *vx, int *vy, int m) { int s = mul1610(x, *vx) + mul1610(y, *vy); if (s>0) { s = 2*div_frac16(s, m==0 ? 1 : m); *vx -= mul_frac16(x, s); *vy -= mul_frac16(y, s); } } BOOL init(void) { int i, j; atexit(tidy); vga = read_monitor_type()==multi ? TRUE : FALSE; mode = vga ? 18 : 0; tidy(); bbc_mode(mode+128); bbc_mode(mode); bbc_cursor(0); os_cli("pointer"); bbc_origin(640,512); pointer_reset_shape(); release(-99); os_swi2(OS_Byte, 15, 1); do { printf("Please enter number of boids (min 2, suggest 24+) "); scanf("%i", &n); } while (n<2); do { printf("Please enter number of pillars (1 to 100, suggest 4) "); scanf("%i", &pn); } while (pn<1 || pn>100); do { printf("Please enter boid size (1 to 8, suggest 4) "); scanf("%i", &g); } while (g<1 || g>8); do { printf("Please enter seed for random initialisation (any non-zero integer,\nor 0 for a 'random' seed; try 101) "); scanf("%i", &i); } while (FALSE); if (i) srand16(~(i^(i<<16))); else seed_rand16(); rc=5*g*one; /*radius for collision detection*/ rm=8*g*one; /*radius for velocity matching*/ rl=20*g*one; /*radius of locale*/ rc2=mul1610(rc,rc); rl2=mul1610(rl,rl); if (pillar) { free(pillar); pillar=0; } if (boid) { free(boid); boid=0; } if (grid) { free(grid); grid=0; } if (boidgnode) { free(boidgnode); boidgnode=0; } if (gmask) { free(gmask); gmask=0; } if (pillar = calloc(pn, sizeof(pillar_data)), pillar==0) { werr(werrterm, "Insufficient memory"); return FALSE; } if (boid = calloc( n, sizeof( boid_data)), boid==0) { werr(werrterm, "Insufficient memory"); return FALSE; } gsize = rc; lgsize= (int)(log(fptod(gsize))/0.69315 + 1.0); gsize = 1<<lgsize; /*round it up to a power of 2*/ grl = (rl/one)/gsize + 1; maxgx = 1+1280/gsize; maxgy = 1+1024/gsize; if (gmask = calloc((grl+1)*(grl+1), sizeof(BOOL)), gmask==0) { werr(werrterm, "Insufficient memory"); return FALSE; } for (j=0; j<=grl; j++) for (i=0; i<=grl; i++) gmask[i+(grl+1)*j] = ( i>0 && j>0 && ((i-1)*(i-1)+(j-1)*(j-1))*gsize*gsize>(rl/one)*(rl/one) ) ? FALSE : TRUE; if (grid = calloc((maxgx+1)*(maxgy+1), sizeof(gnode *)), grid==0) { werr(werrterm, "Insufficient memory"); return FALSE; } if (boidgnode = calloc( n, sizeof(gnode)), boidgnode==0) { werr(werrterm, "Insufficient memory"); return FALSE; } mc=0; for (i=0; i<pn; i++) { pillar[i].x = rand16()*640; pillar[i].y = rand16()*512; pillar[i].r = randu16()*40; pillar[i].r2 = mul1610(pillar[i].r+rc/2, pillar[i].r+rc/2); } for (i=0; i<n; i++) { boid[i].x = 64*g*rand16(); boid[i].y = 64*g*rand16(); boid[i].vx = 4*g*randu16(); boid[i].vy = 2*g*rand16(); boid[i].mv = magnitude(boid[i].vx,boid[i].vy); boid[i].previous = boid+i-1; /*since initially boids are linked in memory order*/ boid[i].next = boid+i+1; } h = boid; boid[0].previous = &zlow; boid[n-1].next = &zhigh; zlow.previous = zlow.next = &zlow; zhigh.previous = zhigh.next = &zhigh; zlow.x = zlow.y = -640*one; /*smallest number*/ zhigh.x = zhigh.y = 640*one; /*biggest number*/ prepare_screen(); return TRUE; } void check_mouse(void) { int x,y,z, i,d; os_swi3r(OS_Mouse, 0,0,0, &x,&y,&z); x*=one; y*=one; switch(z) { case 1: if (pillar[mc].r>one) { pillar[mc].r-=one; pillar[mc].r2=mul1610(pillar[mc].r+rc/2, pillar[mc].r+rc/2); } break; case 2: if (pillar[mc].r<one*200) { pillar[mc].r+=one; pillar[mc].r2=mul1610(pillar[mc].r+rc/2, pillar[mc].r+rc/2); } break; case 4: for (i=mc; i<pn; i++) { if (abs(pillar[i].x-x)<pillar[i].r && abs(pillar[i].y-y)<pillar[i].r) { d = mul1610(pillar[i].x-x,pillar[i].x-x) + mul1610(pillar[i].y-y,pillar[i].y-y); if (d < pillar[i].r2) { i+=0x10000; break; } } if (i==mc) i=-1; if (i==mc-1) i=mc; } if (i&0x10000 && i!=0x10000+mc) { mc = i-0x10000; bbc_vdu(7); } else { pillar[mc].x = x; pillar[mc].y = y; } break; } } boid_data *merge(boid_data *a, boid_data *b, int offset) { boid_data *c; c = &zlow; do { if ( *((int *)a+offset) < *((int *)b+offset) ) { c->next = a; a->previous = c; c = a; a = a->next; } else { c->next = b; b->previous = c; c = b; b = b->next; } } while (c != &zhigh); c = zlow.next; zlow.next = &zlow; zhigh.previous = &zhigh; return c; } boid_data *sort_y_ncalcclosest(boid_data *c, int n) { int middle; boid_data *a, *b; static int i, d; static BOOL left; if (c->next==&zhigh) return c; a = c; for (i=2; i<=n/2; i++) c=c->next; b = c->next; c->next = &zhigh; b->previous = &zlow; middle = b->x; c = merge(sort_y_ncalcclosest(a, n/2), sort_y_ncalcclosest(b, n-n/2), &a->y - (int *)a); for (a=c; a!=&zhigh; a=a->next) { if (square1610(a->x-middle) < a->dm) { left = a->x<middle; for (b=a->next; b!=&zhigh && (d=square1610(b->y-a->y))<a->dm; b=b->next) { if (left && b->x>=middle || !left && b->x<=middle) { d+=square1610(b->x-a->x); if (d<a->dm) { a->dm = d; a->im = b-boid; } if (d<b->dm) { b->dm = d; b->im = a-boid; } } } for (b=a->previous; b!=&zlow && (d=square1610(b->y-a->y))<a->dm; b=b->previous) { if (left && b->x>=middle || !left && b->x<=middle) { d+=square1610(b->x-a->x); if (d<a->dm) { a->dm = d; a->im = b-boid; } if (d<b->dm) { b->dm = d; b->im = a-boid; } } } } } return c; } boid_data *sort_x(boid_data *c, int n) { int i; boid_data *a, *b; if (c->next==&zhigh) return c; a = c; for (i=2; i<=n/2; i++) c=c->next; b = c->next; c->next = &zhigh; b->previous = &zlow; c = merge(sort_x(a, n/2), sort_x(b, n-n/2), &a->x - (int *)a); return c; } void move_boids(void) { int i, j, d; int x, y, vx, vy; int a, b; int k, l, p, q; gnode *t; boid_data *bp, *bpe; for (bp=boid,bpe=bp+n; bp<bpe; bp++) { bp->dm=0x7fffffff; bp->ax=bp->ay=bp->avx=bp->avy=bp->ac=0; } tn2=clock(); memset(grid, 0, sizeof(gnode *)*(maxgx+1)*(maxgy+1)); n2fastloop(); /* for (i=0; i<n; i++) { *first we insert all boids into grid* a = xtogi(boid[i].x); if (a<0) a=0; if (a>maxgx) a=maxgx; b = ytogi(boid[i].y); if (b<0) b=0; if (b>maxgy) b=maxgy; j = a+(maxgx+1)*b; boidgnode[i].next = grid[j]; grid[j] = boidgnode+i; }*/ /* for (i=0; i<n; i++) { *then we range check via the grid* a = xtogi(boid[i].x); if (a<0) a=0; if (a>maxgx) a=maxgx; b = ytogi(boid[i].y); if (b<0) b=0; if (b>maxgy) b=maxgy; k = a-grl<0 ? 0 : a-grl; l = b-grl<0 ? 0 : b-grl; p = a+grl>maxgx ? maxgx : a+grl; q = b+grl>maxgy ? maxgy : b+grl; for (y=l; y<=q; y++) for (x=k; x<=p; x++) if (gmask[abs(x-a)+(grl+1)*abs(y-b)]) { for (t=grid[x+(maxgx+1)*y]; t!=0; t=t->next) { j = t-boidgnode; if (i<j) { d = square1610(boid[i].x-boid[j].x) + square1610(boid[i].y-boid[j].y); if (d<rl2) { boid[i].ax += boid[j].x-boid[i].x; boid[i].ay += boid[j].y-boid[i].y; boid[i].avx += boid[j].vx; boid[i].avy += boid[j].vy; boid[i].ac += 1; boid[j].ax += boid[i].x-boid[j].x; boid[j].ay += boid[i].y-boid[j].y; boid[j].avx += boid[i].vx; boid[j].avy += boid[i].vy; boid[j].ac += 1; } } } } }*/ /*minimum distance calculation*/ h = sort_x(h, n); h = sort_y_ncalcclosest(h, n); /*range checking & minimum distance calculations complete*/ tn2=clock()-tn2; for (i=0; i<n; i++) { x = boid[i].x; y = boid[i].y; vx = boid[i].vx; vy = boid[i].vy; if (boid[i].ac<1) { j = boid[i].im; boid[i].ax += boid[j].x-x; boid[i].ay += boid[j].y-y; boid[i].avx += boid[j].vx; boid[i].avy += boid[j].vy; boid[i].ac += 1; } if (x<rc-640*one || x>640*one-rc || y<rc-512*one || y>512*one-rc) { if (x<rc-640*one&&vx<0 || x>640*one-rc&&vx>0) vx=-vx; if (y<rc-512*one&&vy<0 || y>512*one-rc&&vy>0) vy=-vy; } else { for (j=0; j<pn; j++) { if (abs(pillar[j].x-x)<pillar[j].r && abs(pillar[j].y-y)<pillar[j].r) { d = mul1610(pillar[j].x-x,pillar[j].x-x) + mul1610(pillar[j].y-y,pillar[j].y-y); if (d < pillar[j].r2) { j+=0x10000; break; } } } if (j & 0x10000) { j-=0x10000; bounce(pillar[j].x-x, pillar[j].y-y, &vx, &vy, d); } else if (boid[i].dm<rc2) bounce(boid[boid[i].im].x-x, boid[boid[i].im].y-y, &vx, &vy, boid[i].dm); else { a = boid[i].ax/boid[i].ac; b = boid[i].ay/boid[i].ac; d = magnitude(a,b); a = div_frac16(a,d); b = div_frac16(b,d); d = nearests_sqrt(i); if (d<rm) { vx = div_frac16( mul_frac16(boid[i].avx/boid[i].ac, rm-d)+mul_frac16(d-rc, a*g) , rm-rc ); vy = div_frac16( mul_frac16(boid[i].avy/boid[i].ac, rm-d)+mul_frac16(d-rc, b*g) , rm-rc ); } else { d = div_frac16(d, rm); if (d>16*one) d=16*one; /*prevent ridiculously high catch up speeds*/ vx = mul_frac16(d, a*g); vy = mul_frac16(d, b*g); } } } d = magnitude(vx,vy); if (d<g*one) { vx = div_frac16(vx*g,d); vy = div_frac16(vy*g,d); d = g*one; } boid[i].xn = boid[i].x+vx; boid[i].yn = boid[i].y+vy; boid[i].vx = vx; boid[i].vy = vy; boid[i].mv = d; } for (i=0; i<n; i++) { boid[i].x = boid[i].xn; boid[i].y = boid[i].yn; } } int main(void) { int i; if (!init()) return 0; for (single_step=FALSE;;) { ttotal=clock(); bbc_cls(); move_boids(); check_mouse(); for (i=0; i<n; i++) { bbc_move(boid[i].x/one, boid[i].y/one); bbc_drawby((boid[i].vx*2*g)/boid[i].mv, (boid[i].vy*2*g)/boid[i].mv); } for (i=0; i<pn; i++) bbc_circle(pillar[i].x/one, pillar[i].y/one, pillar[i].r/one); ttotal=clock()-ttotal; printf("%i\n%i\n",tn2,ttotal); os_swi1(OS_Byte, 19); swap_banks(); step(); if (kbhit()) if (!init()) break; } return 0; }
