Home » Recent acquisitions » Acorn ADFS disks » adfs_AcornUser_199609.adf » Regulars » StarInfo/Goatly/CoolWave
StarInfo/Goatly/CoolWave
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » Recent acquisitions » Acorn ADFS disks » adfs_AcornUser_199609.adf » Regulars |
Filename: | StarInfo/Goatly/CoolWave |
Read OK: | ✔ |
File size: | 0E21 bytes |
Load address: | 0000 |
Exec address: | 0000 |
File contents
1REM CoolWave v1.0 2REM A small prog that rotates some balls doing a wave in every dimension 3REM (except time - that's a little hard to model! (even on an Acorn!) ) 4REM By Mike Goatly - Feb 1996 5REM LEN1996 Acorn User 6 7t=RND(-TIME) 8ON ERROR PRINT REPORT$+" at line "+STR$(ERL):STOP 9 10MODE 12 11ORIGIN 640,512 12OFF 13Bank=1 14 15 REM It's pretty safe (and enlightening?) to mess with the 16 REM variables that are described below. 17Balls=16 :REM The number of balls 18WaveSpeed=8 :REM The speed of the wave across the balls 19WaveHeight=250 :REM The height of the balls wave 20MaxSpeed=6 :REM The maximum speed of rotation in any axis 21 22d=2000 23Wave=0 24WaveStep=360/Balls 25PlotStep=(1280/360)*WaveStep 26orig=-620 27PROCReset(2) 28 29REPEAT 30 PROCCheckKeys 31 PROCDrawBalls 32 33 SYS 6,113,Bank 34 SYS 6,112,3-Bank 35 Bank=3-Bank 36UNTIL FALSE 37 38END 39 40DEF PROCDrawBalls 41 cos1=COS(RAD(Angle1)) 42 sin1=SIN(RAD(Angle1)) 43 cos2=COS(RAD(Angle2)) 44 sin2=SIN(RAD(Angle2)) 45 cos3=COS(RAD(Angle3)) 46 sin3=SIN(RAD(Angle3)) 47 Angle1+=Diff1 48 IF Angle1>=360 THEN Angle1-=360 49 Angle2+=Diff2 50 IF Angle2>=360 THEN Angle2-=360 51 Angle3+=Diff3 52 IF Angle3>=360 THEN Angle3-=360 53 Wave+=WaveSpeed 54 WAIT:CLS 55 56 ox=orig:oy=SIN(RAD(Wave))*WaveHeight:oz=0 57 oz=oy*sin1+oz*cos1:oz=ox*sin2+oz*cos2 58 za=oz 59 ox=orig+(PlotStep*Balls):oz=0 60 oz=oy*sin1+oz*cos1:oz=ox*sin2+oz*cos2 61 62 IF za<oz THEN 63 CurrWave=0 64 DrawX=orig 65 WaveStepNow=WaveStep 66 PlotStepNow=PlotStep 67 ELSE 68 CurrWave=360 69 DrawX=orig+(PlotStep*Balls) 70 WaveStepNow=-WaveStep 71 PlotStepNow=-PlotStep 72 ENDIF 73 74 FOR x=1 TO Balls+1 75 ox=DrawX:oy=SIN(RAD(CurrWave+Wave))*WaveHeight:oz=0 76 ny=oy*cos1-oz*sin1 77 nz=oy*sin1+oz*cos1 78 79 oy=ny:oz=nz 80 nx=ox*cos2-oz*sin2 81 nz=ox*sin2+oz*cos2-2000 82 83 ox=nx:oy=ny 84 nx=ox*cos3-oy*sin3 85 ny=ox*sin3+oy*cos3 86 87 xp=d*nx/nz:yp=d*ny/nz 88 col=(ABS(nz)/125)-8 89 col=16-col 90 IF col<0 THEN GCOL 0 ELSE GCOL col 91 CIRCLE FILL xp,yp,80+(nz/40) 92 93 CurrWave+=WaveStepNow 94 DrawX+=PlotStepNow 95 NEXT x 96 97DEF PROCCheckKeys 98 k$=INKEY$ 0 99 IF k$="z" OR k$="Z" THEN d-=15 100 IF k$="x" OR k$="X" THEN d+=15 101 IF k$="q" OR k$="Q" THEN 102 Diff1+=.1 103 IF Diff1>MaxSpeed THEN Diff1=MaxSpeed 104 ENDIF 105 IF k$="a" OR k$="A" THEN 106 Diff1-=.1 107 IF Diff1<-MaxSpeed THEN Diff1=-MaxSpeed 108 ENDIF 109 IF k$="w" OR k$="W" THEN 110 Diff2+=.1 111 IF Diff2>MaxSpeed THEN Diff2=MaxSpeed 112 ENDIF 113 IF k$="s" OR k$="S" THEN 114 Diff2-=.1 115 IF