Home » Archimedes archive » Archimedes World » AW-1996-07.adf » !Ignotum_Ignotum » !Ignotum/Formulae/Inte
!Ignotum/Formulae/Inte
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » Archimedes archive » Archimedes World » AW-1996-07.adf » !Ignotum_Ignotum |
Filename: | !Ignotum/Formulae/Inte |
Read OK: | ✔ |
File size: | 0597 bytes |
Load address: | 0000 |
Exec address: | 0000 |
File contents
# Maths > Integration {x^n=x^(n+1)/(n+1)+k Where: n does not equal -1 k is a constant of integration {cosx=sinx+k Where: k is a constant of integration {sinx=-cosx+k Where: k is a constant of integration {tanx=ln|secx|+k Where: k is a constant of integration {cosecx=ln|tan�x|+k Where: k is a constant of integration {secx=ln|tan(45�+�x)|+k Where: k is a constant of integration {cotx=ln|sinx|+k Where: k is a constant of integration {sec�x=tanx+k Where: k is a constant of integration {secxtanx=secx+k Where: k is a constant of integration {cosec�x=-cotx+k Where: k is a constant of integration {1/x=ln|x|+k Where: k is a constant of integration {e^x=e^x+k Where: k is a constant of integration {1/(a�-x�)^�=arcsin(x/a)+k Where: k is a constant of integration Note: arcsinx is also written as sin^(-1)x {a/(a�+x�)=arctan(x/a)+k Where: k is a constant of integration Note: arctanx is also written as tan^(-1)x {f'(x)/f(x)=ln|f(x)|+k Where: f(x) is a function of x f'(x) is the differentiation of this function k is a constant of integration f(x)=f(g(u))(dx/du) This is called integration by substitution, where you replace a function of x with u, and multiply it by dx/du. {u(dv/dx)=uv-{(du/dx)v This is called integration by parts. For example, to integrate xe^x: Let u=x and dv/dx=e^x So du/dx=1 and v=e^x So {xe^x dx = xe^x-{e^x = e^x(x-1)+k
00000000 23 20 4d 61 74 68 73 20 3e 20 49 6e 74 65 67 72 |# Maths > Integr| 00000010 61 74 69 6f 6e 0a 7b 78 5e 6e 3d 78 5e 28 6e 2b |ation.{x^n=x^(n+| 00000020 31 29 2f 28 6e 2b 31 29 2b 6b 0a 57 68 65 72 65 |1)/(n+1)+k.Where| 00000030 3a 0a 6e 20 64 6f 65 73 20 6e 6f 74 20 65 71 75 |:.n does not equ| 00000040 61 6c 20 2d 31 0a 6b 20 69 73 20 61 20 63 6f 6e |al -1.k is a con| 00000050 73 74 61 6e 74 20 6f 66 20 69 6e 74 65 67 72 61 |stant of integra| 00000060 74 69 6f 6e 0a 0a 0a 7b 63 6f 73 78 3d 73 69 6e |tion...{cosx=sin| 00000070 78 2b 6b 0a 57 68 65 72 65 3a 0a 6b 20 69 73 20 |x+k.Where:.k is | 00000080 61 20 63 6f 6e 73 74 61 6e 74 20 6f 66 20 69 6e |a constant of in| 00000090 74 65 67 72 61 74 69 6f 6e 0a 0a 0a 0a 7b 73 69 |tegration....{si| 000000a0 6e 78 3d 2d 63 6f 73 78 2b 6b 0a 57 68 65 72 65 |nx=-cosx+k.Where| 000000b0 3a 0a 6b 20 69 73 20 61 20 63 6f 6e 73 74 61 6e |:.k is a constan| 000000c0 74 20 6f 66 20 69 6e 74 65 67 72 61 74 69 6f 6e |t of integration| 000000d0 0a 0a 0a 0a 7b 74 61 6e 78 3d 6c 6e 7c 73 65 63 |....