Home » Archimedes archive » Archimedes World » AW-1995-02-Disc1.adf » Disk1Feb95 » !AWFeb95/Goodies/DrawBasic/!DrawBasic/Library/Examples/Chapter/Exer_3/Ex_3/4
!AWFeb95/Goodies/DrawBasic/!DrawBasic/Library/Examples/Chapter/Exer_3/Ex_3/4
This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.
Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.
Tape/disk: | Home » Archimedes archive » Archimedes World » AW-1995-02-Disc1.adf » Disk1Feb95 |
Filename: | !AWFeb95/Goodies/DrawBasic/!DrawBasic/Library/Examples/Chapter/Exer_3/Ex_3/4 |
Read OK: | ✔ |
File size: | 050F bytes |
Load address: | 0000 |
Exec address: | 0000 |
Duplicates
There are 3 duplicate copies of this file in the archive:
- Archimedes archive » Archimedes World » AW-1994-12-Disc1.adf » Disk1Dec94 » !AWDec94/Goodies/DrawBasic/!DrawBasic/Library/Examples/Chapter/Exer_3/Ex_3/4
- Archimedes archive » Archimedes World » AW-1995-01-Disc1.adf » Disk1Jan95 » !AWJan95/Goodies/DrawBasic/!DrawBasic/Library/Examples/Chapter/Exer_3/Ex_3/4
- Archimedes archive » Archimedes World » AW-1995-05-Disc1.adf » AWMay95_1 » InTheMag/DrawBasic/!DrawBasic/Library/Examples/Chapter/Exer_3/Ex_3/4
- Archimedes archive » Archimedes World » AW-1995-02-Disc1.adf » Disk1Feb95 » !AWFeb95/Goodies/DrawBasic/!DrawBasic/Library/Examples/Chapter/Exer_3/Ex_3/4
File contents
REM > Magic Rose based on circle centre (a,b) with n points a=5 : b=5 : radius=5 INPUT "# of points";n angle=2*PI/n DIM x(n),y(n) FOR i=0 TO n x(i)=a+radius*COS(i*angle) : y(i)=b+radius*SIN(i*angle) NEXT path =�PolyJoin(x(),y()) �Quit END DEF �PolyJoin(x(),y()) LOCAL n,k,i : n=DIM(x(),1) �PathBegin(path) �Move(x(0),y(0)) FOR k=1 TO n DIV 2 IF n MOD k = 0 AND k<>1 THEN �Cycle(k,k-1) ELSE �Cycle(k,0) NEXT �PathEnd =path DEF �Cycle(k,m) FOR j=0 TO m i=j IF m<>0 THEN �Move(x(i),y(i)) REPEAT : i=(k+i) MOD n �Draw(x(i),y(i)) UNTIL i=j NEXT ENDPROC REM ===================================================================== REM REM N.B. Memory calculation: REM ------------------ REM REM Command Number of Calls Number of words REM ------- -------------- -------------- REM REM PathBegin 1 11 REM PathEnd 1 1 REM Line Sum [6 (n-i+1)] = 3n(n+1) REM for 1 <= i <= n REM ---------- REM 3n(n+1)+12 TOTAL REM ========== REM REM =====================================================================