Diff2<-MaxSpeed THEN Diff2=-MaxSpeed 116 ENDIF 117 IF k$="e" OR k$="E" THEN 118 Diff3+=.1 119 IF Diff3>MaxSpeed THEN Diff3=MaxSpeed 120 ENDIF 121 IF k$="d" OR k$="D" THEN 122 Diff3-=.1 123 IF Diff3<-MaxSpeed THEN Diff3=-MaxSpeed 124 ENDIF 125 IF k$="c" OR k$="C" THEN PROCSetColours 126 IF k$=" " THEN PROCReset(1) 127 IF k$="!" THEN PROCReset(2) 128 IF k$="r" OR k$="R" THEN 129 Diff1=RND(MaxSpeed*2)-MaxSpeed 130 Diff2=RND(MaxSpeed*2)-MaxSpeed 131 Diff3=RND(MaxSpeed*2)-MaxSpeed 132 PROCSetColours 133 ENDIF 134ENDPROC 135 136DEF PROCReset(type) 137 IF type=2 THEN Angle1=0:Angle2=0:Angle3=0:PROCSetColours 138 Diff1=0:Diff2=0:Diff3=0 139ENDPROC 140 141DEF PROCSetColours 142 t=RND(3) 143 CASE t OF 144 WHEN 1: r=1 145 g=RND(1) 146 b=RND(1) 147 WHEN 2: g=1 148 r=RND(1) 149 b=RND(1) 150 WHEN 3: b=1 151 r=RND(1) 152 g=RND(1) 153 ENDCASE 154 FOR x=1 TO 15 155 COLOUR x,x*9*r,x*9*g,x*9*b 156 NEXT x 157ENDPROC
� CoolWave v1.0 J� A small prog that rotates some balls doing a wave in every dimension I� (except time - that's a little hard to model! (even on an Acorn!) ) � By Mike Goatly - Feb 1996 � �1996 Acorn User t=�(-�) � � � �$+" at line "+�(�):� � 12 ȑ 640,512 � Bank=1 N � It's pretty safe (and enlightening?) to mess with the < � variables that are described below. ,Balls=16 :� The number of balls ?WaveSpeed=8 :� The speed of the wave across the balls 5WaveHeight=250 :� The height of the balls wave BMaxSpeed=6 :� The maximum speed of rotation in any axis d=2000 Wave=0 WaveStep=360/Balls PlotStep=(1280/360)*WaveStep orig=-620 �Reset(2) � �CheckKeys �DrawBalls ! ș 6,113,Bank " ș 6,112,3-Bank # Bank=3-Bank $� � % &� ' (� �DrawBalls ) cos1=�(�(Angle1)) * sin1=�(�(Angle1)) + cos2=�(�(Angle2)) , sin2=�(�(Angle2)) - cos3=�(�(Angle3)) . sin3=�(�(Angle3)) / Angle1+=Diff1 0" � Angle1>=360 � Angle1-=360 1 Angle2+=Diff2 2" � Angle2>=360 � Angle2-=360 3 Angle3+=Diff3 4" � Angle3>=360 � Angle3-=360 5 Wave+=WaveSpeed 6 Ȗ:� 7 8, ox=orig:oy=�(�(Wave))*WaveHeight:oz=0 9, oz=oy*sin1+oz*cos1:oz=ox*sin2+oz*cos2 : za=oz ;$ ox=orig+(PlotStep*Balls):oz=0 <, oz=oy*sin1+oz*cos1:oz=ox*sin2+oz*cos2 = > � za<oz � ? CurrWave=0 @ DrawX=orig A WaveStepNow=WaveStep B PlotStepNow=PlotStep C � D CurrWave=360 E& DrawX=orig+(PlotStep*Balls) F WaveStepNow=-WaveStep G PlotStepNow=-PlotStep H � I J � x=1 � Balls+1 K9 ox=DrawX:oy=�(�(CurrWave+Wave))*WaveHeight:oz=0 L ny=oy*cos1-oz*sin1 M nz=oy*sin1+oz*cos1 N O oy=ny:oz=nz P nx=ox*cos2-oz*sin2 Q! nz=ox*sin2+oz*cos2-2000 R S ox=nx:oy=ny T nx=ox*cos3-oy*sin3 U ny=ox*sin3+oy*cos3 V W xp=d*nx/nz:yp=d*ny/nz X col=(�(nz)/125)-8 Y col=16-col Z � col<0 � � 0 � � col [ ȏ Ȑ xp,yp,80+(nz/40) \ ] CurrWave+=WaveStepNow ^ DrawX+=PlotStepNow _ � x ` a� �CheckKeys b k$=� 0 c � k$="z" � k$="Z" � d-=15 d � k$="x" � k$="X" � d+=15 e � k$="q" � k$="Q" � f Diff1+=.1 g+ � Diff1>MaxSpeed � Diff1=MaxSpeed h � i � k$="a" � k$="A" � j Diff1-=.1 k- � Diff1<-MaxSpeed � Diff1=-MaxSpeed l � m � k$="w" � k$="W" � n