Home » Archimedes archive » Archimedes World » AW-1996-07.adf » !Ignotum_Ignotum » !Ignotum/Formulae/Inte

!Ignotum/Formulae/Inte

This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.

Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.

Tape/disk: Home » Archimedes archive » Archimedes World » AW-1996-07.adf » !Ignotum_Ignotum
Filename: !Ignotum/Formulae/Inte
Read OK:
File size: 0597 bytes
Load address: 0000
Exec address: 0000
File contents
# Maths > Integration
{x^n=x^(n+1)/(n+1)+k
Where:
n does not equal -1
k is a constant of integration


{cosx=sinx+k
Where:
k is a constant of integration



{sinx=-cosx+k
Where:
k is a constant of integration



{tanx=ln|secx|+k
Where:
k is a constant of integration



{cosecx=ln|tan�x|+k
Where:
k is a constant of integration



{secx=ln|tan(45�+�x)|+k
Where:
k is a constant of integration



{cotx=ln|sinx|+k
Where:
k is a constant of integration



{sec�x=tanx+k
Where:
k is a constant of integration



{secxtanx=secx+k
Where:
k is a constant of integration



{cosec�x=-cotx+k
Where:
k is a constant of integration



{1/x=ln|x|+k
Where:
k is a constant of integration



{e^x=e^x+k
Where:
k is a constant of integration



{1/(a�-x�)^�=arcsin(x/a)+k
Where:
k is a constant of integration
Note: arcsinx is also written as
sin^(-1)x

{a/(a�+x�)=arctan(x/a)+k
Where:
k is a constant of integration
Note: arctanx is also written as
tan^(-1)x

{f'(x)/f(x)=ln|f(x)|+k
Where:
f(x) is a function of x
f'(x) is the differentiation of this
function
k is a constant of integration
f(x)=f(g(u))(dx/du)
This is called integration by
substitution, where you replace a
function of x with u, and multiply it by
dx/du.

{u(dv/dx)=uv-{(du/dx)v
This is called integration by parts.
For example, to integrate xe^x:
Let u=x and dv/dx=e^x
So du/dx=1 and v=e^x
So {xe^x dx = xe^x-{e^x = e^x(x-1)+k
















