00000000 0a 23 69 6e 63 6c 75 64 65 20 3c 73 74 64 69 6f |.#include <stdio| 00000010 2e 68 3e 0a 23 69 6e 63 6c 75 64 65 20 3c 73 74 |.h>.#include <st| 00000020 64 6c 69 62 2e 68 3e 0a 23 69 6e 63 6c 75 64 65 |dlib.h>.#include| 00000030 20 3c 73 74 72 69 6e 67 2e 68 3e 0a 23 69 6e 63 | <string.h>.#inc| 00000040 6c 75 64 65 20 3c 74 69 6d 65 2e 68 3e 0a 23 69 |lude <time.h>.#i| 00000050 6e 63 6c 75 64 65 20 3c 6d 61 74 68 2e 68 3e 0a |nclude <math.h>.| 00000060 23 69 6e 63 6c 75 64 65 20 3c 73 74 64 61 72 67 |#include <stdarg| 00000070 2e 68 3e 0a 0a 23 69 6e 63 6c 75 64 65 20 22 77 |.h>..#include "w| 00000080 65 72 72 2e 68 22 0a 23 69 6e 63 6c 75 64 65 20 |err.h".#include | 00000090 22 6f 73 2e 68 22 0a 23 69 6e 63 6c 75 64 65 20 |"os.h".#include | 000000a0 22 6b 65 72 6e 65 6c 2e 68 22 0a 23 69 6e 63 6c |"kernel.h".#incl| 000000b0 75 64 65 20 22 61 6b 62 64 2e 68 22 0a 23 69 6e |ude "akbd.h".#in| 000000c0 63 6c 75 64 65 20 22 62 62 63 2e 68 22 0a 23 69 |clude "bbc.h".#i| 000000d0 6e 63 6c 75 64 65 20 22 70 6f 69 6e 74 65 72 2e |nclude "pointer.| 000000e0 68 22 0a 23 69 6e 63 6c 75 64 65 20 22 76 69 73 |h".#include "vis| 000000f0 64 65 6c 61 79 2e 68 22 0a 0a 23 69 6e 63 6c 75 |delay.h"..#inclu| 00000100 64 65 20 22 73 77 69 73 2e 68 22 0a 0a 23 64 65 |de "swis.h"..#de| 00000110 66 69 6e 65 20 6c 6f 6e 65 20 31 36 0a 23 64 65 |fine lone 16.#de| 00000120 66 69 6e 65 20 6f 6e 65 20 28 31 3c 3c 6c 6f 6e |fine one (1<<lon| 00000130 65 29 0a 23 64 65 66 69 6e 65 20 66 70 74 6f 64 |e).#define fptod| 00000140 28 69 29 20 28 20 28 69 6e 74 29 28 30 2e 35 2b |(i) ( (int)(0.5+| 00000150 69 2f 36 2e 35 35 33 36 29 2f 31 30 30 30 30 2e |i/6.5536)/10000.| 00000160 30 20 29 0a 23 64 65 66 69 6e 65 20 64 74 6f 66 |0 ).#define dtof| 00000170 70 28 69 29 20 28 20 28 69 6e 74 29 28 30 2e 35 |p(i) ( (int)(0.5| 00000180 2b 69 2a 6f 6e 65 29 20 29 0a 23 64 65 66 69 6e |+i*one) ).#defin| 00000190 65 20 61 62 73 28 61 29 20 28 28 61 29 3c 30 20 |e abs(a) ((a)<0 | 000001a0 3f 20 2d 28 61 29 20 3a 20 28 61 29 29 0a 74 79 |? -(a) : (a)).ty| 000001b0 70 65 64 65 66 20 65 6e 75 6d 20 7b 6d 75 6c 74 |pedef enum {mult| 000001c0 69 2c 20 6e 6f 6e 6d 75 6c 74 69 7d 20 6d 6f 6e |i, nonmulti} mon| 000001d0 69 74 6f 72 3b 0a 0a 23 64 65 66 69 6e 65 20 77 |itor;..#define w| 000001e0 65 72 72 74 65 72 6d 20 30 0a 09 09 09 09 2f 2a |errterm 0...../*| 000001f0 70 72 69 6e 63 69 70 61 6c 20 71 75 61 6e 74 69 |principal quanti| 00000200 74 69 65 73 20 75 6e 62 72 61 63 6b 65 74 65 64 |ties unbracketed| 00000210 2c 20 64 65 72 69 76 65 64 20 71 75 61 6e 74 69 |, derived quanti| 00000220 74 69 65 73 20 62 72 61 63 6b 65 74 65 64 3a 2a |ties bracketed:*| 00000230 2f 0a 74 79 70 65 64 65 66 20 73 74 72 75 63 74 |/.typedef struct| 00000240 20 7b 0a 20 20 69 6e 74 20 78 2c 20 79 2c 20 72 | {. int x, y, r| 00000250 2c 20 72 32 3b 09 09 2f 2a 70 6f 73 69 74 69 6f |, r2;../*positio| 00000260 6e 2c 20 72 61 64 69 75 73 20 28 26 20 72 61 64 |n, radius (& rad| 00000270 69 75 73 20 73 71 75 61 72 65 64 29 2a 2f 0a 7d |ius squared)*/.}| 00000280 20 70 69 6c 6c 61 72 5f 64 61 74 61 3b 0a 0a 74 | pillar_data;..t| 00000290 79 70 65 64 65 66 20 73 74 72 75 63 74 20 62 64 |ypedef struct bd| 000002a0 73 20 7b 0a 20 20 69 6e 74 20 78 2c 20 79 2c 20 |s {. int x, y, | 000002b0 78 6e 2c 20 79 6e 3b 09 09 2f 2a 70 6f 73 69 74 |xn, yn;../*posit| 000002c0 69 6f 6e 20 28 26 20 6e 65 77 20 70 6f 73 69 74 |ion (& new posit| 000002d0 69 6f 6e 29 2a 2f 0a 20 20 69 6e 74 20 76 78 2c |ion)*/. int vx,| 000002e0 20 76 79 2c 20 6d 76 3b 09 09 2f 2a 76 65 6c 6f | vy, mv;../*velo| 000002f0 63 69 74 79 20 28 26 20 73 70 65 65 64 29 2a 2f |city (& speed)*/| 00000300 0a 20 20 69 6e 74 20 64 6d 2c 20 69 6d 3b 09 09 |. int dm, im;..| 00000310 09 2f 2a 64 69 73 74 61 6e 63 65 20 73 71 75 61 |./*distance squa| 00000320 72 65 64 20 74 6f 20 6e 65 61 72 65 73 74 20 62 |red to nearest b| 00000330 6f 69 64 20 26 20 69 6e 64 65 78 20 6f 66 20 74 |oid & index of t| 00000340 68 61 74 20 62 6f 69 64 2a 2f 0a 20 20 69 6e 74 |hat boid*/. int| 00000350 20 61 78 2c 20 61 79 2c 20 61 76 78 2c 20 61 76 | ax, ay, avx, av| 00000360 79 2c 20 61 63 3b 09 2f 2a 61 63 63 75 6d 75 6c |y, ac;./*accumul| 00000370 61 74 65 64 20 72 65 6c 61 74 69 76 65 2d 70 6f |ated relative-po| 00000380 73 69 74 69 6f 6e 73 2f 76 65 6c 6f 63 69 74 69 |sitions/velociti| 00000390 65 73 20 6f 66 20 62 6f 69 64 73 20 69 6e 20 6c |es of boids in l| 000003a0 6f 63 61 6c 65 20 26 20 6e 75 6d 62 65 72 20 6f |ocale & number o| 000003b0 66 20 73 75 63 68 2a 2f 0a 20 20 73 74 72 75 63 |f such*/. struc| 000003c0 74 20 62 64 73 20 2a 70 72 65 76 69 6f 75 73 2c |t bds *previous,| 000003d0 20 2a 6e 65 78 74 3b 09 2f 2a 66 6f 72 20 64 6f | *next;./*for do| 000003e0 75 62 6c 79 20 6c 69 6e 6b 65 64 20 6c 69 73 74 |ubly linked list| 000003f0 20 72 65 70 72 65 73 65 6e 74 61 74 69 6f 6e 2a | representation*| 00000400 2f 0a 7d 20 62 6f 69 64 5f 64 61 74 61 3b 0a 0a |/.} boid_data;..| 00000410 74 79 70 65 64 65 66 20 73 74 72 75 63 74 20 6e |typedef struct n| 00000420 6f 64 65 20 7b 0a 20 20 73 74 72 75 63 74 20 6e |ode {. struct n| 00000430 6f 64 65 20 2a 6e 65 78 74 3b 0a 7d 20 67 6e 6f |ode *next;.} gno| 00000440 64 65 3b 0a 0a 65 78 74 65 72 6e 20 69 6e 74 20 |de;..extern int | 00000450 72 62 62 63 69 6e 63 28 69 6e 74 20 72 2c 20 69 |rbbcinc(int r, i| 00000460 6e 74 20 6b 29 3b 0a 65 78 74 65 72 6e 20 69 6e |nt k);.extern in| 00000470 74 20 64 69 76 5f 66 72 61 63 31 36 28 69 6e 74 |t div_frac16(int| 00000480 20 6e 75 6d 62 65 72 2c 20 69 6e 74 20 64 69 76 | number, int div| 00000490 69 73 6f 72 29 3b 0a 65 78 74 65 72 6e 20 69 6e |isor);.extern in| 000004a0 74 20 6d 75 6c 5f 66 72 61 63 31 36 28 69 6e 74 |t mul_frac16(int| 000004b0 20 78 2c 20 69 6e 74 20 61 29 3b 0a 65 78 74 65 | x, int a);.exte| 000004c0 72 6e 20 69 6e 74 20 6d 75 6c 5f 66 72 61 63 31 |rn int mul_frac1| 000004d0 36 63 28 69 6e 74 20 78 2c 20 69 6e 74 20 61 29 |6c(int x, int a)| 000004e0 3b 0a 65 78 74 65 72 6e 20 69 6e 74 20 73 71 72 |;.extern int sqr| 000004f0 74 5f 66 72 61 63 31 36 28 75 6e 73 69 67 6e 65 |t_frac16(unsigne| 00000500 64 20 69 6e 74 20 78 29 3b 0a 65 78 74 65 72 6e |d int x);.extern| 00000510 20 69 6e 74 20 67 61 75 73 73 31 36 28 76 6f 69 | int gauss16(voi| 00000520 64 29 3b 0a 65 78 74 65 72 6e 20 76 6f 69 64 20 |d);.extern void | 00000530 73 67 61 75 73 73 31 36 28 69 6e 74 20 73 65 65 |sgauss16(int see| 00000540 64 29 3b 0a 65 78 74 65 72 6e 20 69 6e 74 20 72 |d);.extern int r| 00000550 61 6e 64 31 36 28 76 6f 69 64 29 3b 0a 65 78 74 |and16(void);.ext| 00000560 65 72 6e 20 69 6e 74 20 72 61 6e 64 75 31 36 28 |ern int randu16(| 00000570 76 6f 69 64 29 3b 0a 65 78 74 65 72 6e 20 76 6f |void);.extern vo| 00000580 69 64 20 73 72 61 6e 64 31 36 28 69 6e 74 20 73 |id srand16(int s| 00000590 65 65 64 29 3b 0a 65 78 74 65 72 6e 20 69 6e 74 |eed);.extern int| 000005a0 20 63 6f 73 31 36 28 69 6e 74 20 61 29 3b 0a 65 | cos16(int a);.e| 000005b0 78 74 65 72 6e 20 69 6e 74 20 73 69 6e 31 36 28 |xtern int sin16(| 000005c0 69 6e 74 20 61 29 3b 0a 65 78 74 65 72 6e 20 69 |int a);.extern i| 000005d0 6e 74 20 65 78 70 31 36 28 69 6e 74 20 61 29 3b |nt exp16(int a);| 000005e0 0a 65 78 74 65 72 6e 20 69 6e 74 20 6c 6e 31 36 |.extern int ln16| 000005f0 28 69 6e 74 20 61 29 3b 0a 65 78 74 65 72 6e 20 |(int a);.extern | 00000600 69 6e 74 20 70 6f 77 31 36 28 69 6e 74 20 61 2c |int pow16(int a,| 00000610 20 69 6e 74 20 62 29 3b 0a 65 78 74 65 72 6e 20 | int b);.extern | 00000620 69 6e 74 20 61 63 73 31 36 28 69 6e 74 20 61 29 |int acs16(int a)| 00000630 3b 0a 65 78 74 65 72 6e 20 69 6e 74 20 61 73 6e |;.extern int asn| 00000640 31 36 28 69 6e 74 20 61 29 3b 0a 65 78 74 65 72 |16(int a);.exter| 00000650 6e 20 69 6e 74 20 73 69 67 31 36 28 69 6e 74 20 |n int sig16(int | 00000660 61 29 3b 0a 65 78 74 65 72 6e 20 69 6e 74 20 73 |a);.extern int s| 00000670 71 75 61 72 65 31 36 31 30 28 69 6e 74 20 78 29 |quare1610(int x)| 00000680 3b 0a 0a 65 78 74 65 72 6e 20 76 6f 69 64 20 6e |;..extern void n| 00000690 32 66 61 73 74 6c 6f 6f 70 28 76 6f 69 64 29 3b |2fastloop(void);| 000006a0 0a 0a 2f 2a 6d 75 6c 74 69 70 6c 69 65 73 20 74 |../*multiplies t| 000006b0 77 6f 20 31 36 20 62 69 74 20 66 69 78 65 64 20 |wo 16 bit fixed | 000006c0 70 6f 69 6e 74 20 6e 75 6d 62 65 72 73 2c 20 72 |point numbers, r| 000006d0 65 74 75 72 6e 69 6e 67 20 61 20 31 30 20 62 69 |eturning a 10 bi| 000006e0 74 20 66 69 78 65 64 20 70 6f 69 6e 74 20 6e 75 |t fixed point nu| 000006f0 6d 62 65 72 2c 20 68 65 6e 63 65 20 63 61 6e 20 |mber, hence can | 00000700 72 65 70 72 65 73 65 6e 74 0a 20 20 6e 75 6d 62 |represent. numb| 00000710 65 72 73 20 75 70 74 6f 20 31 34 34 38 2a 31 34 |ers upto 1448*14| 00000720 34 38 20 65 67 20 72 65 73 75 6c 74 20 6f 66 20 |48 eg result of | 00000730 6d 75 6c 31 36 31 30 28 31 34 34 38 2a 6f 6e 65 |mul1610(1448*one| 00000740 2c 31 34 34 38 2a 6f 6e 65 29 3b 0a 20 20 75 73 |,1448*one);. us| 00000750 65 66 75 6c 20 66 6f 72 20 61 72 69 74 68 6d 65 |eful for arithme| 00000760 74 69 63 20 77 69 74 68 20 73 71 75 61 72 65 73 |tic with squares| 00000770 20 6f 66 20 70 6f 73 69 74 69 6f 6e 73 20 6f 72 | of positions or| 00000780 20 76 65 6c 6f 63 69 74 69 65 73 2a 2f 0a 23 64 | velocities*/.#d| 00000790 65 66 69 6e 65 20 6d 75 6c 31 36 31 30 28 61 2c |efine mul1610(a,| 000007a0 62 29 20 28 6d 75 6c 5f 66 72 61 63 31 36 28 28 |b) (mul_frac16((| 000007b0 61 29 2f 38 2c 28 62 29 2f 38 29 29 0a 2f 2a 72 |a)/8,(b)/8))./*r| 000007c0 65 74 75 72 6e 73 20 31 36 20 62 66 70 20 73 71 |eturns 16 bfp sq| 000007d0 75 61 72 65 20 72 6f 6f 74 20 6f 66 20 31 30 20 |uare root of 10 | 000007e0 62 66 70 20 61 72 67 75 6d 65 6e 74 2a 2f 0a 23 |bfp argument*/.#| 000007f0 64 65 66 69 6e 65 20 73 71 72 74 31 30 31 36 28 |define sqrt1016(| 00000800 61 29 20 28 38 2a 73 71 72 74 5f 66 72 61 63 31 |a) (8*sqrt_frac1| 00000810 36 28 28 61 29 29 29 0a 0a 42 4f 4f 4c 20 76 67 |6((a)))..BOOL vg| 00000820 61 3b 0a 69 6e 74 20 6d 6f 64 65 3b 0a 69 6e 74 |a;.int mode;.int| 00000830 20 62 61 6e 6b 3b 0a 42 4f 4f 4c 20 73 69 6e 67 | bank;.BOOL sing| 00000840 6c 65 5f 73 74 65 70 3b 0a 69 6e 74 20 74 6e 32 |le_step;.int tn2| 00000850 2c 20 74 74 6f 74 61 6c 3b 0a 0a 69 6e 74 20 6e |, ttotal;..int n| 00000860 2c 20 67 3b 0a 69 6e 74 20 72 63 2c 20 72 6d 2c |, g;.int rc, rm,| 00000870 20 72 6c 2c 20 72 63 32 2c 20 72 6c 32 3b 0a 69 | rl, rc2, rl2;.i| 00000880 6e 74 20 70 6e 2c 20 6d 63 3b 0a 70 69 6c 6c 61 |nt pn, mc;.pilla| 00000890 72 5f 64 61 74 61 20 2a 70 69 6c 6c 61 72 3d 30 |r_data *pillar=0| 000008a0 3b 0a 62 6f 69 64 5f 64 61 74 61 20 2a 62 6f 69 |;.boid_data *boi| 000008b0 64 3d 30 2c 20 2a 68 3b 0a 62 6f 69 64 5f 64 61 |d=0, *h;.boid_da| 000008c0 74 61 20 7a 6c 6f 77 2c 20 7a 68 69 67 68 3b 0a |ta zlow, zhigh;.