Diff2+=.1 o+ � Diff2>MaxSpeed � Diff2=MaxSpeed p � q � k$="s" � k$="S" � r Diff2-=.1 s- � Diff2<-MaxSpeed � Diff2=-MaxSpeed t � u � k$="e" � k$="E" � v Diff3+=.1 w+ � Diff3>MaxSpeed � Diff3=MaxSpeed x � y � k$="d" � k$="D" � z Diff3-=.1 {- � Diff3<-MaxSpeed � Diff3=-MaxSpeed | � }& � k$="c" � k$="C" � �SetColours ~ � k$=" " � �Reset(1) � k$="!" � �Reset(2) � � k$="r" � k$="R" � �& Diff1=�(MaxSpeed*2)-MaxSpeed �& Diff2=�(MaxSpeed*2)-MaxSpeed �& Diff3=�(MaxSpeed*2)-MaxSpeed � �SetColours � � �� � �� �Reset(type) �8 � type=2 � Angle1=0:Angle2=0:Angle3=0:�SetColours �! Diff1=0:Diff2=0:Diff3=0 �� � �� �SetColours � t=�(3) � Ȏ t � � � 1: r=1 � g=�(1) � b=�(1) � � 2: g=1 � r=�(1) � b=�(1) � � 3: b=1 � r=�(1) � g=�(1) � � � � x=1 � 15 � � x,x*9*r,x*9*g,x*9*b � � x �� �
00000000 0d 00 01 13 f4 20 43 6f 6f 6c 57 61 76 65 20 76 |..... CoolWave v| 00000010 31 2e 30 0d 00 02 4a f4 20 41 20 73 6d 61 6c 6c |1.0...J. A small| 00000020 20 70 72 6f 67 20 74 68 61 74 20 72 6f 74 61 74 | prog that rotat| 00000030 65 73 20 73 6f 6d 65 20 62 61 6c 6c 73 20 64 6f |es some balls do| 00000040 69 6e 67 20 61 20 77 61 76 65 20 69 6e 20 65 76 |ing a wave in ev| 00000050 65 72 79 20 64 69 6d 65 6e 73 69 6f 6e 0d 00 03 |ery dimension...| 00000060 49 f4 20 28 65 78 63 65 70 74 20 74 69 6d 65 20 |I. (except time | 00000070 2d 20 74 68 61 74 27 73 20 61 20 6c 69 74 74 6c |- that's a littl| 00000080 65 20 68 61 72 64 20 74 6f 20 6d 6f 64 65 6c 21 |e hard to model!| 00000090 20 28 65 76 65 6e 20 6f 6e 20 61 6e 20 41 63 6f | (even on an Aco| 000000a0 72 6e 21 29 20 29 0d 00 04 1f f4 20 42 79 20 4d |rn!) )..... By M| 000000b0 69 6b 65 20 47 6f 61 74 6c 79 20 2d 20 46 65 62 |ike Goatly - Feb| 000000c0 20 31 39 39 36 0d 00 05 16 f4 20 a9 31 39 39 36 | 1996..... .1996| 000000d0 20 41 63 6f 72 6e 20 55 73 65 72 0d 00 06 04 0d | Acorn User.....| 000000e0 00 07 0b 74 3d b3 28 2d 91 29 0d 00 08 1f ee 20 |...t=.(-.)..... | 000000f0 85 20 f1 20 f6 24 2b 22 20 61 74 20 6c 69 6e 65 |. . .$+" at line| 00000100 20 22 2b c3 28 9e 29 3a fa 0d 00 09 04 0d 00 0a | "+.(.):........| 00000110 08 eb 20 31 32 0d 00 0b 0e c8 91 20 36 34 30 2c |.. 12...... 640,| 00000120 35 31 32 0d 00 0c 05 87 0d 00 0d 0a 42 61 6e 6b |512.........Bank| 00000130 3d 31 0d 00 0e 04 0d 00 0f 4e 20 20 20 20 20 20 |=1.......N | 00000140 20 20 20 20 20 20 20 20 20 20 20 20 20 f4 20 49 | . I| 00000150 74 27 73 20 70 72 65 74 74 79 20 73 61 66 65 20 |t's pretty safe | 00000160 28 61 6e 64 20 65 6e 6c 69 67 68 74 65 6e 69 6e |(and enlightenin| 00000170 67 3f 29 20 74 6f 20 6d 65 73 73 20 77 69 74 68 |g?) to mess with| 00000180 20 74 68 65 0d 00 10 3c 20 20 20 20 20 20 20 20 | the...< | 00000190 20 20 20 20 20 20 20 20 20 20 20 f4 20 76 61 72 | . var| 000001a0 69 61 62 6c 65 73 20 74 68 61 74 20 61 72 65 20 |iables that are | 000001b0 64 65 73 63 72 69 62 65 64 20 62 65 6c 6f 77 2e |described below.