00000000  23 20 4d 61 74 68 73 20  3e 20 49 6e 74 65 67 72  |# Maths > Integr|
00000010  61 74 69 6f 6e 0a 7b 78  5e 6e 3d 78 5e 28 6e 2b  |ation.{x^n=x^(n+|
00000020  31 29 2f 28 6e 2b 31 29  2b 6b 0a 57 68 65 72 65  |1)/(n+1)+k.Where|
00000030  3a 0a 6e 20 64 6f 65 73  20 6e 6f 74 20 65 71 75  |:.n does not equ|
00000040  61 6c 20 2d 31 0a 6b 20  69 73 20 61 20 63 6f 6e  |al -1.k is a con|
00000050  73 74 61 6e 74 20 6f 66  20 69 6e 74 65 67 72 61  |stant of integra|
00000060  74 69 6f 6e 0a 0a 0a 7b  63 6f 73 78 3d 73 69 6e  |tion...{cosx=sin|
00000070  78 2b 6b 0a 57 68 65 72  65 3a 0a 6b 20 69 73 20  |x+k.Where:.k is |
00000080  61 20 63 6f 6e 73 74 61  6e 74 20 6f 66 20 69 6e  |a constant of in|
00000090  74 65 67 72 61 74 69 6f  6e 0a 0a 0a 0a 7b 73 69  |tegration....{si|
000000a0  6e 78 3d 2d 63 6f 73 78  2b 6b 0a 57 68 65 72 65  |nx=-cosx+k.Where|
000000b0  3a 0a 6b 20 69 73 20 61  20 63 6f 6e 73 74 61 6e  |:.k is a constan|
000000c0  74 20 6f 66 20 69 6e 74  65 67 72 61 74 69 6f 6e  |t of integration|
000000d0  0a 0a 0a 0a 7b 74 61 6e  78 3d 6c 6e 7c 73 65 63  |....{tanx=ln|sec|
000000e0  78 7c 2b 6b 0a 57 68 65  72 65 3a 0a 6b 20 69 73  |x|+k.Where:.k is|
000000f0  20 61 20 63 6f 6e 73 74  61 6e 74 20 6f 66 20 69  | a constant of i|
00000100  6e 74 65 67 72 61 74 69  6f 6e 0a 0a 0a 0a 7b 63  |ntegration....{c|
00000110  6f 73 65 63 78 3d 6c 6e  7c 74 61 6e bd 78 7c 2b  |osecx=ln|tan.x|+|
00000120  6b 0a 57 68 65 72 65 3a  0a 6b 20 69 73 20 61 20  |k.Where:.k is a |
00000130  63 6f 6e 73 74 61 6e 74  20 6f 66 20 69 6e 74 65  |constant of inte|
00000140  67 72 61 74 69 6f 6e 0a  0a 0a 0a 7b 73 65 63 78  |gration....{secx|
00000150  3d 6c 6e 7c 74 61 6e 28  34 35 b0 2b bd 78 29 7c  |=ln|tan(45.+.x)||
00000160  2b 6b 0a 57 68 65 72 65  3a 0a 6b 20 69 73 20 61  |+k.Where:.k is a|
00000170  20 63 6f 6e 73 74 61 6e  74 20 6f 66 20 69 6e 74  | constant of int|
00000180  65 67 72 61 74 69 6f 6e  0a 0a 0a 0a 7b 63 6f 74  |egration....{cot|
00000190  78 3d 6c 6e 7c 73 69 6e  78 7c 2b 6b 0a 57 68 65  |x=ln|sinx|+k.Whe|
000001a0  72 65 3a 0a 6b 20 69 73  20 61 20 63 6f 6e 73 74  |re:.k is a const|
000001b0  61 6e 74 20 6f 66 20 69  6e 74 65 67 72 61 74 69  |ant of integrati|
000001c0  6f 6e 0a 0a 0a 0a 7b 73  65 63 b2 78 3d 74 61 6e  |on....{sec.x=tan|
000001d0  78 2b 6b 0a 57 68 65 72  65 3a 0a 6b 20 69 73 20  |x+k.Where:.k is |
000001e0  61 20 63 6f 6e 73 74 61  6e 74 20 6f 66 20 69 6e  |a constant of in|
000001f0  74 65 67 72 61 74 69 6f  6e 0a 0a 0a 0a 7b 73 65  |tegration....{se|
00000200  63 78 74 61 6e 78 3d 73  65 63 78 2b 6b 0a 57 68  |cxtanx=secx+k.Wh|
00000210  65 72 65 3a 0a 6b 20 69  73 20 61 20 63 6f 6e 73  |ere:.k is a cons|
00000220  74 61 6e 74 20 6f 66 20  69 6e 74 65 67 72 61 74  |tant of integrat|
00000230  69 6f 6e 0a 0a 0a 0a 7b  63 6f 73 65 63 b2 78 3d  |ion....{cosec.x=|
00000240  2d 63 6f 74 78 2b 6b 0a  57 68 65 72 65 3a 0a 6b  |-cotx+k.Where:.k|
00000250  20 69 73 20 61 20 63 6f  6e 73 74 61 6e 74 20 6f  | is a constant o|
00000260  66 20 69 6e 74 65 67 72  61 74 69 6f 6e 0a 0a 0a  |f integration...|
00000270  0a 7b 31 2f 78 3d 6c 6e  7c 78 7c 2b 6b 0a 57 68  |.{1/x=ln|x|+k.Wh|
00000280  65 72 65 3a 0a 6b 20 69  73 20 61 20 63 6f 6e 73  |ere:.k is a cons|
00000290  74 61 6e 74 20 6f 66 20  69 6e 74 65 67 72 61 74  |tant of integrat|
000002a0  69 6f 6e 0a 0a 0a 0a 7b  65 5e 78 3d 65 5e 78 2b  |ion....{e^x=e^x+|
000002b0  6b 0a 57 68 65 72 65 3a  0a 6b 20 69 73 20 61 20  |k.Where:.k is a |
000002c0  63 6f 6e 73 74 61 6e 74  20 6f 66 20 69 6e 74 65  |constant of inte|