| 000008d0 0a 67 6e 6f 64 65 20 2a 2a 67 72 69 64 3d 30 3b |.gnode **grid=0;| 000008e0 0a 67 6e 6f 64 65 20 2a 62 6f 69 64 67 6e 6f 64 |.gnode *boidgnod| 000008f0 65 3d 30 3b 0a 69 6e 74 20 6d 61 78 67 78 2c 20 |e=0;.int maxgx, | 00000900 6d 61 78 67 79 2c 20 67 73 69 7a 65 2c 20 6c 67 |maxgy, gsize, lg| 00000910 73 69 7a 65 2c 20 67 72 6c 3b 0a 42 4f 4f 4c 20 |size, grl;.BOOL | 00000920 2a 67 6d 61 73 6b 3d 30 3b 0a 23 64 65 66 69 6e |*gmask=0;.#defin| 00000930 65 20 78 74 6f 67 69 28 76 29 20 28 20 28 36 34 |e xtogi(v) ( (64| 00000940 30 2a 6f 6e 65 2b 28 76 29 29 20 3e 3e 20 28 6c |0*one+(v)) >> (l| 00000950 6f 6e 65 2b 6c 67 73 69 7a 65 29 20 29 0a 23 64 |one+lgsize) ).#d| 00000960 65 66 69 6e 65 20 79 74 6f 67 69 28 76 29 20 28 |efine ytogi(v) (| 00000970 20 28 35 31 32 2a 6f 6e 65 2b 28 76 29 29 20 3e | (512*one+(v)) >| 00000980 3e 20 28 6c 6f 6e 65 2b 6c 67 73 69 7a 65 29 20 |> (lone+lgsize) | 00000990 29 0a 0a 6d 6f 6e 69 74 6f 72 20 72 65 61 64 5f |)..monitor read_| 000009a0 6d 6f 6e 69 74 6f 72 5f 74 79 70 65 28 76 6f 69 |monitor_type(voi| 000009b0 64 29 0a 7b 0a 20 20 69 6e 74 20 72 32 3b 0a 20 |d).{. int r2;. | 000009c0 20 6f 73 5f 73 77 69 33 72 28 36 2c 20 31 36 31 | os_swi3r(6, 161| 000009d0 2c 31 33 33 2c 30 2c 20 30 2c 30 2c 26 72 32 29 |,133,0, 0,0,&r2)| 000009e0 3b 0a 20 20 69 66 20 28 28 72 32 2f 34 20 26 20 |;. if ((r2/4 & | 000009f0 33 29 20 3d 3d 20 31 29 20 72 65 74 75 72 6e 20 |3) == 1) return | 00000a00 6d 75 6c 74 69 3b 0a 20 20 65 6c 73 65 20 72 65 |multi;. else re| 00000a10 74 75 72 6e 20 6e 6f 6e 6d 75 6c 74 69 3b 0a 7d |turn nonmulti;.}| 00000a20 0a 0a 76 6f 69 64 20 74 69 64 79 28 76 6f 69 64 |..void tidy(void| 00000a30 29 0a 7b 0a 20 20 6f 73 5f 73 77 69 32 28 4f 53 |).{. os_swi2(OS| 00000a40 5f 42 79 74 65 2c 20 31 31 32 2c 20 31 29 3b 0a |_Byte, 112, 1);.| 00000a50 20 20 6f 73 5f 73 77 69 32 28 4f 53 5f 42 79 74 | os_swi2(OS_Byt| 00000a60 65 2c 20 31 31 33 2c 20 31 29 3b 0a 7d 0a 0a 76 |e, 113, 1);.}..v| 00000a70 6f 69 64 20 73 77 61 70 5f 62 61 6e 6b 73 28 76 |oid swap_banks(v| 00000a80 6f 69 64 29 0a 7b 0a 20 20 6f 73 5f 73 77 69 32 |oid).{. os_swi2| 00000a90 28 4f 53 5f 42 79 74 65 2c 20 31 31 33 2c 20 62 |(OS_Byte, 113, b| 00000aa0 61 6e 6b 29 3b 0a 20 20 6f 73 5f 73 77 69 32 28 |ank);. os_swi2(| 00000ab0 4f 53 5f 42 79 74 65 2c 20 31 31 32 2c 20 62 61 |OS_Byte, 112, ba| 00000ac0 6e 6b 3d 33 2d 62 61 6e 6b 29 3b 0a 7d 0a 0a 76 |nk=3-bank);.}..v| 00000ad0 6f 69 64 20 70 72 65 70 61 72 65 5f 73 63 72 65 |oid prepare_scre| 00000ae0 65 6e 28 76 6f 69 64 29 0a 7b 0a 20 20 62 61 6e |en(void).{. ban| 00000af0 6b 3d 31 3b 0a 20 20 6f 73 5f 73 77 69 32 28 4f |k=1;. os_swi2(O| 00000b00 53 5f 42 79 74 65 2c 20 31 31 32 2c 20 62 61 6e |S_Byte, 112, ban| 00000b10 6b 29 3b 0a 20 20 6f 73 5f 73 77 69 32 28 4f 53 |k);. os_swi2(OS| 00000b20 5f 42 79 74 65 2c 20 31 31 33 2c 20 33 2d 62 61 |_Byte, 113, 3-ba| 00000b30 6e 6b 29 3b 0a 7d 0a 0a 76 6f 69 64 20 70 72 65 |nk);.}..void pre| 00000b40 73 73 28 69 6e 74 20 69 29 0a 7b 0a 20 20 66 6f |ss(int i).{. fo| 00000b50 72 20 28 3b 62 62 63 5f 69 6e 6b 65 79 28 69 29 |r (;bbc_inkey(i)| 00000b60 21 3d 2d 31 3b 29 3b 0a 20 20 72 65 74 75 72 6e |!=-1;);. return| 00000b70 3b 0a 7d 0a 0a 76 6f 69 64 20 72 65 6c 65 61 73 |;.}..void releas| 00000b80 65 28 69 6e 74 20 69 29 0a 7b 0a 20 20 66 6f 72 |e(int i).{. for| 00000b90 20 28 3b 62 62 63 5f 69 6e 6b 65 79 28 69 29 21 | (;bbc_inkey(i)!| 00000ba0 3d 30 3b 29 3b 0a 20 20 72 65 74 75 72 6e 3b 0a |=0;);. return;.| 00000bb0 7d 0a 0a 42 4f 4f 4c 20 6b 62 68 69 74 28 76 6f |}..BOOL kbhit(vo| 00000bc0 69 64 29 0a 7b 0a 20 20 72 65 74 75 72 6e 20 62 |id).{. return b| 00000bd0 62 63 5f 69 6e 6b 65 79 28 2d 39 39 29 3d 3d 2d |bc_inkey(-99)==-| 00000be0 31 3b 0a 7d 0a 0a 76 6f 69 64 20 73 74 65 70 28 |1;.}..void step(| 00000bf0 76 6f 69 64 29 0a 7b 0a 20 20 69 66 20 28 62 62 |void).{. if (bb| 00000c00 63 5f 69 6e 6b 65 79 28 2d 38 32 29 29 20 73 69 |c_inkey(-82)) si| 00000c10 6e 67 6c 65 5f 73 74 65 70 3d 54 52 55 45 3b 0a |ngle_step=TRUE;.| 00000c20 20 20 69 66 20 28 73 69 6e 67 6c 65 5f 73 74 65 | if (single_ste| 00000c30 70 29 20 66 6f 72 20 28 3b 20 73 69 6e 67 6c 65 |p) for (; single| 00000c40 5f 73 74 65 70 3b 29 20 7b 0a 20 20 20 20 69 66 |_step;) {. if| 00000c50 20 28 62 62 63 5f 69 6e 6b 65 79 28 2d 38 32 29 | (bbc_inkey(-82)| 00000c60 29 20 7b 0a 20 20 20 20 20 20 72 65 6c 65 61 73 |) {. releas| 00000c70 65 28 2d 38 32 29 3b 0a 20 20 20 20 20 20 62 72 |e(-82);. br| 00000c80 65 61 6b 3b 0a 20 20 20 20 7d 0a 20 20 20 20 69 |eak;. }. i| 00000c90 66 20 28 62 62 63 5f 69 6e 6b 65 79 28 2d 38 33 |f (bbc_inkey(-83| 00000ca0 29 29 20 73 69 6e 67 6c 65 5f 73 74 65 70 3d 46 |)) single_step=F| 00000cb0 41 4c 53 45 3b 0a 20 20 7d 0a 7d 0a 0a 76 6f 69 |ALSE;. }.}..voi| 00000cc0 64 20 73 65 65 64 5f 72 61 6e 64 31 36 28 76 6f |d seed_rand16(vo| 00000cd0 69 64 29 0a 7b 0a 20 20 69 6e 74 20 76 3d 63 6c |id).{. int v=cl| 00000ce0 6f 63 6b 28 29 20 26 20 30 78 66 66 3b 0a 20 20 |ock() & 0xff;. | 00000cf0 76 7c 3d 76 3c 3c 38 3b 0a 20 20 73 72 61 6e 64 |v|=v<<8;. srand| 00000d00 31 36 28 76 20 7c 20 76 3c 3c 31 36 29 3b 0a 7d |16(v | v<<16);.}| 00000d10 0a 0a 2f 2a 72 65 74 75 72 6e 73 20 31 36 62 66 |../*returns 16bf| 00000d20 70 20 6d 61 67 6e 69 74 75 64 65 20 6f 66 20 76 |p magnitude of v| 00000d30 65 63 74 6f 72 20 77 69 74 68 20 31 36 62 66 70 |ector with 16bfp| 00000d40 20 63 6f 6d 70 6f 6e 65 6e 74 73 20 78 20 26 20 | components x & | 00000d50 79 2a 2f 0a 69 6e 74 20 6d 61 67 6e 69 74 75 64 |y*/.int magnitud| 00000d60 65 28 69 6e 74 20 78 2c 20 69 6e 74 20 79 29 0a |e(int x, int y).| 00000d70 7b 0a 20 20 69 6e 74 20 66 20 3d 20 73 71 72 74 |{. int f = sqrt| 00000d80 31 30 31 36 28 6d 75 6c 31 36 31 30 28 78 2c 78 |1016(mul1610(x,x| 00000d90 29 2b 6d 75 6c 31 36 31 30 28 79 2c 79 29 29 3b |)+mul1610(y,y));| 00000da0 0a 20 20 69 66 20 28 66 3c 61 62 73 28 78 29 29 |. if (f<abs(x))| 00000db0 20 66 3d 61 62 73 28 78 29 3b 09 2f 2a 63 6f 6d | f=abs(x);./*com| 00000dc0 70 65 6e 73 61 74 65 20 66 6f 72 20 73 6f 6d 65 |pensate for some| 00000dd0 20 6e 61 73 74 79 20 75 6e 64 65 72 66 6c 6f 77 | nasty underflow| 00000de0 20 70 72 6f 62 6c 65 6d 73 2a 2f 0a 20 20 69 66 | problems*/. if| 00000df0 20 28 66 3c 61 62 73 28 79 29 29 20 66 3d 61 62 | (f<abs(y)) f=ab| 00000e00 73 28 79 29 3b 09 2f 2a 77 69 74 68 20 61 62 6f |s(y);./*with abo| 00000e10 76 65 20 66 69 78 65 64 20 70 6f 69 6e 74 20 61 |ve fixed point a| 00000e20 72 69 74 68 6d 65 74 69 63 2a 2f 0a 20 20 72 65 |rithmetic*/. re| 00000e30 74 75 72 6e 20 66 3c 6f 6e 65 2f 32 35 36 20 3f |turn f<one/256 ?| 00000e40 20 6f 6e 65 2f 32 35 36 20 3a 20 66 3b 0a 7d 0a | one/256 : f;.}.| 00000e50 0a 69 6e 74 20 6e 65 61 72 65 73 74 73 5f 73 71 |.int nearests_sq| 00000e60 72 74 28 69 6e 74 20 69 29 0a 7b 0a 20 20 69 6e |rt(int i).{. in| 00000e70 74 20 66 20 3d 20 73 71 72 74 31 30 31 36 28 62 |t f = sqrt1016(b| 00000e80 6f 69 64 5b 69 5d 2e 64 6d 29 3b 0a 20 20 69 66 |oid[i].dm);. if| 00000e90 20 28 66 3c 61 62 73 28 62 6f 69 64 5b 62 6f 69 | (f<abs(boid[boi| 00000ea0 64 5b 69 5d 2e 69 6d 5d 2e 78 2d 62 6f 69 64 5b |d[i].im].x-boid[| 00000eb0 69 5d 2e 78 29 29 20 66 3d 61 62 73 28 62 6f 69 |i].x)) f=abs(boi| 00000ec0 64 5b 62 6f 69 64 5b 69 5d 2e 69 6d 5d 2e 78 2d |d[boid[i].im].x-| 00000ed0 62 6f 69 64 5b 69 5d 2e 78 29 3b 0a 20 20 69 66 |boid[i].x);. if| 00000ee0 20 28 66 3c 61 62 73 28 62 6f 69 64 5b 62 6f 69 | (f<abs(boid[boi| 00000ef0 64 5b 69 5d 2e 69 6d 5d 2e 79 2d 62 6f 69 64 5b |d[i].im].y-boid[| 00000f00 69 5d 2e 79 29 29 20 66 3d 61 62 73 28 62 6f 69 |i].y)) f=abs(boi| 00000f10 64 5b 62 6f 69 64 5b 69 5d 2e 69 6d 5d 2e 79 2d |d[boid[i].im].y-| 00000f20 62 6f 69 64 5b 69 5d 2e 79 29 3b 0a 20 20 72 65 |boid[i].y);. re| 00000f30 74 75 72 6e 20 66 3c 6f 6e 65 2f 32 35 36 20 3f |turn f<one/256 ?| 00000f40 20 6f 6e 65 2f 32 35 36 20 3a 20 66 3b 0a 7d 0a | one/256 : f;.}.| 00000f50 0a 2f 2a 27 62 6f 75 6e 63 65 27 20 76 65 6c 6f |./*'bounce' velo| 00000f60 63 69 74 79 20 76 69 61 20 61 70 70 72 6f 61 63 |city via approac| 00000f70 68 20 76 65 63 74 6f 72 2c 20 6e 62 20 78 2c 79 |h vector, nb x,y| 00000f80 2c 76 78 2c 76 79 20 31 36 62 66 70 2c 20 77 68 |,vx,vy 16bfp, wh| 00000f90 69 6c 65 20 6d 3d 78 2a 78 2b 79 2a 79 20 31 30 |ile m=x*x+y*y 10| 00000fa0 62 66 70 2a 2f 0a 76 6f 69 64 20 62 6f 75 6e 63 |bfp*/.void bounc| 00000fb0 65 28 69 6e 74 20 78 2c 20 69 6e 74 20 79 2c 20 |e(int x, int y, | 00000fc0 69 6e 74 20 2a 76 78 2c 20 69 6e 74 20 2a 76 79 |int *vx, int *vy| 00000fd0 2c 20 69 6e 74 20 6d 29 0a 7b 0a 20 20 69 6e 74 |, int m).{. int| 00000fe0 20 20 73 20 3d 20 6d 75 6c 31 36 31 30 28 78 2c | s = mul1610(x,| 00000ff0 20 2a 76 78 29 20 2b 20 6d 75 6c 31 36 31 30 28 | *vx) + mul1610(| 00001000 79 2c 20 2a 76 79 29 3b 0a 20 20 69 66 20 28 73 |y, *vy);. if (s| 00001010 3e 30 29 20 7b 0a 20 20 20 20 20 20 20 73 20 3d |>0) {. s =| 00001020 20 32 2a 64 69 76 5f 66 72 61 63 31 36 28 73 2c | 2*div_frac16(s,| 00001030 20 6d 3d 3d 30 20 3f 20 31 20 3a 20 6d 29 3b 0a | m==0 ? 1 : m);.| 00001040 20 20 20 20 2a 76 78 20 2d 3d 20 6d 75 6c 5f 66 | *vx -= mul_f| 00001050 72 61 63 31 36 28 78 2c 20 73 29 3b 0a 20 20 20 |rac16(x, s);. | 00001060 20 2a 76 79 20 2d 3d 20 6d 75 6c 5f 66 72 61 63 | *vy -= mul_frac| 00001070 31 36 28 79 2c 20 73 29 3b 0a 20 20 7d 0a 7d 0a |16(y, s);. }.}.| 00001080 0a 42 4f 4f 4c 20 69 6e 69 74 28 76 6f 69 64 29 |.BOOL init(void)| 00001090 0a 7b 0a 20 20 69 6e 74 20 69 2c 20 6a 3b 0a 20 |.{. int i, j;. | 000010a0 20 61 74 65 78 69 74 28 74 69 64 79 29 3b 0a 20 | atexit(tidy);. | 000010b0 20 76 67 61 20 3d 20 72 65 61 64 5f 6d 6f 6e 69 | vga = read_moni| 000010c0 74 6f 72 5f 74 79 70 65 28 29 3d 3d 6d 75 6c 74 |tor_type()==mult| 000010d0 69 20 3f 20 54 52 55 45 20 3a 20 46 41 4c 53 45 |i ? TRUE : FALSE| 000010e0 3b 0a 20 20 6d 6f 64 65 20 3d 20 76 67 61 20 3f |;. mode = vga ?