| 000001c0 0d 00 11 2c 42 61 6c 6c 73 3d 31 36 20 20 20 20 |...,Balls=16 | 000001d0 20 20 20 20 20 20 3a f4 20 54 68 65 20 6e 75 6d | :. The num| 000001e0 62 65 72 20 6f 66 20 62 61 6c 6c 73 0d 00 12 3f |ber of balls...?| 000001f0 57 61 76 65 53 70 65 65 64 3d 38 20 20 20 20 20 |WaveSpeed=8 | 00000200 20 20 3a f4 20 54 68 65 20 73 70 65 65 64 20 6f | :. The speed o| 00000210 66 20 74 68 65 20 77 61 76 65 20 61 63 72 6f 73 |f the wave acros| 00000220 73 20 74 68 65 20 62 61 6c 6c 73 0d 00 13 35 57 |s the balls...5W| 00000230 61 76 65 48 65 69 67 68 74 3d 32 35 30 20 20 20 |aveHeight=250 | 00000240 20 3a f4 20 54 68 65 20 68 65 69 67 68 74 20 6f | :. The height o| 00000250 66 20 74 68 65 20 62 61 6c 6c 73 20 77 61 76 65 |f the balls wave| 00000260 0d 00 14 42 4d 61 78 53 70 65 65 64 3d 36 20 20 |...BMaxSpeed=6 | 00000270 20 20 20 20 20 20 3a f4 20 54 68 65 20 6d 61 78 | :. The max| 00000280 69 6d 75 6d 20 73 70 65 65 64 20 6f 66 20 72 6f |imum speed of ro| 00000290 74 61 74 69 6f 6e 20 69 6e 20 61 6e 79 20 61 78 |tation in any ax| 000002a0 69 73 0d 00 15 04 0d 00 16 0a 64 3d 32 30 30 30 |is........d=2000| 000002b0 0d 00 17 0a 57 61 76 65 3d 30 0d 00 18 16 57 61 |....Wave=0....Wa| 000002c0 76 65 53 74 65 70 3d 33 36 30 2f 42 61 6c 6c 73 |veStep=360/Balls| 000002d0 0d 00 19 20 50 6c 6f 74 53 74 65 70 3d 28 31 32 |... PlotStep=(12| 000002e0 38 30 2f 33 36 30 29 2a 57 61 76 65 53 74 65 70 |80/360)*WaveStep| 000002f0 0d 00 1a 0d 6f 72 69 67 3d 2d 36 32 30 0d 00 1b |....orig=-620...| 00000300 0d f2 52 65 73 65 74 28 32 29 0d 00 1c 04 0d 00 |..Reset(2)......| 00000310 1d 05 f5 0d 00 1e 11 20 20 20 f2 43 68 65 63 6b |....... .Check| 00000320 4b 65 79 73 0d 00 1f 11 20 20 20 f2 44 72 61 77 |Keys.... .Draw| 00000330 42 61 6c 6c 73 0d 00 20 04 0d 00 21 14 20 20 20 |Balls.. ...!. | 00000340 c8 99 20 36 2c 31 31 33 2c 42 61 6e 6b 0d 00 22 |.. 6,113,Bank.."| 00000350 16 20 20 20 c8 99 20 36 2c 31 31 32 2c 33 2d 42 |. .. 6,112,3-B| 00000360 61 6e 6b 0d 00 23 12 20 20 20 42 61 6e 6b 3d 33 |ank..#. Bank=3| 00000370 2d 42 61 6e 6b 0d 00 24 07 fd 20 a3 0d 00 25 04 |-Bank..$.. ...%.| 00000380 0d 00 26 05 e0 0d 00 27 04 0d 00 28 10 dd 20 f2 |..&....'...(.. .| 00000390 44 72 61 77 42 61 6c 6c 73 0d 00 29 18 20 20 20 |DrawBalls..). | 000003a0 63 6f 73 31 3d 9b 28 b2 28 41 6e 67 6c 65 31 29 |cos1=.(.(Angle1)| 000003b0 29 0d 00 2a 18 20 20 20 73 69 6e 31 3d b5 28 b2 |)..*. sin1=.(.| 000003c0 28 41 6e 67 6c 65 31 29 29 0d 00 2b 18 20 20 20 |(Angle1))..+. | 000003d0 63 6f 73 32 3d 9b 28 b2 28 41 6e 67 6c 65 32 29 |cos2=.(.(Angle2)| 000003e0 29 0d 00 2c 18 20 20 20 73 69 6e 32 3d b5 28 b2 |)..,. sin2=.(.| 000003f0 28 41 6e 67 6c 65 32 29 29 0d 00 2d 18 20 20 20 |(Angle2))..-. | 00000400 63 6f 73 33 3d 9b 28 b2 28 41 6e 67 6c 65 33 29 |cos3=.(.(Angle3)| 00000410 29 0d 00 2e 18 20 20 20 73 69 6e 33 3d b5 28 b2 |).... sin3=.(.