{tanx=ln|sec| 000000e0 78 7c 2b 6b 0a 57 68 65 72 65 3a 0a 6b 20 69 73 |x|+k.Where:.k is| 000000f0 20 61 20 63 6f 6e 73 74 61 6e 74 20 6f 66 20 69 | a constant of i| 00000100 6e 74 65 67 72 61 74 69 6f 6e 0a 0a 0a 0a 7b 63 |ntegration....{c| 00000110 6f 73 65 63 78 3d 6c 6e 7c 74 61 6e bd 78 7c 2b |osecx=ln|tan.x|+| 00000120 6b 0a 57 68 65 72 65 3a 0a 6b 20 69 73 20 61 20 |k.Where:.k is a | 00000130 63 6f 6e 73 74 61 6e 74 20 6f 66 20 69 6e 74 65 |constant of inte| 00000140 67 72 61 74 69 6f 6e 0a 0a 0a 0a 7b 73 65 63 78 |gration....{secx| 00000150 3d 6c 6e 7c 74 61 6e 28 34 35 b0 2b bd 78 29 7c |=ln|tan(45.+.x)|| 00000160 2b 6b 0a 57 68 65 72 65 3a 0a 6b 20 69 73 20 61 |+k.Where:.k is a| 00000170 20 63 6f 6e 73 74 61 6e 74 20 6f 66 20 69 6e 74 | constant of int| 00000180 65 67 72 61 74 69 6f 6e 0a 0a 0a 0a 7b 63 6f 74 |egration....{cot| 00000190 78 3d 6c 6e 7c 73 69 6e 78 7c 2b 6b 0a 57 68 65 |x=ln|sinx|+k.Whe| 000001a0 72 65 3a 0a 6b 20 69 73 20 61 20 63 6f 6e 73 74 |re:.k is a const| 000001b0 61 6e 74 20 6f 66 20 69 6e 74 65 67 72 61 74 69 |ant of integrati| 000001c0 6f 6e 0a 0a 0a 0a 7b 73 65 63 b2 78 3d 74 61 6e |on....{sec.x=tan| 000001d0 78 2b 6b 0a 57 68 65 72 65 3a 0a 6b 20 69 73 20 |x+k.Where:.k is | 000001e0 61 20 63 6f 6e 73 74 61 6e 74 20 6f 66 20 69 6e |a constant of in| 000001f0 74 65 67 72 61 74 69 6f 6e 0a 0a 0a 0a 7b 73 65 |tegration....{se| 00000200 63 78 74 61 6e 78 3d 73 65 63 78 2b 6b 0a 57 68 |cxtanx=secx+k.Wh| 00000210 65 72 65 3a 0a 6b 20 69 73 20 61 20 63 6f 6e 73 |ere:.k is a cons| 00000220 74 61 6e 74 20 6f 66 20 69 6e 74 65 67 72 61 74 |tant of integrat| 00000230 69 6f 6e 0a 0a 0a 0a 7b 63 6f 73 65 63 b2 78 3d |ion....{cosec.x=| 00000240 2d 63 6f 74 78 2b 6b 0a 57 68 65 72 65 3a 0a 6b |-cotx+k.Where:.k| 00000250 20 69 73 20 61 20 63 6f 6e 73 74 61 6e 74 20 6f | is a constant o| 00000260 66 20 69 6e 74 65 67 72 61 74 69 6f 6e 0a 0a 0a |f integration...| 00000270 0a 7b 31 2f 78 3d 6c 6e 7c 78 7c 2b 6b 0a 57 68 |.{1/x=ln|x|+k.Wh| 00000280 65 72 65 3a 0a 6b 20 69 73 20 61 20 63 6f 6e 73 |ere:.k is a cons| 00000290 74 61 6e 74 20 6f 66 20 69 6e 74 65 67 72 61 74 |tant of integrat| 000002a0 69 6f 6e 0a 0a 0a 0a 7b 65 5e 78 3d 65 5e 78 2b |ion....{e^x=e^x+| 000002b0 6b 0a 57 68 65 72 65 3a 0a 6b 20 69 73 20 61 20 |k.Where:.k is a | 000002c0 63 6f 6e 73 74 61 6e 74 20 6f 66 20 69 6e 74 65 |constant of inte| 000002d0 67 72 61 74 69 6f 6e 0a 0a 0a 0a 7b 31 2f 28 61 |gration....{1/(a| 000002e0 b2 2d 78 b2 29 5e bd 3d 61 72 63 73 69 6e 28 78 |.-x.)^.=arcsin(x| 000002f0 2f 61 29 2b 6b 0a 57 68 65 72 65 3a 0a 6b 20 69 |/a)+k.Where:.k i| 00000300 73 20 61 20 63 6f 6e 73 74 61 6e 74 20 6f 66 20 |s a constant of | 00000310 69 6e 74 65 67 72 61 74 69 6f 6e 0a 4e 6f 74 65 |integration.Note| 00000320 3a 20 61 72 63 73 69 6e 78 20 69 73 20 61 6c 73 |: arcsinx is als| 00000330 6f 20 77 72 69 74 74 65 6e 20 61 73 0a 73 69 6e |o written as.sin| 00000340 5e 28 2d 31 29 78 0a 0a 7b 61 2f 28 61 b2 2b 78 |^(-1)x..