Home » Archimedes archive » Archimedes World » AW-1995-01-Disc1.adf » Disk1Jan95 » !AWJan95/Goodies/DrawBasic/!DrawBasic/Library/Examples/Chapter/Exer_3/Ex_3/4

!AWJan95/Goodies/DrawBasic/!DrawBasic/Library/Examples/Chapter/Exer_3/Ex_3/4

This website contains an archive of files for the Acorn Electron, BBC Micro, Acorn Archimedes, Commodore 16 and Commodore 64 computers, which Dominic Ford has rescued from his private collection of floppy disks and cassettes.

Some of these files were originally commercial releases in the 1980s and 1990s, but they are now widely available online. I assume that copyright over them is no longer being asserted. If you own the copyright and would like files to be removed, please contact me.

Tape/disk: Home » Archimedes archive » Archimedes World » AW-1995-01-Disc1.adf » Disk1Jan95
Filename: !AWJan95/Goodies/DrawBasic/!DrawBasic/Library/Examples/Chapter/Exer_3/Ex_3/4
Read OK:
File size: 050F bytes
Load address: 0000
Exec address: 0000
Duplicates

There are 3 duplicate copies of this file in the archive:

File contents
REM > Magic Rose based on circle centre (a,b) with n points
      a=5 : b=5 : radius=5

INPUT "# of points";n
angle=2*PI/n

DIM x(n),y(n)
 FOR i=0 TO n
  x(i)=a+radius*COS(i*angle) : y(i)=b+radius*SIN(i*angle)
  NEXT
 

   path =�PolyJoin(x(),y())
   
�Quit

END

DEF �PolyJoin(x(),y())
LOCAL n,k,i : n=DIM(x(),1) 
�PathBegin(path)
 �Move(x(0),y(0))
  FOR k=1 TO n DIV 2
   IF n MOD k = 0 AND k<>1 THEN �Cycle(k,k-1) ELSE �Cycle(k,0)
   NEXT
�PathEnd
=path

DEF �Cycle(k,m)
 FOR j=0 TO m
  i=j
  IF m<>0 THEN �Move(x(i),y(i))
  REPEAT : i=(k+i) MOD n 
   �Draw(x(i),y(i))
   UNTIL i=j
  NEXT
ENDPROC