| 00000420 28 41 6e 67 6c 65 33 29 29 0d 00 2f 14 20 20 20 |(Angle3))../. | 00000430 41 6e 67 6c 65 31 2b 3d 44 69 66 66 31 0d 00 30 |Angle1+=Diff1..0| 00000440 22 20 20 20 e7 20 41 6e 67 6c 65 31 3e 3d 33 36 |" . Angle1>=36| 00000450 30 20 8c 20 41 6e 67 6c 65 31 2d 3d 33 36 30 0d |0 . Angle1-=360.| 00000460 00 31 14 20 20 20 41 6e 67 6c 65 32 2b 3d 44 69 |.1. Angle2+=Di| 00000470 66 66 32 0d 00 32 22 20 20 20 e7 20 41 6e 67 6c |ff2..2" . Angl| 00000480 65 32 3e 3d 33 36 30 20 8c 20 41 6e 67 6c 65 32 |e2>=360 . Angle2| 00000490 2d 3d 33 36 30 0d 00 33 14 20 20 20 41 6e 67 6c |-=360..3. Angl| 000004a0 65 33 2b 3d 44 69 66 66 33 0d 00 34 22 20 20 20 |e3+=Diff3..4" | 000004b0 e7 20 41 6e 67 6c 65 33 3e 3d 33 36 30 20 8c 20 |. Angle3>=360 . | 000004c0 41 6e 67 6c 65 33 2d 3d 33 36 30 0d 00 35 16 20 |Angle3-=360..5. | 000004d0 20 20 57 61 76 65 2b 3d 57 61 76 65 53 70 65 65 | Wave+=WaveSpee| 000004e0 64 0d 00 36 0b 20 20 20 c8 96 3a db 0d 00 37 04 |d..6. ..:...7.| 000004f0 0d 00 38 2c 20 20 20 6f 78 3d 6f 72 69 67 3a 6f |..8, ox=orig:o| 00000500 79 3d b5 28 b2 28 57 61 76 65 29 29 2a 57 61 76 |y=.(.(Wave))*Wav| 00000510 65 48 65 69 67 68 74 3a 6f 7a 3d 30 0d 00 39 2c |eHeight:oz=0..9,| 00000520 20 20 20 6f 7a 3d 6f 79 2a 73 69 6e 31 2b 6f 7a | oz=oy*sin1+oz| 00000530 2a 63 6f 73 31 3a 6f 7a 3d 6f 78 2a 73 69 6e 32 |*cos1:oz=ox*sin2| 00000540 2b 6f 7a 2a 63 6f 73 32 0d 00 3a 0c 20 20 20 7a |+oz*cos2..:. z| 00000550 61 3d 6f 7a 0d 00 3b 24 20 20 20 6f 78 3d 6f 72 |a=oz..;$ ox=or| 00000560 69 67 2b 28 50 6c 6f 74 53 74 65 70 2a 42 61 6c |ig+(PlotStep*Bal| 00000570 6c 73 29 3a 6f 7a 3d 30 0d 00 3c 2c 20 20 20 6f |ls):oz=0..<, o| 00000580 7a 3d 6f 79 2a 73 69 6e 31 2b 6f 7a 2a 63 6f 73 |z=oy*sin1+oz*cos| 00000590 31 3a 6f 7a 3d 6f 78 2a 73 69 6e 32 2b 6f 7a 2a |1:oz=ox*sin2+oz*| 000005a0 63 6f 73 32 0d 00 3d 04 0d 00 3e 10 20 20 20 e7 |cos2..=...>. .| 000005b0 20 7a 61 3c 6f 7a 20 8c 0d 00 3f 14 20 20 20 20 | za<oz ...?. | 000005c0 20 20 43 75 72 72 57 61 76 65 3d 30 0d 00 40 14 | CurrWave=0..@.| 000005d0 20 20 20 20 20 20 44 72 61 77 58 3d 6f 72 69 67 | DrawX=orig| 000005e0 0d 00 41 1e 20 20 20 20 20 20 57 61 76 65 53 74 |..A. WaveSt| 000005f0 65 70 4e 6f 77 3d 57 61 76 65 53 74 65 70 0d 00 |epNow=WaveStep..| 00000600 42 1e 20 20 20 20 20 20 50 6c 6f 74 53 74 65 70 |B. PlotStep| 00000610 4e 6f 77 3d 50 6c 6f 74 53 74 65 70 0d 00 43 08 |Now=PlotStep..C.| 00000620 20 20 20 cc 0d 00 44 17 20 20 20 20 20 20 20 43 | ...D. C| 00000630 75 72 72 57 61 76 65 3d 33 36 30 0d 00 45 26 20 |urrWave=360..E& | 00000640 20 20 20 20 20 20 44 72 61 77 58 3d 6f 72 69 67 | DrawX=orig| 00000650 2b 28 50 6c 6f 74 53 74 65 70 2a 42 61 6c 6c 73 |+(PlotStep*Balls| 00000660 29 0d 00 46 20 20 20 20 20 20 20 20 57 61 76 65 |)..F Wave| 00000670 53 74 65 70 4e 6f 77 3d 2d 57 61 76 65 53 74 65 |StepNow=-WaveSte| 00000680 70 0d 00 47 20 20 20 20 20 20 20 20 50 6c 6f 74 |p..G Plot| 00000690 53 74 65 70 4e 6f 77 3d 2d 50 6c 6f 74 53 74 65 |StepNow=-PlotSte| 000006a0 70 0d 00 48 08 20 20 20 cd 0d 00 49 04 0d 00 4a |p..H. ...I...J| 000006b0 16 20 20 20 e3 20 78 3d 31 20 b8 20 42 61 6c 6c |. . x=1 . Ball| 000006c0 73 2b 31 0d 00 4b 39 20 20 20 20 20 20 6f 78 3d |s+1..K9 ox=| 000006d0 44 72 61 77 58 3a 6f 79 3d b5 28 b2 28 43 75 72 |DrawX:oy=.