{a/(a.+x| 00000350 b2 29 3d 61 72 63 74 61 6e 28 78 2f 61 29 2b 6b |.)=arctan(x/a)+k| 00000360 0a 57 68 65 72 65 3a 0a 6b 20 69 73 20 61 20 63 |.Where:.k is a c| 00000370 6f 6e 73 74 61 6e 74 20 6f 66 20 69 6e 74 65 67 |onstant of integ| 00000380 72 61 74 69 6f 6e 0a 4e 6f 74 65 3a 20 61 72 63 |ration.Note: arc| 00000390 74 61 6e 78 20 69 73 20 61 6c 73 6f 20 77 72 69 |tanx is also wri| 000003a0 74 74 65 6e 20 61 73 0a 74 61 6e 5e 28 2d 31 29 |tten as.tan^(-1)| 000003b0 78 0a 0a 7b 66 27 28 78 29 2f 66 28 78 29 3d 6c |x..{f'(x)/f(x)=l| 000003c0 6e 7c 66 28 78 29 7c 2b 6b 0a 57 68 65 72 65 3a |n|f(x)|+k.Where:| 000003d0 0a 66 28 78 29 20 69 73 20 61 20 66 75 6e 63 74 |.f(x) is a funct| 000003e0 69 6f 6e 20 6f 66 20 78 0a 66 27 28 78 29 20 69 |ion of x.f'(x) i| 000003f0 73 20 74 68 65 20 64 69 66 66 65 72 65 6e 74 69 |s the differenti| 00000400 61 74 69 6f 6e 20 6f 66 20 74 68 69 73 0a 66 75 |ation of this.fu| 00000410 6e 63 74 69 6f 6e 0a 6b 20 69 73 20 61 20 63 6f |nction.k is a co| 00000420 6e 73 74 61 6e 74 20 6f 66 20 69 6e 74 65 67 72 |nstant of integr| 00000430 61 74 69 6f 6e 0a 66 28 78 29 3d 66 28 67 28 75 |ation.f(x)=f(g(u| 00000440 29 29 28 64 78 2f 64 75 29 0a 54 68 69 73 20 69 |))(dx/du).This i| 00000450 73 20 63 61 6c 6c 65 64 20 69 6e 74 65 67 72 61 |s called integra| 00000460 74 69 6f 6e 20 62 79 0a 73 75 62 73 74 69 74 75 |tion by.substitu| 00000470 74 69 6f 6e 2c 20 77 68 65 72 65 20 79 6f 75 20 |tion, where you | 00000480 72 65 70 6c 61 63 65 20 61 0a 66 75 6e 63 74 69 |replace a.functi| 00000490 6f 6e 20 6f 66 20 78 20 77 69 74 68 20 75 2c 20 |on of x with u, | 000004a0 61 6e 64 20 6d 75 6c 74 69 70 6c 79 20 69 74 20 |and multiply it | 000004b0 62 79 0a 64 78 2f 64 75 2e 0a 0a 7b 75 28 64 76 |by.dx/du...{u(dv| 000004c0 2f 64 78 29 3d 75 76 2d 7b 28 64 75 2f 64 78 29 |/dx)=uv-{(du/dx)| 000004d0 76 0a 54 68 69 73 20 69 73 20 63 61 6c 6c 65 64 |v.This is called| 000004e0 20 69 6e 74 65 67 72 61 74 69 6f 6e 20 62 79 20 | integration by | 000004f0 70 61 72 74 73 2e 0a 46 6f 72 20 65 78 61 6d 70 |parts..For examp| 00000500 6c 65 2c 20 74 6f 20 69 6e 74 65 67 72 61 74 65 |le, to integrate| 00000510 20 78 65 5e 78 3a 0a 4c 65 74 20 75 3d 78 20 61 | xe^x:.Let u=x a| 00000520 6e 64 20 64 76 2f 64 78 3d 65 5e 78 0a 53 6f 20 |nd dv/dx=e^x.So | 00000530 64 75 2f 64 78 3d 31 20 61 6e 64 20 76 3d 65 5e |du/dx=1 and v=e^| 00000540 78 0a 53 6f 20 7b 78 65 5e 78 20 64 78 20 3d 20 |x.So {xe^x dx = | 00000550 78 65 5e 78 2d 7b 65 5e 78 20 3d 20 65 5e 78 28 |xe^x-{e^x = e^x(| 00000560 78 2d 31 29 2b 6b 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a |x-1)+k..........| 00000570 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a 0a |................| * 00000590 0a 0a 0a 0a 0a 0a 0a |.......| 00000597