000002d0  67 72 61 74 69 6f 6e 0a  0a 0a 0a 7b 31 2f 28 61  |gration....{1/(a|
000002e0  b2 2d 78 b2 29 5e bd 3d  61 72 63 73 69 6e 28 78  |.-x.)^.=arcsin(x|
000002f0  2f 61 29 2b 6b 0a 57 68  65 72 65 3a 0a 6b 20 69  |/a)+k.Where:.k i|
00000300  73 20 61 20 63 6f 6e 73  74 61 6e 74 20 6f 66 20  |s a constant of |
00000310  69 6e 74 65 67 72 61 74  69 6f 6e 0a 4e 6f 74 65  |integration.Note|
00000320  3a 20 61 72 63 73 69 6e  78 20 69 73 20 61 6c 73  |: arcsinx is als|
00000330  6f 20 77 72 69 74 74 65  6e 20 61 73 0a 73 69 6e  |o written as.sin|
00000340  5e 28 2d 31 29 78 0a 0a  7b 61 2f 28 61 b2 2b 78  |^(-1)x..{a/(a.+x|
00000350  b2 29 3d 61 72 63 74 61  6e 28 78 2f 61 29 2b 6b  |.)=arctan(x/a)+k|
00000360  0a 57 68 65 72 65 3a 0a  6b 20 69 73 20 61 20 63  |.Where:.k is a c|
00000370  6f 6e 73 74 61 6e 74 20  6f 66 20 69 6e 74 65 67  |onstant of integ|
00000380  72 61 74 69 6f 6e 0a 4e  6f 74 65 3a 20 61 72 63  |ration.Note: arc|
00000390  74 61 6e 78 20 69 73 20  61 6c 73 6f 20 77 72 69  |tanx is also wri|
000003a0  74 74 65 6e 20 61 73 0a  74 61 6e 5e 28 2d 31 29  |tten as.tan^(-1)|
000003b0  78 0a 0a 7b 66 27 28 78  29 2f 66 28 78 29 3d 6c  |x..{f'(x)/f(x)=l|
000003c0  6e 7c 66 28 78 29 7c 2b  6b 0a 57 68 65 72 65 3a  |n|f(x)|+k.Where:|
000003d0  0a 66 28 78 29 20 69 73  20 61 20 66 75 6e 63 74  |.f(x) is a funct|
000003e0  69 6f 6e 20 6f 66 20 78  0a 66 27 28 78 29 20 69  |ion of x.f'(x) i|
000003f0  73 20 74 68 65 20 64 69  66 66 65 72 65 6e 74 69  |s the differenti|
00000400  61 74 69 6f 6e 20 6f 66  20 74 68 69 73 0a 66 75  |ation of this.fu|
00000410  6e 63 74 69 6f 6e 0a 6b  20 69 73 20 61 20 63 6f  |nction.k is a co|
00000420  6e 73 74 61 6e 74 20 6f  66 20 69 6e 74 65 67 72  |nstant of integr|
00000430  61 74 69 6f 6e 0a 66 28  78 29 3d 66 28 67 28 75  |ation.f(x)=f(g(u|
00000440  29 29 28 64 78 2f 64 75  29 0a 54 68 69 73 20 69  |))(dx/du).This i|
00000450  73 20 63 61 6c 6c 65 64  20 69 6e 74 65 67 72 61  |s called integra|
00000460  74 69 6f 6e 20 62 79 0a  73 75 62 73 74 69 74 75  |tion by.substitu|
00000470  74 69 6f 6e 2c 20 77 68  65 72 65 20 79 6f 75 20  |tion, where you |
00000480  72 65 70 6c 61 63 65 20  61 0a 66 75 6e 63 74 69  |replace a.functi|
00000490  6f 6e 20 6f 66 20 78 20  77 69 74 68 20 75 2c 20  |on of x with u, |
000004a0  61 6e 64 20 6d 75 6c 74  69 70 6c 79 20 69 74 20  |and multiply it |
000004b0  62 79 0a 64 78 2f 64 75  2e 0a 0a 7b 75 28 64 76  |by.dx/du...{u(dv|
000004c0  2f 64 78 29 3d 75 76 2d  7b 28 64 75 2f 64 78 29  |/dx)=uv-{(du/dx)|
000004d0  76 0a 54 68 69 73 20 69  73 20 63 61 6c 6c 65 64  |v.This is called|
000004e0  20 69 6e 74 65 67 72 61  74 69 6f 6e 20 62 79 20  | integration by |
000004f0  70 61 72 74 73 2e 0a 46  6f 72 20 65 78 61 6d 70  |parts..For examp|
00000500  6c 65 2c 20 74 6f 20 69  6e 74 65 67 72 61 74 65  |le, to integrate|
00000510  20 78 65 5e 78 3a 0a 4c  65 74 20 75 3d 78 20 61  | xe^x:.Let u=x a|
00000520  6e 64 20 64 76 2f 64 78  3d 65 5e 78 0a 53 6f 20  |nd dv/dx=e^x.So |
00000530  64 75 2f 64 78 3d 31 20  61 6e 64 20 76 3d 65 5e  |du/dx=1 and v=e^|
00000540  78 0a 53 6f 20 7b 78 65  5e 78 20 64 78 20 3d 20  |x.So {xe^x dx = |
00000550  78 65 5e 78 2d 7b 65 5e  78 20 3d 20 65 5e 78 28  |xe^x-{e^x = e^x(|
00000560  78 2d 31 29 2b 6b 0a 0a  0a 0a 0a 0a 0a 0a 0a 0a  |x-1)+k..........|
00000570  0a 0a 0a 0a 0a 0a 0a 0a  0a 0a 0a 0a 0a 0a 0a 0a  |................|
*
00000590  0a 0a 0a 0a 0a 0a 0a                              |.......|
00000597