(.(Cur| 000006e0 72 57 61 76 65 2b 57 61 76 65 29 29 2a 57 61 76 |rWave+Wave))*Wav| 000006f0 65 48 65 69 67 68 74 3a 6f 7a 3d 30 0d 00 4c 1c |eHeight:oz=0..L.| 00000700 20 20 20 20 20 20 6e 79 3d 6f 79 2a 63 6f 73 31 | ny=oy*cos1| 00000710 2d 6f 7a 2a 73 69 6e 31 0d 00 4d 1c 20 20 20 20 |-oz*sin1..M. | 00000720 20 20 6e 7a 3d 6f 79 2a 73 69 6e 31 2b 6f 7a 2a | nz=oy*sin1+oz*| 00000730 63 6f 73 31 0d 00 4e 09 20 20 20 20 20 0d 00 4f |cos1..N. ..O| 00000740 15 20 20 20 20 20 20 6f 79 3d 6e 79 3a 6f 7a 3d |. oy=ny:oz=| 00000750 6e 7a 0d 00 50 1c 20 20 20 20 20 20 6e 78 3d 6f |nz..P. nx=o| 00000760 78 2a 63 6f 73 32 2d 6f 7a 2a 73 69 6e 32 0d 00 |x*cos2-oz*sin2..| 00000770 51 21 20 20 20 20 20 20 6e 7a 3d 6f 78 2a 73 69 |Q! nz=ox*si| 00000780 6e 32 2b 6f 7a 2a 63 6f 73 32 2d 32 30 30 30 0d |n2+oz*cos2-2000.| 00000790 00 52 09 20 20 20 20 20 0d 00 53 15 20 20 20 20 |.R. ..S. | 000007a0 20 20 6f 78 3d 6e 78 3a 6f 79 3d 6e 79 0d 00 54 | ox=nx:oy=ny..T| 000007b0 1c 20 20 20 20 20 20 6e 78 3d 6f 78 2a 63 6f 73 |. nx=ox*cos| 000007c0 33 2d 6f 79 2a 73 69 6e 33 0d 00 55 1c 20 20 20 |3-oy*sin3..U. | 000007d0 20 20 20 6e 79 3d 6f 78 2a 73 69 6e 33 2b 6f 79 | ny=ox*sin3+oy| 000007e0 2a 63 6f 73 33 0d 00 56 04 0d 00 57 1f 20 20 20 |*cos3..V...W. | 000007f0 20 20 20 78 70 3d 64 2a 6e 78 2f 6e 7a 3a 79 70 | xp=d*nx/nz:yp| 00000800 3d 64 2a 6e 79 2f 6e 7a 0d 00 58 1b 20 20 20 20 |=d*ny/nz..X. | 00000810 20 20 63 6f 6c 3d 28 94 28 6e 7a 29 2f 31 32 35 | col=(.(nz)/125| 00000820 29 2d 38 0d 00 59 14 20 20 20 20 20 20 63 6f 6c |)-8..Y. col| 00000830 3d 31 36 2d 63 6f 6c 0d 00 5a 1f 20 20 20 20 20 |=16-col..Z. | 00000840 20 e7 20 63 6f 6c 3c 30 20 8c 20 e6 20 30 20 8b | . col<0 . . 0 .| 00000850 20 e6 20 63 6f 6c 0d 00 5b 20 20 20 20 20 20 20 | . col..[ | 00000860 c8 8f 20 c8 90 20 78 70 2c 79 70 2c 38 30 2b 28 |.. .. xp,yp,80+(| 00000870 6e 7a 2f 34 30 29 0d 00 5c 04 0d 00 5d 1f 20 20 |nz/40)..\...]. | 00000880 20 20 20 20 43 75 72 72 57 61 76 65 2b 3d 57 61 | CurrWave+=Wa| 00000890 76 65 53 74 65 70 4e 6f 77 0d 00 5e 1c 20 20 20 |veStepNow..^. | 000008a0 20 20 20 44 72 61 77 58 2b 3d 50 6c 6f 74 53 74 | DrawX+=PlotSt| 000008b0 65 70 4e 6f 77 0d 00 5f 09 20 20 ed 20 78 0d 00 |epNow.._. . x..| 000008c0 60 04 0d 00 61 10 dd 20 f2 43 68 65 63 6b 4b 65 |`...a.. .CheckKe| 000008d0 79 73 0d 00 62 0d 20 20 20 6b 24 3d bf 20 30 0d |ys..b. k$=. 0.| 000008e0 00 63 20 20 20 20 e7 20 6b 24 3d 22 7a 22 20 84 |.c . k$="z" .| 000008f0 20 6b 24 3d 22 5a 22 20 8c 20 64 2d 3d 31 35 0d | k$="Z" . d-=15.| 00000900 00 64 20 20 20 20 e7 20 6b 24 3d 22 78 22 20 84 |.d . k$="x" .| 00000910 20 6b 24 3d 22 58 22 20 8c 20 64 2b 3d 31 35 0d | k$="X" . d+=15.| 00000920 00 65 1a 20 20 20 e7 20 6b 24 3d 22 71 22 20 84 |.e. . k$="q" .