| 000010f0 20 31 38 20 3a 20 30 3b 0a 20 20 74 69 64 79 28 | 18 : 0;. tidy(| 00001100 29 3b 0a 20 20 62 62 63 5f 6d 6f 64 65 28 6d 6f |);. bbc_mode(mo| 00001110 64 65 2b 31 32 38 29 3b 0a 20 20 62 62 63 5f 6d |de+128);. bbc_m| 00001120 6f 64 65 28 6d 6f 64 65 29 3b 0a 20 20 62 62 63 |ode(mode);. bbc| 00001130 5f 63 75 72 73 6f 72 28 30 29 3b 0a 20 20 6f 73 |_cursor(0);. os| 00001140 5f 63 6c 69 28 22 70 6f 69 6e 74 65 72 22 29 3b |_cli("pointer");| 00001150 0a 20 20 62 62 63 5f 6f 72 69 67 69 6e 28 36 34 |. bbc_origin(64| 00001160 30 2c 35 31 32 29 3b 0a 20 20 70 6f 69 6e 74 65 |0,512);. pointe| 00001170 72 5f 72 65 73 65 74 5f 73 68 61 70 65 28 29 3b |r_reset_shape();| 00001180 0a 20 20 72 65 6c 65 61 73 65 28 2d 39 39 29 3b |. release(-99);| 00001190 0a 20 20 6f 73 5f 73 77 69 32 28 4f 53 5f 42 79 |. os_swi2(OS_By| 000011a0 74 65 2c 20 31 35 2c 20 31 29 3b 0a 20 20 64 6f |te, 15, 1);. do| 000011b0 20 7b 0a 20 20 20 20 70 72 69 6e 74 66 28 22 50 | {. printf("P| 000011c0 6c 65 61 73 65 20 65 6e 74 65 72 20 6e 75 6d 62 |lease enter numb| 000011d0 65 72 20 6f 66 20 62 6f 69 64 73 20 28 6d 69 6e |er of boids (min| 000011e0 20 32 2c 20 73 75 67 67 65 73 74 20 32 34 2b 29 | 2, suggest 24+)| 000011f0 20 22 29 3b 0a 20 20 20 20 73 63 61 6e 66 28 22 | ");. scanf("| 00001200 25 69 22 2c 20 26 6e 29 3b 0a 20 20 7d 20 77 68 |%i", &n);. } wh| 00001210 69 6c 65 20 28 6e 3c 32 29 3b 0a 20 20 64 6f 20 |ile (n<2);. do | 00001220 7b 0a 20 20 20 20 70 72 69 6e 74 66 28 22 50 6c |{. printf("Pl| 00001230 65 61 73 65 20 65 6e 74 65 72 20 6e 75 6d 62 65 |ease enter numbe| 00001240 72 20 6f 66 20 70 69 6c 6c 61 72 73 20 28 31 20 |r of pillars (1 | 00001250 74 6f 20 31 30 30 2c 20 73 75 67 67 65 73 74 20 |to 100, suggest | 00001260 34 29 20 22 29 3b 0a 20 20 20 20 73 63 61 6e 66 |4) ");. scanf| 00001270 28 22 25 69 22 2c 20 26 70 6e 29 3b 0a 20 20 7d |("%i", &pn);. }| 00001280 20 77 68 69 6c 65 20 28 70 6e 3c 31 20 7c 7c 20 | while (pn<1 || | 00001290 70 6e 3e 31 30 30 29 3b 0a 20 20 64 6f 20 7b 0a |pn>100);. do {.| 000012a0 20 20 20 20 70 72 69 6e 74 66 28 22 50 6c 65 61 | printf("Plea| 000012b0 73 65 20 65 6e 74 65 72 20 62 6f 69 64 20 73 69 |se enter boid si| 000012c0 7a 65 20 28 31 20 74 6f 20 38 2c 20 73 75 67 67 |ze (1 to 8, sugg| 000012d0 65 73 74 20 34 29 20 22 29 3b 0a 20 20 20 20 73 |est 4) ");. s| 000012e0 63 61 6e 66 28 22 25 69 22 2c 20 26 67 29 3b 0a |canf("%i", &g);.| 000012f0 20 20 7d 20 77 68 69 6c 65 20 28 67 3c 31 20 7c | } while (g<1 || 00001300 7c 20 67 3e 38 29 3b 0a 20 20 64 6f 20 7b 0a 20 || g>8);. do {. | 00001310 20 20 20 70 72 69 6e 74 66 28 22 50 6c 65 61 73 | printf("Pleas| 00001320 65 20 65 6e 74 65 72 20 73 65 65 64 20 66 6f 72 |e enter seed for| 00001330 20 72 61 6e 64 6f 6d 20 69 6e 69 74 69 61 6c 69 | random initiali| 00001340 73 61 74 69 6f 6e 20 28 61 6e 79 20 6e 6f 6e 2d |sation (any non-| 00001350 7a 65 72 6f 20 69 6e 74 65 67 65 72 2c 5c 6e 6f |zero integer,\no| 00001360 72 20 30 20 66 6f 72 20 61 20 27 72 61 6e 64 6f |r 0 for a 'rando| 00001370 6d 27 20 73 65 65 64 3b 20 74 72 79 20 31 30 31 |m' seed; try 101| 00001380 29 20 22 29 3b 0a 20 20 20 20 73 63 61 6e 66 28 |) ");. scanf(| 00001390 22 25 69 22 2c 20 26 69 29 3b 0a 20 20 7d 20 77 |"%i", &i);. } w| 000013a0 68 69 6c 65 20 28 46 41 4c 53 45 29 3b 0a 0a 20 |hile (FALSE);.. | 000013b0 20 69 66 20 28 69 29 20 73 72 61 6e 64 31 36 28 | if (i) srand16(| 000013c0 7e 28 69 5e 28 69 3c 3c 31 36 29 29 29 3b 0a 20 |~(i^(i<<16)));. | 000013d0 20 65 6c 73 65 20 73 65 65 64 5f 72 61 6e 64 31 | else seed_rand1| 000013e0 36 28 29 3b 0a 20 20 72 63 3d 35 2a 67 2a 6f 6e |6();. rc=5*g*on| 000013f0 65 3b 09 09 2f 2a 72 61 64 69 75 73 20 66 6f 72 |e;../*radius for| 00001400 20 63 6f 6c 6c 69 73 69 6f 6e 20 64 65 74 65 63 | collision detec| 00001410 74 69 6f 6e 2a 2f 0a 20 20 72 6d 3d 38 2a 67 2a |tion*/. rm=8*g*| 00001420 6f 6e 65 3b 09 09 2f 2a 72 61 64 69 75 73 20 66 |one;../*radius f| 00001430 6f 72 20 76 65 6c 6f 63 69 74 79 20 6d 61 74 63 |or velocity matc| 00001440 68 69 6e 67 2a 2f 0a 20 20 72 6c 3d 32 30 2a 67 |hing*/. rl=20*g| 00001450 2a 6f 6e 65 3b 09 09 2f 2a 72 61 64 69 75 73 20 |*one;../*radius | 00001460 6f 66 20 6c 6f 63 61 6c 65 2a 2f 0a 20 20 72 63 |of locale*/. rc| 00001470 32 3d 6d 75 6c 31 36 31 30 28 72 63 2c 72 63 29 |2=mul1610(rc,rc)| 00001480 3b 0a 20 20 72 6c 32 3d 6d 75 6c 31 36 31 30 28 |;. rl2=mul1610(| 00001490 72 6c 2c 72 6c 29 3b 0a 20 20 69 66 20 28 70 69 |rl,rl);. if (pi| 000014a0 6c 6c 61 72 29 20 7b 0a 20 20 20 20 66 72 65 65 |llar) {. free| 000014b0 28 70 69 6c 6c 61 72 29 3b 0a 20 20 20 20 70 69 |(pillar);. pi| 000014c0 6c 6c 61 72 3d 30 3b 0a 20 20 7d 0a 20 20 69 66 |llar=0;. }. if| 000014d0 20 28 62 6f 69 64 29 20 7b 0a 20 20 20 20 66 72 | (boid) {. fr| 000014e0 65 65 28 62 6f 69 64 29 3b 0a 20 20 20 20 62 6f |ee(boid);. bo| 000014f0 69 64 3d 30 3b 0a 20 20 7d 0a 20 20 69 66 20 28 |id=0;. }. if (| 00001500 67 72 69 64 29 20 7b 0a 20 20 20 20 66 72 65 65 |grid) {. free| 00001510 28 67 72 69 64 29 3b 0a 20 20 20 20 67 72 69 64 |(grid);. grid| 00001520 3d 30 3b 0a 20 20 7d 0a 20 20 69 66 20 28 62 6f |=0;. }. if (bo| 00001530 69 64 67 6e 6f 64 65 29 20 7b 0a 20 20 20 20 66 |idgnode) {. f| 00001540 72 65 65 28 62 6f 69 64 67 6e 6f 64 65 29 3b 0a |ree(boidgnode);.| 00001550 20 20 20 20 62 6f 69 64 67 6e 6f 64 65 3d 30 3b | boidgnode=0;| 00001560 0a 20 20 7d 0a 20 20 69 66 20 28 67 6d 61 73 6b |. }. if (gmask| 00001570 29 20 7b 0a 20 20 20 20 66 72 65 65 28 67 6d 61 |) {. free(gma| 00001580 73 6b 29 3b 0a 20 20 20 20 67 6d 61 73 6b 3d 30 |sk);. gmask=0| 00001590 3b 0a 20 20 7d 0a 20 20 69 66 20 28 70 69 6c 6c |;. }. if (pill| 000015a0 61 72 20 3d 20 63 61 6c 6c 6f 63 28 70 6e 2c 20 |ar = calloc(pn, | 000015b0 73 69 7a 65 6f 66 28 70 69 6c 6c 61 72 5f 64 61 |sizeof(pillar_da| 000015c0 74 61 29 29 2c 20 70 69 6c 6c 61 72 3d 3d 30 29 |ta)), pillar==0)| 000015d0 20 7b 0a 20 20 20 20 77 65 72 72 28 77 65 72 72 | {. werr(werr| 000015e0 74 65 72 6d 2c 20 22 49 6e 73 75 66 66 69 63 69 |term, "Insuffici| 000015f0 65 6e 74 20 6d 65 6d 6f 72 79 22 29 3b 0a 20 20 |ent memory");. | 00001600 20 20 72 65 74 75 72 6e 20 46 41 4c 53 45 3b 0a | return FALSE;.| 00001610 20 20 7d 0a 20 20 69 66 20 28 62 6f 69 64 20 20 | }. if (boid | 00001620 20 3d 20 63 61 6c 6c 6f 63 28 20 6e 2c 20 73 69 | = calloc( n, si| 00001630 7a 65 6f 66 28 20 20 62 6f 69 64 5f 64 61 74 61 |zeof( boid_data| 00001640 29 29 2c 20 20 20 62 6f 69 64 3d 3d 30 29 20 7b |)), boid==0) {| 00001650 0a 20 20 20 20 77 65 72 72 28 77 65 72 72 74 65 |. werr(werrte| 00001660 72 6d 2c 20 22 49 6e 73 75 66 66 69 63 69 65 6e |rm, "Insufficien| 00001670 74 20 6d 65 6d 6f 72 79 22 29 3b 0a 20 20 20 20 |t memory");. | 00001680 72 65 74 75 72 6e 20 46 41 4c 53 45 3b 0a 20 20 |return FALSE;. | 00001690 7d 0a 20 20 67 73 69 7a 65 20 3d 20 72 63 3b 0a |}. gsize = rc;.| 000016a0 20 20 6c 67 73 69 7a 65 3d 20 28 69 6e 74 29 28 | lgsize= (int)(| 000016b0 6c 6f 67 28 66 70 74 6f 64 28 67 73 69 7a 65 29 |log(fptod(gsize)| 000016c0 29 2f 30 2e 36 39 33 31 35 20 2b 20 31 2e 30 29 |)/0.69315 + 1.0)| 000016d0 3b 0a 20 20 67 73 69 7a 65 20 3d 20 31 3c 3c 6c |;. gsize = 1<<l| 000016e0 67 73 69 7a 65 3b 09 09 2f 2a 72 6f 75 6e 64 20 |gsize;../*round | 000016f0 69 74 20 75 70 20 74 6f 20 61 20 70 6f 77 65 72 |it up to a power| 00001700 20 6f 66 20 32 2a 2f 0a 20 20 67 72 6c 20 20 20 | of 2*/. grl | 00001710 3d 20 28 72 6c 2f 6f 6e 65 29 2f 67 73 69 7a 65 |= (rl/one)/gsize| 00001720 20 2b 20 31 3b 0a 20 20 6d 61 78 67 78 20 3d 20 | + 1;. maxgx = | 00001730 31 2b 31 32 38 30 2f 67 73 69 7a 65 3b 0a 20 20 |1+1280/gsize;. | 00001740 6d 61 78 67 79 20 3d 20 31 2b 31 30 32 34 2f 67 |maxgy = 1+1024/g| 00001750 73 69 7a 65 3b 0a 20 20 69 66 20 28 67 6d 61 73 |size;. if (gmas| 00001760 6b 20 3d 20 63 61 6c 6c 6f 63 28 28 67 72 6c 2b |k = calloc((grl+| 00001770 31 29 2a 28 67 72 6c 2b 31 29 2c 20 73 69 7a 65 |1)*(grl+1), size| 00001780 6f 66 28 42 4f 4f 4c 29 29 2c 20 67 6d 61 73 6b |of(BOOL)), gmask| 00001790 3d 3d 30 29 20 7b 0a 20 20 20 20 77 65 72 72 28 |==0) {. werr(| 000017a0 77 65 72 72 74 65 72 6d 2c 20 22 49 6e 73 75 66 |werrterm, "Insuf| 000017b0 66 69 63 69 65 6e 74 20 6d 65 6d 6f 72 79 22 29 |ficient memory")| 000017c0 3b 0a 20 20 20 20 72 65 74 75 72 6e 20 46 41 4c |;. return FAL| 000017d0 53 45 3b 0a 20 20 7d 0a 20 20 66 6f 72 20 28 6a |SE;. }. for (j| 000017e0 3d 30 3b 20 6a 3c 3d 67 72 6c 3b 20 6a 2b 2b 29 |=0; j<=grl; j++)| 000017f0 0a 20 20 20 20 66 6f 72 20 28 69 3d 30 3b 20 69 |. for (i=0; i| 00001800 3c 3d 67 72 6c 3b 20 69 2b 2b 29 0a 20 20 20 20 |<=grl; i++). | 00001810 20 20 67 6d 61 73 6b 5b 69 2b 28 67 72 6c 2b 31 | gmask[i+(grl+1| 00001820 29 2a 6a 5d 20 3d 20 28 20 69 3e 30 20 26 26 20 |)*j] = ( i>0 && | 00001830 6a 3e 30 20 26 26 20 28 28 69 2d 31 29 2a 28 69 |j>0 && ((i-1)*(i| 00001840 2d 31 29 2b 28 6a 2d 31 29 2a 28 6a 2d 31 29 29 |-1)+(j-1)*(j-1))| 00001850 2a 67 73 69 7a 65 2a 67 73 69 7a 65 3e 28 72 6c |*gsize*gsize>(rl| 00001860 2f 6f 6e 65 29 2a 28 72 6c 2f 6f 6e 65 29 20 29 |/one)*(rl/one) )| 00001870 20 3f 20 46 41 4c 53 45 20 3a 20 54 52 55 45 3b | ? FALSE : TRUE;| 00001880 0a 20 20 69 66 20 28 67 72 69 64 20 3d 20 63 61 |. if (grid = ca| 00001890 6c 6c 6f 63 28 28 6d 61 78 67 78 2b 31 29 2a 28 |lloc((maxgx+1)*(| 000018a0 6d 61 78 67 79 2b 31 29 2c 20 73 69 7a 65 6f 66 |maxgy+1), sizeof| 000018b0 28 67 6e 6f 64 65 20 2a 29 29 2c 20 67 72 69 64 |(gnode *)), grid| 000018c0 3d 3d 30 29 20 7b 0a 20 20 20 20 77 65 72 72 28 |==0) {. werr(| 000018d0 77 65 72 72 74 65 72 6d 2c 20 22 49 6e 73 75 66 |werrterm, "Insuf| 000018e0 66 69 63 69 65 6e 74 20 6d 65 6d 6f 72 79 22 29 |ficient memory")| 000018f0 3b 0a 20 20 20 20 72 65 74 75 72 6e 20 46 41 4c |;. return FAL| 00001900 53 45 3b 0a 20 20 7d 0a 20 20 69 66 20 28 62 6f |SE;. }. if (bo| 00001910 69 64 67 6e 6f 64 65 20 3d 20 63 61 6c 6c 6f 63 |idgnode = calloc| 00001920 28 20 6e 2c 20 73 69 7a 65 6f 66 28 67 6e 6f 64 |( n, sizeof(gnod| 00001930 65 29 29 2c 20 62 6f 69 64 67 6e 6f 64 65 3d 3d |e)), boidgnode==| 00001940 30 29 20 7b 0a 20 20 20 20 77 65 72 72 28 77 65 |0) {. werr(we| 00001950 72 72 74 65 72 6d 2c 20 22 49 6e 73 75 66 66 69 |rrterm, "Insuffi| 00001960 63 69 65 6e 74 20 6d 65 6d 6f 72 79 22 29 3b 0a |cient memory");.