REM =====================================================================
REM 
REM N.B. Memory calculation:
REM      ------------------
REM
REM      Command       Number of Calls   Number of words
REM      -------       --------------    --------------
REM
REM      PathBegin         1                  11
REM      PathEnd           1                   1
REM      Line      Sum [6 (n-i+1)]  =         3n(n+1)
REM                for 1 <= i <= n   
REM                                        ----------
REM                                        3n(n+1)+12  TOTAL
REM                                        ==========
REM
REM =====================================================================
00000000  0a 52 45 4d 20 3e 20 4d  61 67 69 63 20 52 6f 73  |.REM > Magic Ros|
00000010  65 20 62 61 73 65 64 20  6f 6e 20 63 69 72 63 6c  |e based on circl|
00000020  65 20 63 65 6e 74 72 65  20 28 61 2c 62 29 20 77  |e centre (a,b) w|
00000030  69 74 68 20 6e 20 70 6f  69 6e 74 73 0a 20 20 20  |ith n points.   |
00000040  20 20 20 61 3d 35 20 3a  20 62 3d 35 20 3a 20 72  |   a=5 : b=5 : r|
00000050  61 64 69 75 73 3d 35 0a  0a 49 4e 50 55 54 20 22  |adius=5..INPUT "|
00000060  23 20 6f 66 20 70 6f 69  6e 74 73 22 3b 6e 0a 61  |# of points";n.a|
00000070  6e 67 6c 65 3d 32 2a 50  49 2f 6e 0a 0a 44 49 4d  |ngle=2*PI/n..DIM|
00000080  20 78 28 6e 29 2c 79 28  6e 29 0a 20 46 4f 52 20  | x(n),y(n). FOR |
00000090  69 3d 30 20 54 4f 20 6e  0a 20 20 78 28 69 29 3d  |i=0 TO n.  x(i)=|
000000a0  61 2b 72 61 64 69 75 73  2a 43 4f 53 28 69 2a 61  |a+radius*COS(i*a|
000000b0  6e 67 6c 65 29 20 3a 20  79 28 69 29 3d 62 2b 72  |ngle) : y(i)=b+r|
000000c0  61 64 69 75 73 2a 53 49  4e 28 69 2a 61 6e 67 6c  |adius*SIN(i*angl|
000000d0  65 29 0a 20 20 4e 45 58  54 0a 20 0a 0a 20 20 20  |e).  NEXT. ..   |
000000e0  70 61 74 68 20 3d bb 50  6f 6c 79 4a 6f 69 6e 28  |path =.PolyJoin(|
000000f0  78 28 29 2c 79 28 29 29  0a 20 20 20 0a a0 51 75  |x(),y()).   ..Qu|
00000100  69 74 0a 0a 45 4e 44 0a  0a 44 45 46 20 bb 50 6f  |it..END..DEF .Po|
00000110  6c 79 4a 6f 69 6e 28 78  28 29 2c 79 28 29 29 0a  |lyJoin(x(),y()).|
00000120  4c 4f 43 41 4c 20 6e 2c  6b 2c 69 20 3a 20 6e 3d  |LOCAL n,k,i : n=|
00000130  44 49 4d 28 78 28 29 2c  31 29 20 0a a0 50 61 74  |DIM(x(),1) ..Pat|
00000140  68 42 65 67 69 6e 28 70  61 74 68 29 0a 20 a0 4d  |hBegin(path). .M|
00000150  6f 76 65 28 78 28 30 29  2c 79 28 30 29 29 0a 20  |ove(x(0),y(0)). |
00000160  20 46 4f 52 20 6b 3d 31  20 54 4f 20 6e 20 44 49  | FOR k=1 TO n DI|
00000170  56 20 32 0a 20 20 20 49  46 20 6e 20 4d 4f 44 20  |V 2.   IF n MOD |
00000180  6b 20 3d 20 30 20 41 4e  44 20 6b 3c 3e 31 20 54  |k = 0 AND k<>1 T|
00000190  48 45 4e 20 a0 43 79 63  6c 65 28 6b 2c 6b 2d 31  |HEN .Cycle(k,k-1|
000001a0  29 20 45 4c 53 45 20 a0  43 79 63 6c 65 28 6b 2c  |) ELSE .Cycle(k,|
000001b0  30 29 0a 20 20 20 4e 45  58 54 0a a0 50 61 74 68  |0).   NEXT..Path|
000001c0  45 6e 64 0a 3d 70 61 74  68 0a 0a 44 45 46 20 a0  |End.=path..DEF .|
000001d0  43 79 63 6c 65 28 6b 2c  6d 29 0a 20 46 4f 52 20  |Cycle(k,m). FOR |
000001e0  6a 3d 30 20 54 4f 20 6d  0a 20 20 69 3d 6a 0a 20  |j=0 TO m.  i=j. |
000001f0  20 49 46 20 6d 3c 3e 30  20 54 48 45 4e 20 a0 4d  | IF m<>0 THEN .M|
00000200  6f 76 65 28 78 28 69 29  2c 79 28 69 29 29 0a 20  |ove(x(i),y(i)). |