| 00000930 20 6b 24 3d 22 51 22 20 8c 0d 00 66 13 20 20 20 | k$="Q" ...f. | 00000940 20 20 20 44 69 66 66 31 2b 3d 2e 31 0d 00 67 2b | Diff1+=.1..g+| 00000950 20 20 20 20 20 20 e7 20 44 69 66 66 31 3e 4d 61 | . Diff1>Ma| 00000960 78 53 70 65 65 64 20 8c 20 44 69 66 66 31 3d 4d |xSpeed . Diff1=M| 00000970 61 78 53 70 65 65 64 0d 00 68 08 20 20 20 cd 0d |axSpeed..h. ..| 00000980 00 69 1a 20 20 20 e7 20 6b 24 3d 22 61 22 20 84 |.i. . k$="a" .| 00000990 20 6b 24 3d 22 41 22 20 8c 0d 00 6a 13 20 20 20 | k$="A" ...j. | 000009a0 20 20 20 44 69 66 66 31 2d 3d 2e 31 0d 00 6b 2d | Diff1-=.1..k-| 000009b0 20 20 20 20 20 20 e7 20 44 69 66 66 31 3c 2d 4d | . Diff1<-M| 000009c0 61 78 53 70 65 65 64 20 8c 20 44 69 66 66 31 3d |axSpeed . Diff1=| 000009d0 2d 4d 61 78 53 70 65 65 64 0d 00 6c 08 20 20 20 |-MaxSpeed..l. | 000009e0 cd 0d 00 6d 1a 20 20 20 e7 20 6b 24 3d 22 77 22 |...m. . k$="w"| 000009f0 20 84 20 6b 24 3d 22 57 22 20 8c 0d 00 6e 13 20 | . k$="W" ...n. | 00000a00 20 20 20 20 20 44 69 66 66 32 2b 3d 2e 31 0d 00 | Diff2+=.1..| 00000a10 6f 2b 20 20 20 20 20 20 e7 20 44 69 66 66 32 3e |o+ . Diff2>| 00000a20 4d 61 78 53 70 65 65 64 20 8c 20 44 69 66 66 32 |MaxSpeed . Diff2| 00000a30 3d 4d 61 78 53 70 65 65 64 0d 00 70 08 20 20 20 |=MaxSpeed..p. | 00000a40 cd 0d 00 71 1a 20 20 20 e7 20 6b 24 3d 22 73 22 |...q. . k$="s"| 00000a50 20 84 20 6b 24 3d 22 53 22 20 8c 0d 00 72 13 20 | . k$="S" ...r. | 00000a60 20 20 20 20 20 44 69 66 66 32 2d 3d 2e 31 0d 00 | Diff2-=.1..| 00000a70 73 2d 20 20 20 20 20 20 e7 20 44 69 66 66 32 3c |s- . Diff2<| 00000a80 2d 4d 61 78 53 70 65 65 64 20 8c 20 44 69 66 66 |-MaxSpeed . Diff| 00000a90 32 3d 2d 4d 61 78 53 70 65 65 64 0d 00 74 08 20 |2=-MaxSpeed..t. | 00000aa0 20 20 cd 0d 00 75 1a 20 20 20 e7 20 6b 24 3d 22 | ...u. . k$="| 00000ab0 65 22 20 84 20 6b 24 3d 22 45 22 20 8c 0d 00 76 |e" . k$="E" ...v| 00000ac0 13 20 20 20 20 20 20 44 69 66 66 33 2b 3d 2e 31 |. Diff3+=.1| 00000ad0 0d 00 77 2b 20 20 20 20 20 20 e7 20 44 69 66 66 |..w+ . Diff| 00000ae0 33 3e 4d 61 78 53 70 65 65 64 20 8c 20 44 69 66 |3>MaxSpeed . Dif| 00000af0 66 33 3d 4d 61 78 53 70 65 65 64 0d 00 78 08 20 |f3=MaxSpeed..x. | 00000b00 20 20 cd 0d 00 79 1a 20 20 20 e7 20 6b 24 3d 22 | ...y. . k$="| 00000b10 64 22 20 84 20 6b 24 3d 22 44 22 20 8c 0d 00 7a |d" . k$="D" ...z| 00000b20 13 20 20 20 20 20 20 44 69 66 66 33 2d 3d 2e 31 |. Diff3-=.1| 00000b30 0d 00 7b 2d 20 20 20 20 20 20 e7 20 44 69 66 66 |..{- . Diff| 00000b40 33 3c 2d 4d 61 78 53 70 65 65 64 20 8c 20 44 69 |3<-MaxSpeed . Di| 00000b50 66 66 33 3d 2d 4d 61 78 53 70 65 65 64 0d 00 7c |ff3=-MaxSpeed..|| 00000b60 08 20 20 20 cd 0d 00 7d 26 20 20 20 e7 20 6b 24 |. ...}& . k$| 00000b70 3d 22 63 22 20 84 20 6b 24 3d 22 43 22 20 8c 20 |="c" . k$="C" . | 00000b80 f2 53 65 74 43 6f 6c 6f 75 72 73 0d 00 7e 1b 20 |.SetColours..