| 00001970 20 20 20 20 72 65 74 75 72 6e 20 46 41 4c 53 45 | return FALSE| 00001980 3b 0a 20 20 7d 0a 20 20 6d 63 3d 30 3b 0a 20 20 |;. }. mc=0;. | 00001990 66 6f 72 20 28 69 3d 30 3b 20 69 3c 70 6e 3b 20 |for (i=0; i<pn; | 000019a0 69 2b 2b 29 20 7b 0a 20 20 20 20 70 69 6c 6c 61 |i++) {. pilla| 000019b0 72 5b 69 5d 2e 78 20 20 3d 20 72 61 6e 64 31 36 |r[i].x = rand16| 000019c0 28 29 2a 36 34 30 3b 0a 20 20 20 20 70 69 6c 6c |()*640;. pill| 000019d0 61 72 5b 69 5d 2e 79 20 20 3d 20 72 61 6e 64 31 |ar[i].y = rand1| 000019e0 36 28 29 2a 35 31 32 3b 0a 20 20 20 20 70 69 6c |6()*512;. pil| 000019f0 6c 61 72 5b 69 5d 2e 72 20 20 3d 20 72 61 6e 64 |lar[i].r = rand| 00001a00 75 31 36 28 29 2a 34 30 3b 0a 20 20 20 20 70 69 |u16()*40;. pi| 00001a10 6c 6c 61 72 5b 69 5d 2e 72 32 20 3d 20 6d 75 6c |llar[i].r2 = mul| 00001a20 31 36 31 30 28 70 69 6c 6c 61 72 5b 69 5d 2e 72 |1610(pillar[i].r| 00001a30 2b 72 63 2f 32 2c 20 70 69 6c 6c 61 72 5b 69 5d |+rc/2, pillar[i]| 00001a40 2e 72 2b 72 63 2f 32 29 3b 0a 20 20 7d 0a 20 20 |.r+rc/2);. }. | 00001a50 66 6f 72 20 28 69 3d 30 3b 20 69 3c 6e 3b 20 69 |for (i=0; i<n; i| 00001a60 2b 2b 29 20 7b 0a 20 20 20 20 62 6f 69 64 5b 69 |++) {. boid[i| 00001a70 5d 2e 78 20 20 3d 20 36 34 2a 67 2a 72 61 6e 64 |].x = 64*g*rand| 00001a80 31 36 28 29 3b 0a 20 20 20 20 62 6f 69 64 5b 69 |16();. boid[i| 00001a90 5d 2e 79 20 20 3d 20 36 34 2a 67 2a 72 61 6e 64 |].y = 64*g*rand| 00001aa0 31 36 28 29 3b 0a 20 20 20 20 62 6f 69 64 5b 69 |16();. boid[i| 00001ab0 5d 2e 76 78 20 3d 20 20 34 2a 67 2a 72 61 6e 64 |].vx = 4*g*rand| 00001ac0 75 31 36 28 29 3b 0a 20 20 20 20 62 6f 69 64 5b |u16();. boid[| 00001ad0 69 5d 2e 76 79 20 3d 20 20 32 2a 67 2a 72 61 6e |i].vy = 2*g*ran| 00001ae0 64 31 36 28 29 3b 0a 20 20 20 20 62 6f 69 64 5b |d16();. boid[| 00001af0 69 5d 2e 6d 76 20 3d 20 6d 61 67 6e 69 74 75 64 |i].mv = magnitud| 00001b00 65 28 62 6f 69 64 5b 69 5d 2e 76 78 2c 62 6f 69 |e(boid[i].vx,boi| 00001b10 64 5b 69 5d 2e 76 79 29 3b 0a 20 20 20 20 62 6f |d[i].vy);. bo| 00001b20 69 64 5b 69 5d 2e 70 72 65 76 69 6f 75 73 20 3d |id[i].previous =| 00001b30 20 62 6f 69 64 2b 69 2d 31 3b 09 2f 2a 73 69 6e | boid+i-1;./*sin| 00001b40 63 65 20 69 6e 69 74 69 61 6c 6c 79 20 62 6f 69 |ce initially boi| 00001b50 64 73 20 61 72 65 20 6c 69 6e 6b 65 64 20 69 6e |ds are linked in| 00001b60 20 6d 65 6d 6f 72 79 20 6f 72 64 65 72 2a 2f 0a | memory order*/.| 00001b70 20 20 20 20 62 6f 69 64 5b 69 5d 2e 6e 65 78 74 | boid[i].next| 00001b80 20 20 20 20 20 3d 20 62 6f 69 64 2b 69 2b 31 3b | = boid+i+1;| 00001b90 0a 20 20 7d 0a 20 20 68 09 09 09 3d 20 62 6f 69 |. }. h...= boi| 00001ba0 64 3b 0a 20 20 62 6f 69 64 5b 30 5d 2e 70 72 65 |d;. boid[0].pre| 00001bb0 76 69 6f 75 73 09 3d 20 26 7a 6c 6f 77 3b 0a 20 |vious.= &zlow;. | 00001bc0 20 62 6f 69 64 5b 6e 2d 31 5d 2e 6e 65 78 74 09 | boid[n-1].next.| 00001bd0 3d 20 26 7a 68 69 67 68 3b 0a 20 20 7a 6c 6f 77 |= &zhigh;. zlow| 00001be0 2e 70 72 65 76 69 6f 75 73 09 09 3d 20 7a 6c 6f |.previous..= zlo| 00001bf0 77 2e 6e 65 78 74 09 3d 20 26 7a 6c 6f 77 3b 0a |w.next.= &zlow;.| 00001c00 20 20 7a 68 69 67 68 2e 70 72 65 76 69 6f 75 73 | zhigh.previous| 00001c10 09 3d 20 7a 68 69 67 68 2e 6e 65 78 74 09 3d 20 |.= zhigh.next.= | 00001c20 26 7a 68 69 67 68 3b 0a 20 20 7a 6c 6f 77 2e 78 |&zhigh;. zlow.x| 00001c30 09 09 3d 20 7a 6c 6f 77 2e 79 09 3d 20 2d 36 34 |..= zlow.y.= -64| 00001c40 30 2a 6f 6e 65 3b 09 2f 2a 73 6d 61 6c 6c 65 73 |0*one;./*smalles| 00001c50 74 20 6e 75 6d 62 65 72 2a 2f 0a 20 20 7a 68 69 |t number*/. zhi| 00001c60 67 68 2e 78 09 09 3d 20 7a 68 69 67 68 2e 79 09 |gh.x..= zhigh.y.| 00001c70 3d 20 20 36 34 30 2a 6f 6e 65 3b 09 2f 2a 62 69 |= 640*one;./*bi| 00001c80 67 67 65 73 74 20 6e 75 6d 62 65 72 2a 2f 0a 20 |ggest number*/. | 00001c90 20 70 72 65 70 61 72 65 5f 73 63 72 65 65 6e 28 | prepare_screen(| 00001ca0 29 3b 0a 20 20 72 65 74 75 72 6e 20 54 52 55 45 |);. return TRUE| 00001cb0 3b 0a 7d 0a 0a 76 6f 69 64 20 63 68 65 63 6b 5f |;.}..void check_| 00001cc0 6d 6f 75 73 65 28 76 6f 69 64 29 0a 7b 0a 20 20 |mouse(void).{. | 00001cd0 69 6e 74 20 78 2c 79 2c 7a 2c 20 69 2c 64 3b 0a |int x,y,z, i,d;.| 00001ce0 20 20 6f 73 5f 73 77 69 33 72 28 4f 53 5f 4d 6f | os_swi3r(OS_Mo| 00001cf0 75 73 65 2c 20 30 2c 30 2c 30 2c 20 26 78 2c 26 |use, 0,0,0, &x,&| 00001d00 79 2c 26 7a 29 3b 0a 20 20 78 2a 3d 6f 6e 65 3b |y,&z);. x*=one;| 00001d10 0a 20 20 79 2a 3d 6f 6e 65 3b 0a 20 20 73 77 69 |. y*=one;. swi| 00001d20 74 63 68 28 7a 29 20 7b 0a 20 20 20 20 63 61 73 |tch(z) {. cas| 00001d30 65 20 31 3a 0a 20 20 20 20 20 20 69 66 20 28 70 |e 1:. if (p| 00001d40 69 6c 6c 61 72 5b 6d 63 5d 2e 72 3e 6f 6e 65 29 |illar[mc].r>one)| 00001d50 20 7b 0a 20 20 20 20 20 20 20 20 70 69 6c 6c 61 | {. pilla| 00001d60 72 5b 6d 63 5d 2e 72 2d 3d 6f 6e 65 3b 0a 20 20 |r[mc].r-=one;. | 00001d70 20 20 20 20 20 20 70 69 6c 6c 61 72 5b 6d 63 5d | pillar[mc]| 00001d80 2e 72 32 3d 6d 75 6c 31 36 31 30 28 70 69 6c 6c |.r2=mul1610(pill| 00001d90 61 72 5b 6d 63 5d 2e 72 2b 72 63 2f 32 2c 20 70 |ar[mc].r+rc/2, p| 00001da0 69 6c 6c 61 72 5b 6d 63 5d 2e 72 2b 72 63 2f 32 |illar[mc].r+rc/2| 00001db0 29 3b 0a 20 20 20 20 20 20 7d 0a 20 20 20 20 20 |);. }. | 00001dc0 20 62 72 65 61 6b 3b 0a 20 20 20 20 63 61 73 65 | break;. case| 00001dd0 20 32 3a 0a 20 20 20 20 20 20 69 66 20 28 70 69 | 2:. if (pi| 00001de0 6c 6c 61 72 5b 6d 63 5d 2e 72 3c 6f 6e 65 2a 32 |llar[mc].r<one*2| 00001df0 30 30 29 20 7b 0a 20 20 20 20 20 20 20 20 70 69 |00) {. pi| 00001e00 6c 6c 61 72 5b 6d 63 5d 2e 72 2b 3d 6f 6e 65 3b |llar[mc].r+=one;| 00001e10 0a 20 20 20 20 20 20 20 20 70 69 6c 6c 61 72 5b |. pillar[| 00001e20 6d 63 5d 2e 72 32 3d 6d 75 6c 31 36 31 30 28 70 |mc].r2=mul1610(p| 00001e30 69 6c 6c 61 72 5b 6d 63 5d 2e 72 2b 72 63 2f 32 |illar[mc].r+rc/2| 00001e40 2c 20 70 69 6c 6c 61 72 5b 6d 63 5d 2e 72 2b 72 |, pillar[mc].r+r| 00001e50 63 2f 32 29 3b 0a 20 20 20 20 20 20 7d 0a 20 20 |c/2);. }. | 00001e60 20 20 20 20 62 72 65 61 6b 3b 0a 20 20 20 20 63 | break;. c| 00001e70 61 73 65 20 34 3a 0a 20 20 20 20 20 20 66 6f 72 |ase 4:. for| 00001e80 20 28 69 3d 6d 63 3b 20 69 3c 70 6e 3b 20 69 2b | (i=mc; i<pn; i+| 00001e90 2b 29 20 7b 0a 20 20 20 20 20 20 20 20 69 66 20 |+) {. if | 00001ea0 28 61 62 73 28 70 69 6c 6c 61 72 5b 69 5d 2e 78 |(abs(pillar[i].x| 00001eb0 2d 78 29 3c 70 69 6c 6c 61 72 5b 69 5d 2e 72 20 |-x)<pillar[i].r | 00001ec0 26 26 20 61 62 73 28 70 69 6c 6c 61 72 5b 69 5d |&& abs(pillar[i]| 00001ed0 2e 79 2d 79 29 3c 70 69 6c 6c 61 72 5b 69 5d 2e |.y-y)<pillar[i].| 00001ee0 72 29 20 7b 0a 20 20 20 20 20 20 20 20 20 20 64 |r) {. d| 00001ef0 20 3d 20 6d 75 6c 31 36 31 30 28 70 69 6c 6c 61 | = mul1610(pilla| 00001f00 72 5b 69 5d 2e 78 2d 78 2c 70 69 6c 6c 61 72 5b |r[i].x-x,pillar[| 00001f10 69 5d 2e 78 2d 78 29 20 2b 20 6d 75 6c 31 36 31 |i].x-x) + mul161| 00001f20 30 28 70 69 6c 6c 61 72 5b 69 5d 2e 79 2d 79 2c |0(pillar[i].y-y,| 00001f30 70 69 6c 6c 61 72 5b 69 5d 2e 79 2d 79 29 3b 0a |pillar[i].y-y);.| 00001f40 20 20 20 20 20 20 20 20 20 20 69 66 20 28 64 20 | if (d | 00001f50 3c 20 70 69 6c 6c 61 72 5b 69 5d 2e 72 32 29 20 |< pillar[i].r2) | 00001f60 7b 0a 20 20 20 20 20 20 20 20 20 20 20 20 69 2b |{. i+| 00001f70 3d 30 78 31 30 30 30 30 3b 0a 20 20 20 20 20 20 |=0x10000;. | 00001f80 20 20 20 20 20 20 62 72 65 61 6b 3b 0a 20 20 20 | break;. | 00001f90 20 20 20 20 20 20 20 7d 0a 20 20 20 20 20 20 20 | }. | 00001fa0 20 7d 0a 20 20 20 20 20 20 20 20 69 66 20 28 69 | }. if (i| 00001fb0 3d 3d 6d 63 29 20 20 20 69 3d 2d 31 3b 0a 20 20 |==mc) i=-1;. | 00001fc0 20 20 20 20 20 20 69 66 20 28 69 3d 3d 6d 63 2d | if (i==mc-| 00001fd0 31 29 20 69 3d 6d 63 3b 0a 20 20 20 20 20 20 7d |1) i=mc;. }| 00001fe0 0a 20 20 20 20 20 20 69 66 20 28 69 26 30 78 31 |. if (i&0x1| 00001ff0 30 30 30 30 20 26 26 20 69 21 3d 30 78 31 30 30 |0000 && i!=0x100| 00002000 30 30 2b 6d 63 29 20 7b 0a 20 20 20 20 20 20 20 |00+mc) {. | 00002010 20 6d 63 20 3d 20 69 2d 30 78 31 30 30 30 30 3b | mc = i-0x10000;| 00002020 0a 20 20 20 20 20 20 20 20 62 62 63 5f 76 64 75 |. bbc_vdu| 00002030 28 37 29 3b 0a 20 20 20 20 20 20 7d 0a 20 20 20 |(7);. }. | 00002040 20 20 20 65 6c 73 65 20 7b 0a 20 20 20 20 20 20 | else {. | 00002050 20 20 70 69 6c 6c 61 72 5b 6d 63 5d 2e 78 20 3d | pillar[mc].x =| 00002060 20 78 3b 0a 20 20 20 20 20 20 20 20 70 69 6c 6c | x;. pill| 00002070 61 72 5b 6d 63 5d 2e 79 20 3d 20 79 3b 0a 20 20 |ar[mc].y = y;. | 00002080 20 20 20 20 7d 0a 20 20 20 20 20 20 62 72 65 61 | }. brea| 00002090 6b 3b 0a 20 20 7d 0a 7d 0a 0a 62 6f 69 64 5f 64 |k;. }.}..boid_d| 000020a0 61 74 61 20 2a 6d 65 72 67 65 28 62 6f 69 64 5f |ata *merge(boid_| 000020b0 64 61 74 61 20 2a 61 2c 20 62 6f 69 64 5f 64 61 |data *a, boid_da| 000020c0 74 61 20 2a 62 2c 20 69 6e 74 20 6f 66 66 73 65 |ta *b, int offse| 000020d0 74 29 0a 7b 0a 20 20 62 6f 69 64 5f 64 61 74 61 |t).