00000210  20 52 45 50 45 41 54 20  3a 20 69 3d 28 6b 2b 69  | REPEAT : i=(k+i|
00000220  29 20 4d 4f 44 20 6e 20  0a 20 20 20 a0 44 72 61  |) MOD n .   .Dra|
00000230  77 28 78 28 69 29 2c 79  28 69 29 29 0a 20 20 20  |w(x(i),y(i)).   |
00000240  55 4e 54 49 4c 20 69 3d  6a 0a 20 20 4e 45 58 54  |UNTIL i=j.  NEXT|
00000250  0a 45 4e 44 50 52 4f 43  0a 0a 52 45 4d 20 3d 3d  |.ENDPROC..REM ==|
00000260  3d 3d 3d 3d 3d 3d 3d 3d  3d 3d 3d 3d 3d 3d 3d 3d  |================|
*
000002a0  3d 3d 3d 0a 52 45 4d 20  0a 52 45 4d 20 4e 2e 42  |===.REM .REM N.B|
000002b0  2e 20 4d 65 6d 6f 72 79  20 63 61 6c 63 75 6c 61  |. Memory calcula|
000002c0  74 69 6f 6e 3a 0a 52 45  4d 20 20 20 20 20 20 2d  |tion:.REM      -|
000002d0  2d 2d 2d 2d 2d 2d 2d 2d  2d 2d 2d 2d 2d 2d 2d 2d  |----------------|
000002e0  2d 0a 52 45 4d 0a 52 45  4d 20 20 20 20 20 20 43  |-.REM.REM      C|
000002f0  6f 6d 6d 61 6e 64 20 20  20 20 20 20 20 4e 75 6d  |ommand       Num|
00000300  62 65 72 20 6f 66 20 43  61 6c 6c 73 20 20 20 4e  |ber of Calls   N|
00000310  75 6d 62 65 72 20 6f 66  20 77 6f 72 64 73 0a 52  |umber of words.R|
00000320  45 4d 20 20 20 20 20 20  2d 2d 2d 2d 2d 2d 2d 20  |EM      ------- |
00000330  20 20 20 20 20 20 2d 2d  2d 2d 2d 2d 2d 2d 2d 2d  |      ----------|
00000340  2d 2d 2d 2d 20 20 20 20  2d 2d 2d 2d 2d 2d 2d 2d  |----    --------|
00000350  2d 2d 2d 2d 2d 2d 0a 52  45 4d 0a 52 45 4d 20 20  |------.REM.REM  |
00000360  20 20 20 20 50 61 74 68  42 65 67 69 6e 20 20 20  |    PathBegin   |
00000370  20 20 20 20 20 20 31 20  20 20 20 20 20 20 20 20  |      1         |
00000380  20 20 20 20 20 20 20 20  20 31 31 0a 52 45 4d 20  |         11.REM |
00000390  20 20 20 20 20 50 61 74  68 45 6e 64 20 20 20 20  |     PathEnd    |
000003a0  20 20 20 20 20 20 20 31  20 20 20 20 20 20 20 20  |       1        |
000003b0  20 20 20 20 20 20 20 20  20 20 20 31 0a 52 45 4d  |           1.REM|
000003c0  20 20 20 20 20 20 4c 69  6e 65 20 20 20 20 20 20  |      Line      |
000003d0  53 75 6d 20 5b 36 20 28  6e 2d 69 2b 31 29 5d 20  |Sum [6 (n-i+1)] |
000003e0  20 3d 20 20 20 20 20 20  20 20 20 33 6e 28 6e 2b  | =         3n(n+|
000003f0  31 29 0a 52 45 4d 20 20  20 20 20 20 20 20 20 20  |1).REM          |
00000400  20 20 20 20 20 20 66 6f  72 20 31 20 3c 3d 20 69  |      for 1 <= i|
00000410  20 3c 3d 20 6e 20 20 20  0a 52 45 4d 20 20 20 20  | <= n   .REM    |
00000420  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
*
00000440  20 20 20 20 2d 2d 2d 2d  2d 2d 2d 2d 2d 2d 0a 52  |    ----------.R|
00000450  45 4d 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |EM              |
00000460  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
00000470  20 20 20 20 20 20 20 20  20 20 33 6e 28 6e 2b 31  |          3n(n+1|
00000480  29 2b 31 32 20 20 54 4f  54 41 4c 0a 52 45 4d 20  |)+12  TOTAL.REM |
00000490  20 20 20 20 20 20 20 20  20 20 20 20 20 20 20 20  |                |
*
000004b0  20 20 20 20 20 20 20 3d  3d 3d 3d 3d 3d 3d 3d 3d  |       =========|
000004c0  3d 0a 52 45 4d 0a 52 45  4d 20 3d 3d 3d 3d 3d 3d  |=.REM.REM ======|
000004d0  3d 3d 3d 3d 3d 3d 3d 3d  3d 3d 3d 3d 3d 3d 3d 3d  |================|
*
00000500  3d 3d 3d 3d 3d 3d 3d 3d  3d 3d 3d 3d 3d 3d 3d     |===============|
0000050f