~. | 00000b90 20 20 e7 20 6b 24 3d 22 20 22 20 8c 20 f2 52 65 | . k$=" " . .Re| 00000ba0 73 65 74 28 31 29 0d 00 7f 1b 20 20 20 e7 20 6b |set(1).... . k| 00000bb0 24 3d 22 21 22 20 8c 20 f2 52 65 73 65 74 28 32 |$="!" . .Reset(2| 00000bc0 29 0d 00 80 1a 20 20 20 e7 20 6b 24 3d 22 72 22 |).... . k$="r"| 00000bd0 20 84 20 6b 24 3d 22 52 22 20 8c 0d 00 81 26 20 | . k$="R" ....& | 00000be0 20 20 20 20 20 44 69 66 66 31 3d b3 28 4d 61 78 | Diff1=.(Max| 00000bf0 53 70 65 65 64 2a 32 29 2d 4d 61 78 53 70 65 65 |Speed*2)-MaxSpee| 00000c00 64 0d 00 82 26 20 20 20 20 20 20 44 69 66 66 32 |d...& Diff2| 00000c10 3d b3 28 4d 61 78 53 70 65 65 64 2a 32 29 2d 4d |=.(MaxSpeed*2)-M| 00000c20 61 78 53 70 65 65 64 0d 00 83 26 20 20 20 20 20 |axSpeed...& | 00000c30 20 44 69 66 66 33 3d b3 28 4d 61 78 53 70 65 65 | Diff3=.(MaxSpee| 00000c40 64 2a 32 29 2d 4d 61 78 53 70 65 65 64 0d 00 84 |d*2)-MaxSpeed...| 00000c50 15 20 20 20 20 20 20 f2 53 65 74 43 6f 6c 6f 75 |. .SetColou| 00000c60 72 73 0d 00 85 08 20 20 20 cd 0d 00 86 05 e1 0d |rs.... .......| 00000c70 00 87 04 0d 00 88 12 dd 20 f2 52 65 73 65 74 28 |........ .Reset(| 00000c80 74 79 70 65 29 0d 00 89 38 20 20 20 e7 20 74 79 |type)...8 . ty| 00000c90 70 65 3d 32 20 8c 20 41 6e 67 6c 65 31 3d 30 3a |pe=2 . Angle1=0:| 00000ca0 41 6e 67 6c 65 32 3d 30 3a 41 6e 67 6c 65 33 3d |Angle2=0:Angle3=| 00000cb0 30 3a f2 53 65 74 43 6f 6c 6f 75 72 73 0d 00 8a |0:.SetColours...| 00000cc0 21 20 20 20 44 69 66 66 31 3d 30 3a 44 69 66 66 |! Diff1=0:Diff| 00000cd0 32 3d 30 3a 44 69 66 66 33 3d 30 20 20 20 0d 00 |2=0:Diff3=0 ..| 00000ce0 8b 05 e1 0d 00 8c 04 0d 00 8d 11 dd 20 f2 53 65 |............ .Se| 00000cf0 74 43 6f 6c 6f 75 72 73 0d 00 8e 0d 20 20 20 74 |tColours.... t| 00000d00 3d b3 28 33 29 0d 00 8f 0d 20 20 20 c8 8e 20 74 |=.(3).... .. t| 00000d10 20 ca 0d 00 90 12 20 20 20 20 20 20 c9 20 31 3a | ..... . 1:| 00000d20 20 72 3d 31 0d 00 91 18 20 20 20 20 20 20 20 20 | r=1.... | 00000d30 20 20 20 20 20 20 67 3d b3 28 31 29 0d 00 92 18 | g=.(1)....| 00000d40 20 20 20 20 20 20 20 20 20 20 20 20 20 20 62 3d | b=| 00000d50 b3 28 31 29 0d 00 93 12 20 20 20 20 20 20 c9 20 |.(1).... . | 00000d60 32 3a 20 67 3d 31 0d 00 94 18 20 20 20 20 20 20 |2: g=1.... | 00000d70 20 20 20 20 20 20 20 20 72 3d b3 28 31 29 0d 00 | r=.(1)..| 00000d80 95 18 20 20 20 20 20 20 20 20 20 20 20 20 20 20 |.. | 00000d90 62 3d b3 28 31 29 0d 00 96 12 20 20 20 20 20 20 |b=.(1).... | 00000da0 c9 20 33 3a 20 62 3d 31 0d 00 97 18 20 20 20 20 |. 3: b=1.... | 00000db0 20 20 20 20 20 20 20 20 20 20 72 3d b3 28 31 29 | r=.(1)| 00000dc0 0d 00 98 18 20 20 20 20 20 20 20 20 20 20 20 20 |.... | 00000dd0 20 20 67 3d b3 28 31 29 0d 00 99 08 20 20 20 cb | g=.(1).... .| 00000de0 0d 00 9a 11 20 20 20 e3 20 78 3d 31 20 b8 20 31 |.... . x=1 . 1| 00000df0 35 0d 00 9b 1f 20 20 20 20 20 20 fb 20 78 2c 78 |5.... . x,x| 00000e00 2a 39 2a 72 2c 78 2a 39 2a 67 2c 78 2a 39 2a 62 |*9*r,x*9*g,x*9*b| 00000e10 0d 00 9c 0a 20 20 20 ed 20 78 0d 00 9d 05 e1 0d |.... . x......| 00000e20 ff |.| 00000e21