{. boid_data| 000020e0 20 2a 63 3b 0a 20 20 63 20 3d 20 26 7a 6c 6f 77 | *c;. c = &zlow| 000020f0 3b 0a 20 20 64 6f 20 7b 0a 20 20 20 20 69 66 20 |;. do {. if | 00002100 28 20 2a 28 28 69 6e 74 20 2a 29 61 2b 6f 66 66 |( *((int *)a+off| 00002110 73 65 74 29 20 3c 20 2a 28 28 69 6e 74 20 2a 29 |set) < *((int *)| 00002120 62 2b 6f 66 66 73 65 74 29 20 29 20 7b 0a 20 20 |b+offset) ) {. | 00002130 20 20 20 20 63 2d 3e 6e 65 78 74 20 3d 20 61 3b | c->next = a;| 00002140 0a 20 20 20 20 20 20 61 2d 3e 70 72 65 76 69 6f |. a->previo| 00002150 75 73 20 3d 20 63 3b 0a 20 20 20 20 20 20 63 20 |us = c;. c | 00002160 3d 20 61 3b 0a 20 20 20 20 20 20 61 20 3d 20 61 |= a;. a = a| 00002170 2d 3e 6e 65 78 74 3b 0a 20 20 20 20 7d 0a 20 20 |->next;. }. | 00002180 20 20 65 6c 73 65 20 7b 0a 20 20 20 20 20 20 63 | else {. c| 00002190 2d 3e 6e 65 78 74 20 3d 20 62 3b 0a 20 20 20 20 |->next = b;. | 000021a0 20 20 62 2d 3e 70 72 65 76 69 6f 75 73 20 3d 20 | b->previous = | 000021b0 63 3b 0a 20 20 20 20 20 20 63 20 3d 20 62 3b 0a |c;. c = b;.| 000021c0 20 20 20 20 20 20 62 20 3d 20 62 2d 3e 6e 65 78 | b = b->nex| 000021d0 74 3b 0a 20 20 20 20 7d 0a 20 20 7d 20 77 68 69 |t;. }. } whi| 000021e0 6c 65 20 28 63 20 21 3d 20 26 7a 68 69 67 68 29 |le (c != &zhigh)| 000021f0 3b 0a 20 20 63 20 3d 20 7a 6c 6f 77 2e 6e 65 78 |;. c = zlow.nex| 00002200 74 3b 0a 20 20 7a 6c 6f 77 2e 6e 65 78 74 20 3d |t;. zlow.next =| 00002210 20 26 7a 6c 6f 77 3b 0a 20 20 7a 68 69 67 68 2e | &zlow;. zhigh.| 00002220 70 72 65 76 69 6f 75 73 20 3d 20 26 7a 68 69 67 |previous = &zhig| 00002230 68 3b 0a 20 20 72 65 74 75 72 6e 20 63 3b 0a 7d |h;. return c;.}| 00002240 0a 0a 62 6f 69 64 5f 64 61 74 61 20 2a 73 6f 72 |..boid_data *sor| 00002250 74 5f 79 5f 6e 63 61 6c 63 63 6c 6f 73 65 73 74 |t_y_ncalcclosest| 00002260 28 62 6f 69 64 5f 64 61 74 61 20 2a 63 2c 20 69 |(boid_data *c, i| 00002270 6e 74 20 6e 29 0a 7b 0a 20 20 69 6e 74 20 6d 69 |nt n).{. int mi| 00002280 64 64 6c 65 3b 0a 20 20 62 6f 69 64 5f 64 61 74 |ddle;. boid_dat| 00002290 61 20 2a 61 2c 20 2a 62 3b 0a 20 20 73 74 61 74 |a *a, *b;. stat| 000022a0 69 63 20 69 6e 74 20 69 2c 20 64 3b 0a 20 20 73 |ic int i, d;. s| 000022b0 74 61 74 69 63 20 42 4f 4f 4c 20 6c 65 66 74 3b |tatic BOOL left;| 000022c0 20 20 0a 20 20 69 66 20 28 63 2d 3e 6e 65 78 74 | . if (c->next| 000022d0 3d 3d 26 7a 68 69 67 68 29 20 72 65 74 75 72 6e |==&zhigh) return| 000022e0 20 63 3b 0a 20 20 61 20 3d 20 63 3b 0a 20 20 66 | c;. a = c;. f| 000022f0 6f 72 20 28 69 3d 32 3b 20 69 3c 3d 6e 2f 32 3b |or (i=2; i<=n/2;| 00002300 20 69 2b 2b 29 20 63 3d 63 2d 3e 6e 65 78 74 3b | i++) c=c->next;| 00002310 0a 20 20 62 20 3d 20 63 2d 3e 6e 65 78 74 3b 0a |. b = c->next;.| 00002320 20 20 63 2d 3e 6e 65 78 74 20 3d 20 26 7a 68 69 | c->next = &zhi| 00002330 67 68 3b 0a 20 20 62 2d 3e 70 72 65 76 69 6f 75 |gh;. b->previou| 00002340 73 20 3d 20 26 7a 6c 6f 77 3b 0a 20 20 6d 69 64 |s = &zlow;. mid| 00002350 64 6c 65 20 3d 20 62 2d 3e 78 3b 0a 20 20 63 20 |dle = b->x;. c | 00002360 3d 20 6d 65 72 67 65 28 73 6f 72 74 5f 79 5f 6e |= merge(sort_y_n| 00002370 63 61 6c 63 63 6c 6f 73 65 73 74 28 61 2c 20 6e |calcclosest(a, n| 00002380 2f 32 29 2c 20 73 6f 72 74 5f 79 5f 6e 63 61 6c |/2), sort_y_ncal| 00002390 63 63 6c 6f 73 65 73 74 28 62 2c 20 6e 2d 6e 2f |cclosest(b, n-n/| 000023a0 32 29 2c 20 26 61 2d 3e 79 20 2d 20 28 69 6e 74 |2), &a->y - (int| 000023b0 20 2a 29 61 29 3b 0a 20 20 66 6f 72 20 28 61 3d | *)a);. for (a=| 000023c0 63 3b 20 61 21 3d 26 7a 68 69 67 68 3b 20 61 3d |c; a!=&zhigh; a=| 000023d0 61 2d 3e 6e 65 78 74 29 20 7b 0a 20 20 20 20 69 |a->next) {. i| 000023e0 66 20 28 73 71 75 61 72 65 31 36 31 30 28 61 2d |f (square1610(a-| 000023f0 3e 78 2d 6d 69 64 64 6c 65 29 20 3c 20 61 2d 3e |>x-middle) < a->| 00002400 64 6d 29 20 7b 0a 20 20 20 20 20 20 6c 65 66 74 |dm) {. left| 00002410 20 3d 20 61 2d 3e 78 3c 6d 69 64 64 6c 65 3b 0a | = a->x<middle;.| 00002420 20 20 20 20 20 20 66 6f 72 20 28 62 3d 61 2d 3e | for (b=a->| 00002430 6e 65 78 74 3b 20 62 21 3d 26 7a 68 69 67 68 20 |next; b!=&zhigh | 00002440 26 26 20 28 64 3d 73 71 75 61 72 65 31 36 31 30 |&& (d=square1610| 00002450 28 62 2d 3e 79 2d 61 2d 3e 79 29 29 3c 61 2d 3e |(b->y-a->y))<a->| 00002460 64 6d 3b 20 62 3d 62 2d 3e 6e 65 78 74 29 20 7b |dm; b=b->next) {| 00002470 0a 20 20 20 20 20 20 20 20 69 66 20 28 6c 65 66 |. if (lef| 00002480 74 20 26 26 20 62 2d 3e 78 3e 3d 6d 69 64 64 6c |t && b->x>=middl| 00002490 65 20 20 7c 7c 20 20 21 6c 65 66 74 20 26 26 20 |e || !left && | 000024a0 62 2d 3e 78 3c 3d 6d 69 64 64 6c 65 29 20 7b 0a |b->x<=middle) {.| 000024b0 20 20 20 20 20 20 20 20 20 20 64 2b 3d 73 71 75 | d+=squ| 000024c0 61 72 65 31 36 31 30 28 62 2d 3e 78 2d 61 2d 3e |are1610(b->x-a->| 000024d0 78 29 3b 0a 20 20 20 20 20 20 20 20 20 20 69 66 |x);. if| 000024e0 20 28 64 3c 61 2d 3e 64 6d 29 20 7b 0a 20 20 20 | (d<a->dm) {. | 000024f0 20 20 20 20 20 20 20 20 20 61 2d 3e 64 6d 20 3d | a->dm =| 00002500 20 64 3b 0a 20 20 20 20 20 20 20 20 20 20 20 20 | d;. | 00002510 61 2d 3e 69 6d 20 3d 20 62 2d 62 6f 69 64 3b 0a |a->im = b-boid;.| 00002520 20 20 20 20 20 20 20 20 20 20 7d 0a 20 20 20 20 | }. | 00002530 20 20 20 20 20 20 69 66 20 28 64 3c 62 2d 3e 64 | if (d<b->d| 00002540 6d 29 20 7b 0a 20 20 20 20 20 20 20 20 20 20 20 |m) {. | 00002550 20 62 2d 3e 64 6d 20 3d 20 64 3b 0a 20 20 20 20 | b->dm = d;. | 00002560 20 20 20 20 20 20 20 20 62 2d 3e 69 6d 20 3d 20 | b->im = | 00002570 61 2d 62 6f 69 64 3b 0a 20 20 20 20 20 20 20 20 |a-boid;. | 00002580 20 20 7d 0a 20 20 20 20 20 20 20 20 7d 0a 20 20 | }. }. | 00002590 20 20 20 20 7d 0a 20 20 20 20 20 20 66 6f 72 20 | }. for | 000025a0 28 62 3d 61 2d 3e 70 72 65 76 69 6f 75 73 3b 20 |(b=a->previous; | 000025b0 62 21 3d 26 7a 6c 6f 77 20 26 26 20 28 64 3d 73 |b!=&zlow && (d=s| 000025c0 71 75 61 72 65 31 36 31 30 28 62 2d 3e 79 2d 61 |quare1610(b->y-a| 000025d0 2d 3e 79 29 29 3c 61 2d 3e 64 6d 3b 20 62 3d 62 |->y))<a->dm; b=b| 000025e0 2d 3e 70 72 65 76 69 6f 75 73 29 20 7b 0a 20 20 |->previous) {. | 000025f0 20 20 20 20 20 20 69 66 20 28 6c 65 66 74 20 26 | if (left &| 00002600 26 20 62 2d 3e 78 3e 3d 6d 69 64 64 6c 65 20 20 |& b->x>=middle | 00002610 7c 7c 20 20 21 6c 65 66 74 20 26 26 20 62 2d 3e ||| !left && b->| 00002620 78 3c 3d 6d 69 64 64 6c 65 29 20 7b 0a 20 20 20 |x<=middle) {. | 00002630 20 20 20 20 20 20 20 64 2b 3d 73 71 75 61 72 65 | d+=square| 00002640 31 36 31 30 28 62 2d 3e 78 2d 61 2d 3e 78 29 3b |1610(b->x-a->x);| 00002650 0a 20 20 20 20 20 20 20 20 20 20 69 66 20 28 64 |. if (d| 00002660 3c 61 2d 3e 64 6d 29 20 7b 0a 20 20 20 20 20 20 |<a->dm) {. | 00002670 20 20 20 20 20 20 61 2d 3e 64 6d 20 3d 20 64 3b | a->dm = d;| 00002680 0a 20 20 20 20 20 20 20 20 20 20 20 20 61 2d 3e |. a->| 00002690 69 6d 20 3d 20 62 2d 62 6f 69 64 3b 0a 20 20 20 |im = b-boid;. | 000026a0 20 20 20 20 20 20 20 7d 0a 20 20 20 20 20 20 20 | }. | 000026b0 20 20 20 69 66 20 28 64 3c 62 2d 3e 64 6d 29 20 | if (d<b->dm) | 000026c0 7b 0a 20 20 20 20 20 20 20 20 20 20 20 20 62 2d |{. b-| 000026d0 3e 64 6d 20 3d 20 64 3b 0a 20 20 20 20 20 20 20 |>dm = d;. | 000026e0 20 20 20 20 20 62 2d 3e 69 6d 20 3d 20 61 2d 62 | b->im = a-b| 000026f0 6f 69 64 3b 0a 20 20 20 20 20 20 20 20 20 20 7d |oid;. }| 00002700 0a 20 20 20 20 20 20 20 20 7d 0a 20 20 20 20 20 |. }. | 00002710 20 7d 0a 20 20 20 20 7d 0a 20 20 7d 0a 20 20 72 | }. }. }. r| 00002720 65 74 75 72 6e 20 63 3b 0a 7d 0a 0a 62 6f 69 64 |eturn c;.}..boid| 00002730 5f 64 61 74 61 20 2a 73 6f 72 74 5f 78 28 62 6f |_data *sort_x(bo| 00002740 69 64 5f 64 61 74 61 20 2a 63 2c 20 69 6e 74 20 |id_data *c, int | 00002750 6e 29 0a 7b 0a 20 20 69 6e 74 20 69 3b 0a 20 20 |n).{. int i;. | 00002760 62 6f 69 64 5f 64 61 74 61 20 2a 61 2c 20 2a 62 |boid_data *a, *b| 00002770 3b 0a 20 20 69 66 20 28 63 2d 3e 6e 65 78 74 3d |;. if (c->next=| 00002780 3d 26 7a 68 69 67 68 29 20 72 65 74 75 72 6e 20 |=&zhigh) return | 00002790 63 3b 0a 20 20 61 20 3d 20 63 3b 0a 20 20 66 6f |c;. a = c;. fo| 000027a0 72 20 28 69 3d 32 3b 20 69 3c 3d 6e 2f 32 3b 20 |r (i=2; i<=n/2; | 000027b0 69 2b 2b 29 20 63 3d 63 2d 3e 6e 65 78 74 3b 0a |i++) c=c->next;.| 000027c0 20 20 62 20 3d 20 63 2d 3e 6e 65 78 74 3b 0a 20 | b = c->next;. | 000027d0 20 63 2d 3e 6e 65 78 74 20 3d 20 26 7a 68 69 67 | c->next = &zhig| 000027e0 68 3b 0a 20 20 62 2d 3e 70 72 65 76 69 6f 75 73 |h;. b->previous| 000027f0 20 3d 20 26 7a 6c 6f 77 3b 0a 20 20 63 20 3d 20 | = &zlow;. c = | 00002800 6d 65 72 67 65 28 73 6f 72 74 5f 78 28 61 2c 20 |merge(sort_x(a, | 00002810 6e 2f 32 29 2c 20 73 6f 72 74 5f 78 28 62 2c 20 |n/2), sort_x(b, | 00002820 6e 2d 6e 2f 32 29 2c 20 26 61 2d 3e 78 20 2d 20 |n-n/2), &a->x - | 00002830 28 69 6e 74 20 2a 29 61 29 3b 0a 20 20 72 65 74 |(int *)a);. ret| 00002840 75 72 6e 20 63 3b 0a 7d 0a 0a 76 6f 69 64 20 6d |urn c;.}..void m| 00002850 6f 76 65 5f 62 6f 69 64 73 28 76 6f 69 64 29 0a |ove_boids(void).| 00002860 7b 0a 20 20 69 6e 74 20 69 2c 20 6a 2c 20 64 3b |{. int i, j, d;| 00002870 0a 20 20 69 6e 74 20 78 2c 20 79 2c 20 76 78 2c |. int x, y, vx,| 00002880 20 76 79 3b 0a 20 20 69 6e 74 20 61 2c 20 62 3b | vy;. int a, b;| 00002890 0a 20 20 69 6e 74 20 6b 2c 20 6c 2c 20 70 2c 20 |. int k, l, p, | 000028a0 71 3b 0a 20 20 67 6e 6f 64 65 20 2a 74 3b 0a 20 |q;. gnode *t;. | 000028b0 20 62 6f 69 64 5f 64 61 74 61 20 2a 62 70 2c 20 | boid_data *bp, | 000028c0 2a 62 70 65 3b 0a 20 20 66 6f 72 20 28 62 70 3d |*bpe;. for (bp=| 000028d0 62 6f 69 64 2c 62 70 65 3d 62 70 2b 6e 3b 20 62 |boid,bpe=bp+n; b| 000028e0 70 3c 62 70 65 3b 20 62 70 2b 2b 29 20 7b 0a 20 |p<bpe; bp++) {. | 000028f0 20 20 20 62 70 2d 3e 64 6d 3d 30 78 37 66 66 66 | bp->dm=0x7fff| 00002900 66 66 66 66 3b 0a 20 20 20 20 62 70 2d 3e 61 78 |ffff;. bp->ax| 00002910 3d 62 70 2d 3e 61 79 3d 62 70 2d 3e 61 76 78 3d |=bp->ay=bp->avx=| 00002920 62 70 2d 3e 61 76 79 3d 62 70 2d 3e 61 63 3d 30 |bp->avy=bp->ac=0| 00002930 3b 0a 20 20 7d 0a 20 20 74 6e 32 3d 63 6c 6f 63 |;. }. tn2=cloc| 00002940 6b 28 29 3b 0a 20 20 6d 65 6d 73 65 74 28 67 72 |k();. memset(gr| 00002950 69 64 2c 20 30 2c 20 73 69 7a 65 6f 66 28 67 6e |id, 0, sizeof(gn| 00002960 6f 64 65 20 2a 29 2a 28 6d 61 78 67 78 2b 31 29 |ode *)*(maxgx+1)| 00002970 2a 28 6d 61 78 67 79 2b 31 29 29 3b 0a 0a 20 20 |*(maxgy+1));.. | 00002980 6e 32 66 61 73 74 6c 6f 6f 70 28 29 3b 0a 0a 2f |n2fastloop();../| 00002990 2a 20 20 66 6f 72 20 28 69 3d 30 3b 20 69 3c 6e |* for (i=0; i<n| 000029a0 3b 20 69 2b 2b 29 20 7b 09 09 2a 66 69 72 73 74 |; i++) {..