00000000 0a 52 45 4d 20 3e 20 4d 61 67 69 63 20 52 6f 73 |.REM > Magic Ros| 00000010 65 20 62 61 73 65 64 20 6f 6e 20 63 69 72 63 6c |e based on circl| 00000020 65 20 63 65 6e 74 72 65 20 28 61 2c 62 29 20 77 |e centre (a,b) w| 00000030 69 74 68 20 6e 20 70 6f 69 6e 74 73 0a 20 20 20 |ith n points. | 00000040 20 20 20 61 3d 35 20 3a 20 62 3d 35 20 3a 20 72 | a=5 : b=5 : r| 00000050 61 64 69 75 73 3d 35 0a 0a 49 4e 50 55 54 20 22 |adius=5..INPUT "| 00000060 23 20 6f 66 20 70 6f 69 6e 74 73 22 3b 6e 0a 61 |# of points";n.a| 00000070 6e 67 6c 65 3d 32 2a 50 49 2f 6e 0a 0a 44 49 4d |ngle=2*PI/n..DIM| 00000080 20 78 28 6e 29 2c 79 28 6e 29 0a 20 46 4f 52 20 | x(n),y(n). FOR | 00000090 69 3d 30 20 54 4f 20 6e 0a 20 20 78 28 69 29 3d |i=0 TO n. x(i)=| 000000a0 61 2b 72 61 64 69 75 73 2a 43 4f 53 28 69 2a 61 |a+radius*COS(i*a| 000000b0 6e 67 6c 65 29 20 3a 20 79 28 69 29 3d 62 2b 72 |ngle) : y(i)=b+r| 000000c0 61 64 69 75 73 2a 53 49 4e 28 69 2a 61 6e 67 6c |adius*SIN(i*angl| 000000d0 65 29 0a 20 20 4e 45 58 54 0a 20 0a 0a 20 20 20 |e). NEXT. .. | 000000e0 70 61 74 68 20 3d bb 50 6f 6c 79 4a 6f 69 6e 28 |path =.PolyJoin(| 000000f0 78 28 29 2c 79 28 29 29 0a 20 20 20 0a a0 51 75 |x(),y()). ..Qu| 00000100 69 74 0a 0a 45 4e 44 0a 0a 44 45 46 20 bb 50 6f |it..END..DEF .Po| 00000110 6c 79 4a 6f 69 6e 28 78 28 29 2c 79 28 29 29 0a |lyJoin(x(),y()).| 00000120 4c 4f 43 41 4c 20 6e 2c 6b 2c 69 20 3a 20 6e 3d |LOCAL n,k,i : n=| 00000130 44 49 4d 28 78 28 29 2c 31 29 20 0a a0 50 61 74 |DIM(x(),1) ..Pat| 00000140 68 42 65 67 69 6e 28 70 61 74 68 29 0a 20 a0 4d |hBegin(path). .M| 00000150 6f 76 65 28 78 28 30 29 2c 79 28 30 29 29 0a 20 |ove(x(0),y(0)). | 00000160 20 46 4f 52 20 6b 3d 31 20 54 4f 20 6e 20 44 49 | FOR k=1 TO n DI| 00000170 56 20 32 0a 20 20 20 49 46 20 6e 20 4d 4f 44 20 |V 2. IF n MOD | 00000180 6b 20 3d 20 30 20 41 4e 44 20 6b 3c 3e 31 20 54 |k = 0 AND k<>1 T| 00000190 48 45 4e 20 a0 43 79 63 6c 65 28 6b 2c 6b 2d 31 |HEN .Cycle(k,k-1| 000001a0 29 20 45 4c 53 45 20 a0 43 79 63 6c 65 28 6b 2c |) ELSE .Cycle(k,| 000001b0 30 29 0a 20 20 20 4e 45 58 54 0a a0 50 61 74 68 |0). NEXT..Path| 000001c0 45 6e 64 0a 3d 70 61 74 68 0a 0a 44 45 46 20 a0 |End.=path..DEF .| 000001d0 43 79 63 6c 65 28 6b 2c 6d 29 0a 20 46 4f 52 20 |Cycle(k,m). FOR | 000001e0 6a 3d 30 20 54 4f 20 6d 0a 20 20 69 3d 6a 0a 20 |j=0 TO m. i=j. | 000001f0 20 49 46 20 6d 3c 3e 30 20 54 48 45 4e 20 a0 4d | IF m<>0 THEN .M| 00000200 6f 76 65 28 78 28 69 29 2c 79 28 69 29 29 0a 20 |ove(x(i),y(i)). | 00000210 20 52 45 50 45 41 54 20 3a 20 69 3d 28 6b 2b 69 | REPEAT : i=(k+i| 00000220 29 20 4d 4f 44 20 6e 20 0a 20 20 20 a0 44 72 61 |) MOD n . .Dra| 00000230 77 28 78 28 69 29 2c 79 28 69 29 29 0a 20 20 20 |w(x(i),y(i)). | 00000240 55 4e 54 49 4c 20 69 3d 6a 0a 20 20 4e 45 58 54 |UNTIL i=j. NEXT| 00000250 0a 45 4e 44 50 52 4f 43 0a 0a 52 45 4d 20 3d 3d |.ENDPROC..REM ==| 00000260 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d |================| * 000002a0 3d 3d 3d 0a 52 45 4d 20 0a 52 45 4d 20 4e 2e 42 |===.REM .REM N.B| 000002b0 2e 20 4d 65 6d 6f 72 79 20 63 61 6c 63 75 6c 61 |. Memory calcula| 000002c0 74 69 6f 6e 3a 0a 52 45 4d 20 20 20 20 20 20 2d |tion:.REM -| 000002d0 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d |----------------| 000002e0 2d 0a 52 45 4d 0a 52 45 4d 20 20 20 20 20 20 43 |-.REM.REM C| 000002f0 6f 6d 6d 61 6e 64 20 20 20 20 20 20 20 4e 75 6d |ommand Num| 00000300 62 65 72 20 6f 66 20 43 61 6c 6c 73 20 20 20 4e |ber of Calls N| 00000310 75 6d 62 65 72 20 6f 66 20 77 6f 72 64 73 0a 52 |umber of words.R| 00000320 45 4d 20 20 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 20 |EM ------- | 00000330 20 20 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d | ----------| 00000340 2d 2d 2d 2d 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d |---- --------| 00000350 2d 2d 2d 2d 2d 2d 0a 52 45 4d 0a 52 45 4d 20 20 |------.REM.REM | 00000360 20 20 20 20 50 61 74 68 42 65 67 69 6e 20 20 20 | PathBegin | 00000370 20 20 20 20 20 20 31 20 20 20 20 20 20 20 20 20 | 1 | 00000380 20 20 20 20 20 20 20 20 20 31 31 0a 52 45 4d 20 | 11.REM | 00000390 20 20 20 20 20 50 61 74 68 45 6e 64 20 20 20 20 | PathEnd | 000003a0 20 20 20 20 20 20 20 31 20 20 20 20 20 20 20 20 | 1 | 000003b0 20 20 20 20 20 20 20 20 20 20 20 31 0a 52 45 4d | 1.REM| 000003c0 20 20 20 20 20 20 4c 69 6e 65 20 20 20 20 20 20 | Line | 000003d0 53 75 6d 20 5b 36 20 28 6e 2d 69 2b 31 29 5d 20 |Sum [6 (n-i+1)] | 000003e0 20 3d 20 20 20 20 20 20 20 20 20 33 6e 28 6e 2b | = 3n(n+| 000003f0 31 29 0a 52 45 4d 20 20 20 20 20 20 20 20 20 20 |1).REM | 00000400 20 20 20 20 20 20 66 6f 72 20 31 20 3c 3d 20 69 | for 1 <= i| 00000410 20 3c 3d 20 6e 20 20 20 0a 52 45 4d 20 20 20 20 | <= n .REM | 00000420 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | * 00000440 20 20 20 20 2d 2d 2d 2d 2d 2d 2d 2d 2d 2d 0a 52 | ----------.R| 00000450 45 4d 20 20 20 20 20 20 20 20 20 20 20 20 20 20 |EM | 00000460 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | 00000470 20 20 20 20 20 20 20 20 20 20 33 6e 28 6e 2b 31 | 3n(n+1| 00000480 29 2b 31 32 20 20 54 4f 54 41 4c 0a 52 45 4d 20 |)+12 TOTAL.REM | 00000490 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | | * 000004b0 20 20 20 20 20 20 20 3d 3d 3d 3d 3d 3d 3d 3d 3d | =========| 000004c0 3d 0a 52 45 4d 0a 52 45 4d 20 3d 3d 3d 3d 3d 3d |=.REM.REM ======| 000004d0 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d |================| * 00000500 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d 3d |===============| 0000050f