*first| 000029b0 20 77 65 20 69 6e 73 65 72 74 20 61 6c 6c 20 62 | we insert all b| 000029c0 6f 69 64 73 20 69 6e 74 6f 20 67 72 69 64 2a 0a |oids into grid*.| 000029d0 20 20 20 20 61 20 3d 20 78 74 6f 67 69 28 62 6f | a = xtogi(bo| 000029e0 69 64 5b 69 5d 2e 78 29 3b 0a 20 20 20 20 69 66 |id[i].x);. if| 000029f0 20 28 61 3c 30 29 20 61 3d 30 3b 0a 20 20 20 20 | (a<0) a=0;. | 00002a00 69 66 20 28 61 3e 6d 61 78 67 78 29 20 61 3d 6d |if (a>maxgx) a=m| 00002a10 61 78 67 78 3b 0a 20 20 20 20 62 20 3d 20 79 74 |axgx;. b = yt| 00002a20 6f 67 69 28 62 6f 69 64 5b 69 5d 2e 79 29 3b 0a |ogi(boid[i].y);.| 00002a30 20 20 20 20 69 66 20 28 62 3c 30 29 20 62 3d 30 | if (b<0) b=0| 00002a40 3b 0a 20 20 20 20 69 66 20 28 62 3e 6d 61 78 67 |;. if (b>maxg| 00002a50 79 29 20 62 3d 6d 61 78 67 79 3b 20 20 0a 20 20 |y) b=maxgy; . | 00002a60 20 20 6a 20 3d 20 61 2b 28 6d 61 78 67 78 2b 31 | j = a+(maxgx+1| 00002a70 29 2a 62 3b 0a 20 20 20 20 62 6f 69 64 67 6e 6f |)*b;. boidgno| 00002a80 64 65 5b 69 5d 2e 6e 65 78 74 20 3d 20 67 72 69 |de[i].next = gri| 00002a90 64 5b 6a 5d 3b 0a 20 20 20 20 67 72 69 64 5b 6a |d[j];. grid[j| 00002aa0 5d 20 3d 20 62 6f 69 64 67 6e 6f 64 65 2b 69 3b |] = boidgnode+i;| 00002ab0 0a 20 20 7d 2a 2f 0a 2f 2a 0a 20 20 66 6f 72 20 |. }*/./*. for | 00002ac0 28 69 3d 30 3b 20 69 3c 6e 3b 20 69 2b 2b 29 20 |(i=0; i<n; i++) | 00002ad0 7b 09 09 2a 74 68 65 6e 20 77 65 20 72 61 6e 67 |{..*then we rang| 00002ae0 65 20 63 68 65 63 6b 20 76 69 61 20 74 68 65 20 |e check via the | 00002af0 67 72 69 64 2a 0a 20 20 20 20 61 20 3d 20 78 74 |grid*. a = xt| 00002b00 6f 67 69 28 62 6f 69 64 5b 69 5d 2e 78 29 3b 0a |ogi(boid[i].x);.| 00002b10 20 20 20 20 69 66 20 28 61 3c 30 29 20 61 3d 30 | if (a<0) a=0| 00002b20 3b 0a 20 20 20 20 69 66 20 28 61 3e 6d 61 78 67 |;. if (a>maxg| 00002b30 78 29 20 61 3d 6d 61 78 67 78 3b 0a 20 20 20 20 |x) a=maxgx;. | 00002b40 62 20 3d 20 79 74 6f 67 69 28 62 6f 69 64 5b 69 |b = ytogi(boid[i| 00002b50 5d 2e 79 29 3b 0a 20 20 20 20 69 66 20 28 62 3c |].y);. if (b<| 00002b60 30 29 20 62 3d 30 3b 0a 20 20 20 20 69 66 20 28 |0) b=0;. if (| 00002b70 62 3e 6d 61 78 67 79 29 20 62 3d 6d 61 78 67 79 |b>maxgy) b=maxgy| 00002b80 3b 20 20 0a 20 20 20 20 6b 20 3d 20 61 2d 67 72 |; . k = a-gr| 00002b90 6c 3c 30 20 3f 20 30 20 3a 20 61 2d 67 72 6c 3b |l<0 ? 0 : a-grl;| 00002ba0 0a 20 20 20 20 6c 20 3d 20 62 2d 67 72 6c 3c 30 |. l = b-grl<0| 00002bb0 20 3f 20 30 20 3a 20 62 2d 67 72 6c 3b 0a 20 20 | ? 0 : b-grl;. | 00002bc0 20 20 70 20 3d 20 61 2b 67 72 6c 3e 6d 61 78 67 | p = a+grl>maxg| 00002bd0 78 20 3f 20 6d 61 78 67 78 20 3a 20 61 2b 67 72 |x ? maxgx : a+gr| 00002be0 6c 3b 0a 20 20 20 20 71 20 3d 20 62 2b 67 72 6c |l;. q = b+grl| 00002bf0 3e 6d 61 78 67 79 20 3f 20 6d 61 78 67 79 20 3a |>maxgy ? maxgy :| 00002c00 20 62 2b 67 72 6c 3b 0a 20 20 20 20 66 6f 72 20 | b+grl;. for | 00002c10 28 79 3d 6c 3b 20 79 3c 3d 71 3b 20 79 2b 2b 29 |(y=l; y<=q; y++)| 00002c20 0a 20 20 20 20 20 20 66 6f 72 20 28 78 3d 6b 3b |. for (x=k;| 00002c30 20 78 3c 3d 70 3b 20 78 2b 2b 29 0a 20 20 20 20 | x<=p; x++). | 00002c40 20 20 20 20 69 66 20 28 67 6d 61 73 6b 5b 61 62 | if (gmask[ab| 00002c50 73 28 78 2d 61 29 2b 28 67 72 6c 2b 31 29 2a 61 |s(x-a)+(grl+1)*a| 00002c60 62 73 28 79 2d 62 29 5d 29 20 7b 0a 20 20 20 20 |bs(y-b)]) {. | 00002c70 20 20 20 20 20 20 66 6f 72 20 28 74 3d 67 72 69 | for (t=gri| 00002c80 64 5b 78 2b 28 6d 61 78 67 78 2b 31 29 2a 79 5d |d[x+(maxgx+1)*y]| 00002c90 3b 20 74 21 3d 30 3b 20 74 3d 74 2d 3e 6e 65 78 |; t!=0; t=t->nex| 00002ca0 74 29 20 7b 0a 20 20 20 20 20 20 20 20 20 20 20 |t) {. | 00002cb0 20 6a 20 3d 20 74 2d 62 6f 69 64 67 6e 6f 64 65 | j = t-boidgnode| 00002cc0 3b 0a 20 20 20 20 20 20 20 20 20 20 20 20 69 66 |;. if| 00002cd0 20 28 69 3c 6a 29 20 7b 0a 20 20 20 20 20 20 20 | (i<j) {. | 00002ce0 20 20 20 20 20 20 20 64 20 3d 20 73 71 75 61 72 | d = squar| 00002cf0 65 31 36 31 30 28 62 6f 69 64 5b 69 5d 2e 78 2d |e1610(boid[i].x-| 00002d00 62 6f 69 64 5b 6a 5d 2e 78 29 20 2b 20 73 71 75 |boid[j].x) + squ| 00002d10 61 72 65 31 36 31 30 28 62 6f 69 64 5b 69 5d 2e |are1610(boid[i].| 00002d20 79 2d 62 6f 69 64 5b 6a 5d 2e 79 29 3b 0a 20 20 |y-boid[j].y);. | 00002d30 20 20 20 20 20 20 20 20 20 20 20 20 69 66 20 28 | if (| 00002d40 64 3c 72 6c 32 29 20 7b 0a 20 20 20 20 20 20 20 |d<rl2) {. | 00002d50 20 20 20 20 20 20 20 20 20 62 6f 69 64 5b 69 5d | boid[i]| 00002d60 2e 61 78 20 20 2b 3d 20 62 6f 69 64 5b 6a 5d 2e |.ax += boid[j].| 00002d70 78 2d 62 6f 69 64 5b 69 5d 2e 78 3b 0a 20 20 20 |x-boid[i].x;. | 00002d80 20 20 20 20 20 20 20 20 20 20 20 20 20 62 6f 69 | boi| 00002d90 64 5b 69 5d 2e 61 79 20 20 2b 3d 20 62 6f 69 64 |d[i].ay += boid| 00002da0 5b 6a 5d 2e 79 2d 62 6f 69 64 5b 69 5d 2e 79 3b |[j].y-boid[i].y;| 00002db0 0a 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 |. | 00002dc0 20 62 6f 69 64 5b 69 5d 2e 61 76 78 20 2b 3d 20 | boid[i].avx += | 00002dd0 62 6f 69 64 5b 6a 5d 2e 76 78 3b 0a 20 20 20 20 |boid[j].vx;. | 00002de0 20 20 20 20 20 20 20 20 20 20 20 20 62 6f 69 64 | boid| 00002df0 5b 69 5d 2e 61 76 79 20 2b 3d 20 62 6f 69 64 5b |[i].avy += boid[| 00002e00 6a 5d 2e 76 79 3b 0a 20 20 20 20 20 20 20 20 20 |j].vy;. | 00002e10 20 20 20 20 20 20 20 62 6f 69 64 5b 69 5d 2e 61 | boid[i].a| 00002e20 63 20 20 2b 3d 20 31 3b 0a 20 20 20 20 20 20 20 |c += 1;. | 00002e30 20 20 20 20 20 20 20 20 20 62 6f 69 64 5b 6a 5d | boid[j]| 00002e40 2e 61 78 20 20 2b 3d 20 62 6f 69 64 5b 69 5d 2e |.ax += boid[i].| 00002e50 78 2d 62 6f 69 64 5b 6a 5d 2e 78 3b 0a 20 20 20 |x-boid[j].x;. | 00002e60 20 20 20 20 20 20 20 20 20 20 20 20 20 62 6f 69 | boi| 00002e70 64 5b 6a 5d 2e 61 79 20 20 2b 3d 20 62 6f 69 64 |d[j].ay += boid| 00002e80 5b 69 5d 2e 79 2d 62 6f 69 64 5b 6a 5d 2e 79 3b |[i].y-boid[j].y;| 00002e90 0a 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 |. | 00002ea0 20 62 6f 69 64 5b 6a 5d 2e 61 76 78 20 2b 3d 20 | boid[j].avx += | 00002eb0 62 6f 69 64 5b 69 5d 2e 76 78 3b 0a 20 20 20 20 |boid[i].vx;. | 00002ec0 20 20 20 20 20 20 20 20 20 20 20 20 62 6f 69 64 | boid| 00002ed0 5b 6a 5d 2e 61 76 79 20 2b 3d 20 62 6f 69 64 5b |[j].avy += boid[| 00002ee0 69 5d 2e 76 79 3b 0a 20 20 20 20 20 20 20 20 20 |i].vy;. | 00002ef0 20 20 20 20 20 20 20 62 6f 69 64 5b 6a 5d 2e 61 | boid[j].a| 00002f00 63 20 20 2b 3d 20 31 3b 0a 20 20 20 20 20 20 20 |c += 1;. | 00002f10 20 20 20 20 20 20 20 7d 0a 20 20 20 20 20 20 20 | }. | 00002f20 20 20 20 20 20 7d 0a 20 20 20 20 20 20 20 20 20 | }. | 00002f30 20 7d 0a 20 20 20 20 20 20 20 20 7d 0a 20 20 7d | }. }. }| 00002f40 2a 2f 0a 0a 0a 0a 0a 20 20 2f 2a 6d 69 6e 69 6d |*/..... /*minim| 00002f50 75 6d 20 64 69 73 74 61 6e 63 65 20 63 61 6c 63 |um distance calc| 00002f60 75 6c 61 74 69 6f 6e 2a 2f 0a 20 20 68 20 3d 20 |ulation*/. h = | 00002f70 73 6f 72 74 5f 78 28 68 2c 20 6e 29 3b 0a 20 20 |sort_x(h, n);. | 00002f80 68 20 3d 20 73 6f 72 74 5f 79 5f 6e 63 61 6c 63 |h = sort_y_ncalc| 00002f90 63 6c 6f 73 65 73 74 28 68 2c 20 6e 29 3b 0a 20 |closest(h, n);. | 00002fa0 20 2f 2a 72 61 6e 67 65 20 63 68 65 63 6b 69 6e | /*range checkin| 00002fb0 67 20 26 20 6d 69 6e 69 6d 75 6d 20 64 69 73 74 |g & minimum dist| 00002fc0 61 6e 63 65 20 63 61 6c 63 75 6c 61 74 69 6f 6e |ance calculation| 00002fd0 73 20 63 6f 6d 70 6c 65 74 65 2a 2f 0a 20 20 74 |s complete*/. t| 00002fe0 6e 32 3d 63 6c 6f 63 6b 28 29 2d 74 6e 32 3b 0a |n2=clock()-tn2;.| 00002ff0 20 20 66 6f 72 20 28 69 3d 30 3b 20 69 3c 6e 3b | for (i=0; i<n;| 00003000 20 69 2b 2b 29 20 7b 0a 20 20 20 20 78 20 20 3d | i++) {. x =| 00003010 20 62 6f 69 64 5b 69 5d 2e 78 3b 0a 20 20 20 20 | boid[i].x;. | 00003020 79 20 20 3d 20 62 6f 69 64 5b 69 5d 2e 79 3b 0a |y = boid[i].y;.| 00003030 20 20 20 20 76 78 20 3d 20 62 6f 69 64 5b 69 5d | vx = boid[i]| 00003040 2e 76 78 3b 0a 20 20 20 20 76 79 20 3d 20 62 6f |.vx;. vy = bo| 00003050 69 64 5b 69 5d 2e 76 79 3b 0a 20 20 20 20 69 66 |id[i].vy;. if| 00003060 20 28 62 6f 69 64 5b 69 5d 2e 61 63 3c 31 29 20 | (boid[i].ac<1) | 00003070 7b 0a 20 20 20 20 20 20 6a 20 3d 20 62 6f 69 64 |{. j = boid| 00003080 5b 69 5d 2e 69 6d 3b 0a 20 20 20 20 20 20 62 6f |[i].im;. bo| 00003090 69 64 5b 69 5d 2e 61 78 20 20 2b 3d 20 62 6f 69 |id[i].ax += boi| 000030a0 64 5b 6a 5d 2e 78 2d 78 3b 0a 20 20 20 20 20 20 |d[j].x-x;. | 000030b0 62 6f 69 64 5b 69 5d 2e 61 79 20 20 2b 3d 20 62 |boid[i].ay += b| 000030c0 6f 69 64 5b 6a 5d 2e 79 2d 79 3b 0a 20 20 20 20 |oid[j].y-y;. | 000030d0 20 20 62 6f 69 64 5b 69 5d 2e 61 76 78 20 2b 3d | boid[i].avx +=| 000030e0 20 62 6f 69 64 5b 6a 5d 2e 76 78 3b 0a 20 20 20 | boid[j].vx;. | 000030f0 20 20 20 62 6f 69 64 5b 69 5d 2e 61 76 79 20 2b | boid[i].avy +| 00003100 3d 20 62 6f 69 64 5b 6a 5d 2e 76 79 3b 0a 20 20 |= boid[j].vy;. | 00003110 20 20 20 20 62 6f 69 64 5b 69 5d 2e 61 63 20 20 | boid[i].ac | 00003120 2b 3d 20 31 3b 0a 20 20 20 20 7d 0a 20 20 20 20 |+= 1;. }. | 00003130 69 66 20 28 78 3c 72 63 2d 36 34 30 2a 6f 6e 65 |if (x<rc-640*one| 00003140 20 7c 7c 20 78 3e 36 34 30 2a 6f 6e 65 2d 72 63 | || x>640*one-rc| 00003150 20 7c 7c 20 79 3c 72 63 2d 35 31 32 2a 6f 6e 65 | || y<rc-512*one| 00003160 20 7c 7c 20 79 3e 35 31 32 2a 6f 6e 65 2d 72 63 | || y>512*one-rc| 00003170 29 20 7b 0a 20 20 20 20 20 20 69 66 20 28 78 3c |) {. if (x<| 00003180 72 63 2d 36 34 30 2a 6f 6e 65 26 26 76 78 3c 30 |rc-640*one&&vx<0| 00003190 20 7c 7c 20 78 3e 36 34 30 2a 6f 6e 65 2d 72 63 | || x>640*one-rc| 000031a0 26 26 76 78 3e 30 29 20 76 78 3d 2d 76 78 3b 0a |&&vx>0) vx=-vx;.| 000031b0 20 20 20 20 20 20 69 66 20 28 79 3c 72 63 2d 35 | if (y<rc-5| 000031c0 31 32 2a 6f 6e 65 26 26 76 79 3c 30 20 7c 7c 20 |12*one&&vy<0 || | 000031d0 79 3e 35 31 32 2a 6f 6e 65 2d 72 63 26 26 76 79 |y>512*one-rc&&vy| 000031e0 3e 30 29 20 76 79 3d 2d 76 79 3b 0a 20 20 20 20 |>0) vy=-vy;. | 000031f0 7d 0a 20 20 20 20 65 6c 73 65 20 7b 0a 20 20 20 |}. else {. | 00003200 20 20 20 66 6f 72 20 28 6a 3d 30 3b 20 6a 3c 70 | for (j=0; j<p| 00003210 6e 3b 20 6a 2b 2b 29 20 7b 0a 20 20 20 20 20 20 |n; j++) {. | 00003220 20 20 69 66 20 28 61 62 73 28 70 69 6c 6c 61 72 | if (abs(pillar| 00003230 5b 6a 5d 2e 78 2d 78 29 3c 70 69 6c 6c 61 72 5b |[j].x-x)<pillar[| 00003240 6a 5d 2e 72 20 26 26 20 61 62 73 28 70 69 6c 6c |j].r && abs(pill| 00003250 61 72 5b 6a 5d 2e 79 2d 79 29 3c 70 69 6c 6c 61 |ar[j].y-y)<pilla| 00003260 72 5b 6a 5d 2e 72 29 20 7b 0a 20 20 20 20 20 20 |r[j].r) {. | 00003270 20 20 20 20 64 20 3d 20 6d 75 6c 31 36 31 30 28 | d = mul1610(| 00003280 70 69 6c 6c 61 72 5b 6a 5d 2e 78 2d 78 2c 70 69 |pillar[j].x-x,pi| 00003290 6c 6c 61 72 5b 6a 5d 2e 78 2d 78 29 20 2b 20 6d |llar[j].x-x) + m| 000032a0 75 6c 31 36 31 30 28 70 69 6c 6c 61 72 5b 6a 5d |ul1610(pillar[j]| 000032b0 2e 79 2d 79 2c 70 69 6c 6c 61 72 5b 6a 5d 2e 79 |.y-y,pillar[j].y| 000032c0 2d 79 29 3b 0a 20 20 20 20 20 20 20 20 20 20 69 |-y);. i| 000032d0 66 20 28 64 20 3c 20 70 69 6c 6c 61 72 5b 6a 5d |f (d < pillar[j]| 000032e0 2e 72 32 29 20 7b 0a 20 20 20 20 20 20 20 20 20 |.r2) {. | 000032f0 20 20 20 6a 2b 3d 30 78 31 30 30 30 30 3b 0a 20 | j+=0x10000;. | 00003300 20 20 20 20 20 20 20 20 20 20 20 62 72 65 61 6b | break| 00003310 3b 0a 20 20 20 20 20 20 20 20 20 20 7d 0a 20 20 |;. }. | 00003320 20 20 20 20 20 20 7d 0a 20 20 20 20 20 20 7d 0a | }. }.| 00003330 20 20 20 20 20 20 69 66 20 28 6a 20 26 20 30 78 | if (j & 0x| 00003340 31 30 30 30 30 29 20 7b 0a 20 20 20 20 20 20 20 |10000) {. | 00003350 20 6a 2d 3d 30 78 31 30 30 30 30 3b 0a 20 20 20 | j-=0x10000;. | 00003360 20 20 20 20 20 62 6f 75 6e 63 65 28 70 69 6c 6c | bounce(pill| 00003370 61 72 5b 6a 5d 2e 78 2d 78 2c 20 70 69 6c 6c 61 |ar[j].x-x, pilla| 00003380 72 5b 6a 5d 2e 79 2d 79 2c 20 26 76 78 2c 20 26 |r[j].y-y, &vx, &| 00003390 76 79 2c 20 64 29 3b 0a 20 20 20 20 20 20 7d 0a |vy, d);. }.| 000033a0 20 20 20 20 20 20 65 6c 73 65 20 69 66 20 28 62 | else if (b| 000033b0 6f 69 64 5b 69 5d 2e 64 6d 3c 72 63 32 29 20 62 |oid[i].dm<rc2) b| 000033c0 6f 75 6e 63 65 28 62 6f 69 64 5b 62 6f 69 64 5b |ounce(boid[boid[| 000033d0 69 5d 2e 69 6d 5d 2e 78 2d 78 2c 20 62 6f 69 64 |i].im].x-x, boid| 000033e0 5b 62 6f 69 64 5b 69 5d 2e 69 6d 5d 2e 79 2d 79 |[boid[i].im].y-y| 000033f0 2c 20 26 76 78 2c 20 26 76 79 2c 20 62 6f 69 64 |, &vx, &vy, boid| 00003400 5b 69 5d 2e 64 6d 29 3b 0a 20 20 20 20 20 20 65 |[i].dm);. e| 00003410 6c 73 65 20 7b 0a 20 20 20 20 20 20 20 20 61 20 |lse {. a | 00003420 3d 20 62 6f 69 64 5b 69 5d 2e 61 78 2f 62 6f 69 |= boid[i].ax/boi| 00003430 64 5b 69 5d 2e 61 63 3b 0a 20 20 20 20 20 20 20 |d[i].ac;. | 00003440 20 62 20 3d 20 62 6f 69 64 5b 69 5d 2e 61 79 2f | b = boid[i].ay/| 00003450 62 6f 69 64 5b 69 5d 2e 61 63 3b 0a 20 20 20 20 |boid[i].ac;. | 00003460 20 20 20 20 64 20 3d 20 6d 61 67 6e 69 74 75 64 | d = magnitud| 00003470 65 28 61 2c 62 29 3b 0a 20 20 20 20 20 20 20 20 |e(a,b);. | 00003480 61 20 3d 20 64 69 76 5f 66 72 61 63 31 36 28 61 |a = div_frac16(a| 00003490 2c 64 29 3b 0a 20 20 20 20 20 20 20 20 62 20 3d |,d);. b =| 000034a0 20 64 69 76 5f 66 72 61 63 31 36 28 62 2c 64 29 | div_frac16(b,d)| 000034b0 3b 0a 20 20 20 20 20 20 20 20 64 20 3d 20 6e 65 |;. d = ne| 000034c0 61 72 65 73 74 73 5f 73 71 72 74 28 69 29 3b 0a |arests_sqrt(i);.| 000034d0 20 20 20 20 20 20 20 20 69 66 20 28 64 3c 72 6d | if (d<rm| 000034e0 29 20 7b 0a 20 20 20 20 20 20 20 20 20 20 76 78 |) {. vx| 000034f0 20 3d 20 64 69 76 5f 66 72 61 63 31 36 28 20 6d | = div_frac16( m| 00003500 75 6c 5f 66 72 61 63 31 36 28 62 6f 69 64 5b 69 |ul_frac16(boid[i| 00003510 5d 2e 61 76 78 2f 62 6f 69 64 5b 69 5d 2e 61 63 |].avx/boid[i].ac| 00003520 2c 20 72 6d 2d 64 29 2b 6d 75 6c 5f 66 72 61 63 |, rm-d)+mul_frac| 00003530 31 36 28 64 2d 72 63 2c 20 61 2a 67 29 20 2c 20 |16(d-rc, a*g) , | 00003540 72 6d 2d 72 63 20 29 3b 0a 20 20 20 20 20 20 20 |rm-rc );. | 00003550 20 20 20 76 79 20 3d 20 64 69 76 5f 66 72 61 63 | vy = div_frac| 00003560 31 36 28 20 6d 75 6c 5f 66 72 61 63 31 36 28 62 |16( mul_frac16(b| 00003570 6f 69 64 5b 69 5d 2e 61 76 79 2f 62 6f 69 64 5b |oid[i].avy/boid[| 00003580 69 5d 2e 61 63 2c 20 72 6d 2d 64 29 2b 6d 75 6c |i].ac, rm-d)+mul| 00003590 5f 66 72 61 63 31 36 28 64 2d 72 63 2c 20 62 2a |_frac16(d-rc, b*| 000035a0 67 29 20 2c 20 72 6d 2d 72 63 20 29 3b 0a 20 20 |g) , rm-rc );. | 000035b0 20 20 20 20 20 20 7d 0a 20 20 20 20 20 20 20 20 | }. | 000035c0 65 6c 73 65 20 7b 0a 20 20 20 20 20 20 20 20 20 |else {. | 000035d0 20 64 20 20 3d 20 64 69 76 5f 66 72 61 63 31 36 | d = div_frac16| 000035e0 28 64 2c 20 72 6d 29 3b 0a 20 20 20 20 20 20 20 |(d, rm);. | 000035f0 20 20 20 69 66 20 28 64 3e 31 36 2a 6f 6e 65 29 | if (d>16*one)| 00003600 20 64 3d 31 36 2a 6f 6e 65 3b 09 2f 2a 70 72 65 | d=16*one;./*pre| 00003610 76 65 6e 74 20 72 69 64 69 63 75 6c 6f 75 73 6c |vent ridiculousl| 00003620 79 20 68 69 67 68 20 63 61 74 63 68 20 75 70 20 |y high catch up | 00003630 73 70 65 65 64 73 2a 2f 0a 20 20 20 20 20 20 20 |speeds*/. | 00003640 20 20 20 76 78 20 3d 20 6d 75 6c 5f 66 72 61 63 | vx = mul_frac| 00003650 31 36 28 64 2c 20 61 2a 67 29 3b 0a 20 20 20 20 |16(d, a*g);. | 00003660 20 20 20 20 20 20 76 79 20 3d 20 6d 75 6c 5f 66 | vy = mul_f| 00003670 72 61 63 31 36 28 64 2c 20 62 2a 67 29 3b 0a 20 |rac16(d, b*g);. | 00003680 20 20 20 20 20 20 20 7d 0a 20 20 20 20 20 20 7d | }. }| 00003690 0a 20 20 20 20 7d 0a 20 20 20 20 64 20 3d 20 6d |. }. d = m| 000036a0 61 67 6e 69 74 75 64 65 28 76 78 2c 76 79 29 3b |agnitude(vx,vy);| 000036b0 0a 20 20 20 20 69 66 20 28 64 3c 67 2a 6f 6e 65 |. if (d<g*one| 000036c0 29 20 7b 0a 20 20 20 20 20 20 76 78 20 3d 20 64 |) {. vx = d| 000036d0 69 76 5f 66 72 61 63 31 36 28 76 78 2a 67 2c 64 |iv_frac16(vx*g,d| 000036e0 29 3b 0a 20 20 20 20 20 20 76 79 20 3d 20 64 69 |);. vy = di| 000036f0 76 5f 66 72 61 63 31 36 28 76 79 2a 67 2c 64 29 |v_frac16(vy*g,d)| 00003700 3b 0a 20 20 20 20 20 20 64 20 20 3d 20 67 2a 6f |;. d = g*o| 00003710 6e 65 3b 0a 20 20 20 20 7d 0a 20 20 20 20 62 6f |ne;. }. bo| 00003720 69 64 5b 69 5d 2e 78 6e 20 3d 20 62 6f 69 64 5b |id[i].xn = boid[| 00003730 69 5d 2e 78 2b 76 78 3b 0a 20 20 20 20 62 6f 69 |i].x+vx;. boi| 00003740 64 5b 69 5d 2e 79 6e 20 3d 20 62 6f 69 64 5b 69 |d[i].yn = boid[i| 00003750 5d 2e 79 2b 76 79 3b 0a 20 20 20 20 62 6f 69 64 |].y+vy;. boid| 00003760 5b 69 5d 2e 76 78 20 3d 20 76 78 3b 0a 20 20 20 |[i].vx = vx;. | 00003770 20 62 6f 69 64 5b 69 5d 2e 76 79 20 3d 20 76 79 | boid[i].vy = vy| 00003780 3b 0a 20 20 20 20 62 6f 69 64 5b 69 5d 2e 6d 76 |;. boid[i].mv| 00003790 20 3d 20 64 3b 0a 20 20 7d 0a 20 20 66 6f 72 20 | = d;. }. for | 000037a0 28 69 3d 30 3b 20 69 3c 6e 3b 20 69 2b 2b 29 20 |(i=0; i<n; i++) | 000037b0 7b 0a 20 20 20 20 62 6f 69 64 5b 69 5d 2e 78 20 |{. boid[i].x | 000037c0 3d 20 62 6f 69 64 5b 69 5d 2e 78 6e 3b 0a 20 20 |= boid[i].xn;. | 000037d0 20 20 62 6f 69 64 5b 69 5d 2e 79 20 3d 20 62 6f | boid[i].y = bo| 000037e0 69 64 5b 69 5d 2e 79 6e 3b 0a 20 20 7d 0a 7d 0a |id[i].yn;. }.}.| 000037f0 0a 69 6e 74 20 6d 61 69 6e 28 76 6f 69 64 29 0a |.int main(void).| 00003800 7b 0a 20 20 69 6e 74 20 69 3b 0a 20 20 69 66 20 |{. int i;. if | 00003810 28 21 69 6e 69 74 28 29 29 20 72 65 74 75 72 6e |(!init()) return| 00003820 20 30 3b 0a 20 20 66 6f 72 20 28 73 69 6e 67 6c | 0;. for (singl| 00003830 65 5f 73 74 65 70 3d 46 41 4c 53 45 3b 3b 29 20 |e_step=FALSE;;) | 00003840 7b 0a 20 20 20 20 74 74 6f 74 61 6c 3d 63 6c 6f |{. ttotal=clo| 00003850 63 6b 28 29 3b 0a 20 20 20 20 62 62 63 5f 63 6c |ck();. bbc_cl| 00003860 73 28 29 3b 0a 20 20 20 20 6d 6f 76 65 5f 62 6f |s();. move_bo| 00003870 69 64 73 28 29 3b 0a 20 20 20 20 63 68 65 63 6b |ids();. check| 00003880 5f 6d 6f 75 73 65 28 29 3b 0a 20 20 20 20 66 6f |_mouse();. fo| 00003890 72 20 28 69 3d 30 3b 20 69 3c 6e 3b 20 69 2b 2b |r (i=0; i<n; i++| 000038a0 29 20 7b 0a 20 20 20 20 20 20 62 62 63 5f 6d 6f |) {. bbc_mo| 000038b0 76 65 28 62 6f 69 64 5b 69 5d 2e 78 2f 6f 6e 65 |ve(boid[i].x/one| 000038c0 2c 20 62 6f 69 64 5b 69 5d 2e 79 2f 6f 6e 65 29 |, boid[i].y/one)| 000038d0 3b 0a 20 20 20 20 20 20 62 62 63 5f 64 72 61 77 |;. bbc_draw| 000038e0 62 79 28 28 62 6f 69 64 5b 69 5d 2e 76 78 2a 32 |by((boid[i].vx*2| 000038f0 2a 67 29 2f 62 6f 69 64 5b 69 5d 2e 6d 76 2c 20 |*g)/boid[i].mv, | 00003900 28 62 6f 69 64 5b 69 5d 2e 76 79 2a 32 2a 67 29 |(boid[i].vy*2*g)| 00003910 2f 62 6f 69 64 5b 69 5d 2e 6d 76 29 3b 0a 20 20 |/boid[i].mv);. | 00003920 20 20 7d 0a 20 20 20 20 66 6f 72 20 28 69 3d 30 | }. for (i=0| 00003930 3b 20 69 3c 70 6e 3b 20 69 2b 2b 29 20 62 62 63 |; i<pn; i++) bbc| 00003940 5f 63 69 72 63 6c 65 28 70 69 6c 6c 61 72 5b 69 |_circle(pillar[i| 00003950 5d 2e 78 2f 6f 6e 65 2c 20 70 69 6c 6c 61 72 5b |].x/one, pillar[| 00003960 69 5d 2e 79 2f 6f 6e 65 2c 20 70 69 6c 6c 61 72 |i].y/one, pillar| 00003970 5b 69 5d 2e 72 2f 6f 6e 65 29 3b 0a 20 20 20 20 |[i].r/one);. | 00003980 74 74 6f 74 61 6c 3d 63 6c 6f 63 6b 28 29 2d 74 |ttotal=clock()-t| 00003990 74 6f 74 61 6c 3b 0a 20 20 20 20 70 72 69 6e 74 |total;. print| 000039a0 66 28 22 25 69 5c 6e 25 69 5c 6e 22 2c 74 6e 32 |f("%i\n%i\n",tn2| 000039b0 2c 74 74 6f 74 61 6c 29 3b 0a 20 20 20 20 6f 73 |,ttotal);. os| 000039c0 5f 73 77 69 31 28 4f 53 5f 42 79 74 65 2c 20 31 |_swi1(OS_Byte, 1| 000039d0 39 29 3b 0a 20 20 20 20 73 77 61 70 5f 62 61 6e |9);. swap_ban| 000039e0 6b 73 28 29 3b 0a 20 20 20 20 73 74 65 70 28 29 |ks();. step()| 000039f0 3b 0a 20 20 20 20 69 66 20 28 6b 62 68 69 74 28 |;. if (kbhit(| 00003a00 29 29 0a 20 20 20 20 20 20 69 66 20 28 21 69 6e |)). if (!in| 00003a10 69 74 28 29 29 20 62 72 65 61 6b 3b 0a 20 20 7d |it()) break;. }| 00003a20 0a 20 20 72 65 74 75 72 6e 20 30 3b 0a 7d 0a |. return 0;.}.| 00003a2f